
Polarimetric Dense Monocular SLAM

Luwei Yang1,∗ Feitong Tan1,∗ Ao Li1 Zhaopeng Cui1,2 Yasutaka Furukawa1 Ping Tan1

1 Simon Fraser University 2 ETH Zurich

{luweiy, feitongt, leeaol, furukawa, pingtan}@sfu.ca, zhaopeng.cui@info.ethz.ch

Abstract

This paper presents a novel polarimetric dense monocu-

lar SLAM (PDMS) algorithm based on a polarization cam-

era. The algorithm exploits both photometric and polari-

metric light information to produce more accurate and com-

plete geometry. The polarimetric information allows us to

recover the azimuth angle of surface normals from each

video frame to facilitate dense reconstruction, especially at

textureless or specular regions. There are two challenges in

our approach: 1) surface azimuth angles from the polariza-

tion camera are very noisy; and 2) we need a near real-time

solution for SLAM. Previous successful methods on polari-

metric multi-view stereo are offline and require manually

pre-segmented object masks to suppress the effects of erro-

neous angle information along boundaries. Our fully au-

tomatic approach efficiently iterates azimuth-based depth

propagations, two-view depth consistency check, and depth

optimization to produce a depthmap in real-time, where all

the algorithmic steps are carefully designed to enable a

GPU implementation. To our knowledge, this paper is the

first to propose a photometric and polarimetric method for

dense SLAM. We have qualitatively and quantitatively eval-

uated our algorithm against a few of competing methods,

demonstrating the superior performance on various indoor

and outdoor scenes.

1. Introduction

Polarization is a natural characteristic of light waves,

which conveys rich geometric cues of the surrounding en-

vironment, such as directions and shapes. While human vi-

sion has not evolved to exploit polarization, certain species

of birds and insects[37] are known to sense polarization.

Some shrimps [7] even roll their eyeballs (i.e., rotating

around the gazing direction) to maximize the polarization

contrast. A fundamental challenge in Computer Vision is to

∗These authors contributed equally to this work.

develop computational algorithms that exploit polarimetric

as well as photometric properties of light transport.

A polarization camera, such as PolarCam [1], has an ar-

ray of linear polarizer on the top of the CMOS sensor, just

like the RGB Bayer filter [14]. The polarization camera

can capture the scene under four polarization angles with a

single shot, and recover the surface azimuth angle at every

pixel in each video frame. An azimuth angle provides an

iso-depth direction on the image domain, along which depth

values can be propagated to fill-in and improve a depthmap.

The challenge is that these azimuth angle estimations are

ambiguous and noisy, and false depth propagations damage

a depthmap quickly. Furthermore, we need a near real-time

algorithm for SLAM (Simultaneous Localization and Map-

ping) applications. An existing polarimetric stereo solution

by Cui et al. [5] requires manually prepared segmentation

masks to prevent false propagations and is offline. This pa-

per develops a fully automatic algorithm based on a polar-

ization camera, which exploits both photometric and polari-

metric information to produce more accurate and complete

depthmaps in real-time.

To achieve this goal, we design efficient algorithms to

resolve the azimuth angle ambiguities, and avoid propagat-

ing false depths at outlier points. Specifically, we use a

rough depthmap to bootstrap the dis-ambiguity process, un-

like the expensive graph optimization adopted in [5]. Dur-

ing the azimuth-based depth propagation, we design a two-

view propagation and cross-validation approach to avoid

propagating outlier points. Our algorithm efficiently iter-

ates 1) two-view depth propagationsand validation, and 2)

depth optimization to produce more accurate and complete

depthmaps. All the algorithmic steps are carefully designed

to enable GPU implementations.

We have evaluated the proposed system on indoor and

outdoor scenes with a hand-held monocular polarization

video camera. The qualitative and quantitative evaluations

demonstrate our superior performance over the traditional

methods. To our knowledge, this paper is the first to propose

a photometric and polarimetric method for dense SLAM.

13857

Sequence Tracking

t-

Phase Angle Maps

Grayscale
Images

Initialization

π/2

Disambigulation

Inlier
Map

Init.
Depth

Depth

Consist.

Check

PM
Stereo

Iterative Processing

Depth Optimization

VO Propagated Inliers

Two-View

Propagation & Validation

minimize

E(,)

Inlier
Depth

Keyframe
Images

Fusion

Final
Depth

Iso-Depth Contours

Mesh

Figure 1: Pipeline of our system. Please refer to the main text for more detail.

2. Related work

SLAM: Most visual SLAM algorithms [8, 20, 26] are ded-

icated to improve the camera pose accuracy or system ro-

bustness. They track a sparse set of image feature points to

solve camera motion, and build a sparse 3D map from these

tracked points (see a recent survey [3] for the full review of

the SLAM literature).

Dense visual SLAM produces dense depthmaps, impor-

tant in many applications such as object detection, recog-

nition, obstacle avoidance, and augmented reality. Some

methods [35, 38] apply dense stereo as a post-processing.

For robustness and accuracy, fusion algorithms use RGB-

D cameras [27, 6, 40], which however increase power con-

sumptions and limit the operating capabilities to short-range

indoor scenes. Semi-dense SLAM uses more image pixels,

in particular along edges, to make tracking more robust and

produce denser geometry [12, 11, 10]. However, their ge-

ometry still contains many holes. We apply the method in

[10] to solve camera poses in realtime and compute a dense

depthmap per keyframe for dense mapping.

Recently, unconventional cameras have been used with

SLAM algorithms. Kim et al. used an event camera to cope

with fast camera motions and low-light or high dynamic

range scenes [19]. Jo et al. built a novel sensor “SpeDo”,

which solves 6 DOF ego-motions through speckle defocus

imaging [16]. None of them builds dense 3D maps. This

paper uses an unconventional sensor, polarization camera,

to enhance the quality of 3D reconstruction.

Polarimetric 3D modeling: Light polarization encodes

surface normal information (i.e., azimuth and zenith an-

gles), which have been exploited in many 3D reconstruction

algorithms. The polarimetric shape cues are ambiguous.

Earlier methods [2, 24, 25] assumed smooth object surfaces.

Recent methods employ shape-from-shading [21, 33, 36]

or photometric stereo [29, 9] to deal with the ambigui-

ties. Some algorithms integrate polarimetric constraints

with multi-view stereo [32, 23, 5] or a RGB-D camera [17].

All existing methods are computationally expensive and de-

φ = 0° φ = 135°

φ = 45° φ = 90°

180°90° 120°60° 150°30°0° 180°90° 120°60° 150°30°0°

(a) (b) (c)

Figure 2: (a) four images with different polarization angles;

(b) estimated azimuth angle map without FlatField cali-

bration (bottom bar shows the phase angle); (c) angle map

with our FlatField calibration.

signed for offline object-level 3D modeling. This paper pro-

poses the first online polarimetric dense SLAM solution,

which works for objects, indoors, and outdoors.

3. Preliminaries

Polarization camera Our polarimetric dense monocoular

SLAM (PDMS) system is based on a polarization cam-

era, which has an array of four types of linear polarizers in

front of its CMOS sensor and generates a four-channel im-

age. Each channel measures the intensity of a light passing

through one of the polarizers. From this polarization image,

we can generate a “phase-map”, which has two quantities

per pixel: 1) the azimuth angle, equivalent to the direction

of the surface normal vector projected onto an image plane

(up to ±π/2 ambiguity); 2) the degree of linear polariza-

tion (DOLP), which is a form of confidence metric in the

azimuth estimation. We follow standard techniques in com-

puting the phase-map, whose details can be found in our

supplementary material.

Flat-field calibration A polarization camera requires ex-

tra careful flat-field calibration [22], which is to compen-

sate the sensitivity and dark current variations across dif-

ferent pixels in the CMOS sensor. Typically, the flat-field

can be calibrated by capturing an image of a uniform sig-

nal, where each pixel value is proportional to its sensitivity.

3858

Digital cameras often have build-in flat-field calibration by

their manufacturers before shipping, which is usually insuf-

ficient for a polarization camera, because the input signal

should be unpolarized at the same time. Otherwise, the sig-

nal after going through the polarizer array is no longer uni-

form, violating the assumptions in the flat-field calibration.

We have experimented several different light sources and

setups and eventually find that a LCD monitor covered by

3-5 layers of A4 printing papers produces the designed uni-

form and unpolarized input. We then take 100 images and

compute the average image to smooth out noises. This aver-

age image is the flat-field, encoding the relative sensitivity

of different pixels. Denoting this average image as F , the

multiplier factor map could be computed by: F̂ = max(F)
F

.

We calibrate the raw image as,

Icorr = Iraw ◦ F̂ , (1)

where the operator ◦ is an element-wise multiplication to

correct the pixel sensitivities. Figure 2(c) shows the result

of the flat-field calibration.

System overview Figure 1 shows the overview of our

system architecture. The inputs to our program are the

grayscale video frames and a phase angle map per frame

captured by a polarization camera. We use an existing

visual odometry (VO) algorithm [10] to solve the camera

poses. In the next, we initialize a depthmap per keyframe by

the PatchMatch stereo [13], which helps to resolve the π/2-

ambiguities in the azimuth angles. The followed depth con-

sistency check produces a sparse set of inlier 3D points with

high confidence for each keyframe. Our system then iterates

two steps, 1) two-view depth propagation and validation,

and 2) depth optimization, to produce the final depthmap.

Finally, we fuse those depthmaps at different keyframes to

create an integrated triangle mesh.

Pose estimation Our system employs a state-of-the-art

visual odometry software, DSO [10], while any other

software can be used (e.g., ORB-SLAM [26] or LSD-

SLAM [11]). We take the mean of the four channel intensi-

ties to generate a grayscale image as an input to DSO. DSO

generates camera poses and key-frames.

4. Polarimetric dense mapping on GPU

Our polarimetric dense mapping consists of two ma-

jor components, initialization and iterative processing, and

both are designed to run entirely on GPU. The iterative pro-

cessing further iterates two steps: 1) two-view depth prop-

agation and validation; 2) depthmap optimization. We now

explain the details of each step, where the overall algorithm

including the initialization steps are given in Algorithm 1.

Algorithm 1: Depth Estimation on Keyframe Kt

Input : {Ii,Φi,Pi}i∈1,2,...,t

Input : zt−1

Output: zt

Initilization:

1 z
0

t ← PatchMatchStereo(It, ...,It−2)

2 Φ
′

t ← Disambiguity(Φt)

3 X
0

t ← DepthConsistCheck(z0t , zt−1)

4 a
0 ← z

0

t

Iterative Optimization:

for i← 1 to itmax do

5 N i
t ← TraceDepthOnKt(Φ

′

t, z
inlier
t)

6 N i
r ← TraceDepthOnKr(Φ′

r , zinlier
t)

7 X
i
t ← X

i−1

t ∪ PropagationCheck(N i
t ,N i

r)

8 z
i
t ← OptimizeDataTerm(zi−1

t , at−1, Xi
t)

9 a
i
t ← OptimizeSmoothTerm(zit, at−1)

end

Figure 3: The disambiguated azimuth angle by [5] (shown

in left) and by our method (shown in right). The original

phase angle map is shown in Figure 2 (c).

4.1. Initialization

Depthmap initialization: Given a keyframe Kt, the system

reconstructs an initial depthmap z
0
t by the GPU-accelerated

PatchMatch stereo [13] with the regularizer introduced in

[15]. The symbol t denotes a keyframe index. The

depthmap is computed within a predefined depth range

[zmin, zmax]. We remove spurious depth values in z
0
t via

a simple consistency check with the depthmap zt−1 com-

puted at the previous key-frame: we reproject zt−1 into

Kt and filter out depth values where the depth difference

is more than 1% of (zmax − zmin). The remaining points

are considered as inliers whose depths will be propagated

and optimized in the iterative processing. We denote this

initial set of inliers as X0
t .

Azimuth angle dis-ambiguation The azimuth angle esti-

mation inherently suffers from a π/2-ambiguity, due to two

different types of polarized reflections: specular and dif-

fuse. In many pixels, polarized specular reflection is domi-

nant and this ambiguity can be ignored. In the other cases,

the azimuth angle estimation needs to be corrected by π/2.

Cui et al. proposed an effective graph-based solution [5],

3859

but is computationally too expensive for realtime applica-

tions.

We found that the following process works well and runs

efficiently on GPU. The idea is simple. Depth values would

be constant along a direction perpendicular to the true az-

imuth angle. We trace iso-depth contours for the two pos-

sible azimuth angles, and simply pick the contour with the

smaller variance in depth values (where available) based on

the initial depthmap. The azimuth ambiguity occurs for dif-

fuse dominant surfaces and the disambiguity process is ap-

plied to pixels whose degree of linear polarization (DOLP)

is below 0.30. Note that this process fails where the depth

values are completely missing, but works well where depth

values are noisy. Figure 3 shows a comparison between our

simple method and the graph optimization method in [5].

Our method correctly resolves the ambiguity for most of

the pixels under the cast shadow of the halmet and book

(see the highlighted region).

4.2. Two­view propagation and validation

The success of azimuth-based depth propagation criti-

cally depends on the accuracy of the seed points where the

tracing starts. Depth discontinuity is one major failure mode

illustrated in Figure 4. Note that previous works rely on ob-

ject segmentation information as input to avoid propagat-

ing incorrect depth values at object boundaries [41, 5]. We

need a fully automated realtime solution for SLAM. Our

approach is to perform the azimuth-based depth propaga-

tion in the current keyframe and one well-separated refer-

ence keyframe simultaneously, and perform two-view con-

sistency check to avoid propagating outliers.

Let Kt denote the current keyframe. We choose the ref-

erence keyframe Kr that is well-separated from Kt. More

precisely, Kr is chosen to be the most recent key-frame

whose rotation differs by more than 30 degrees from Kt.

Two-view depth propagation To ensure high quality prop-

agation, in the i-th iteration, we propagate the inlier 3D

points Xi
t in both Kt and Kr simultaneously. For a pixel x

with unknown depth (either in Kr or Ks), we collect the in-

lier 3D points in X
i
t that are projected on its iso-depth con-

tour, and compute a probability distribution for the depth

of x. We estimate[30] a mixture of a Gaussian distribution

N (µ, σ) and a uniform distribution between [zmin, zmax]
to model this depth distribution, where the uniform distribu-

tion accounts for random depth noisy. After that, we model

the depth at x by the Gaussian component N (µ, σ). Note

this propagation can be easily parallelized for all pixels in

Kt and Kr. But we only consider the propagated 3D points

in Kt as the set of candidate inlier points ∆X
i
t.

Two-view consistency check Now, we use the propagated

3D points in the reference view Kr to cross validate the

candidate points in ∆X
i
t. We project them to the keyframe

Kt, and check the depth consistency at their projected posi-

(a) (b)

(c) (d)

Figure 4: Naı̈ve depth propagation magnifies 3D recon-

struction errors. (a) is the input frame, and (b) shows the

initial ‘inlier’ 3D points X0
t with some noisy 3D points (in

white color) along the book’s edge. (c) and (d) are the re-

sults by naı̈ve depth propagation, visualized from two dif-

ferent viewpoints, where the noisy 3D points are incorrectly

propagated along iso-depth contours.

tions. Suppose the pixel xr in Kr is projected to xt in Kt

according to its mean depth µr. According to our propa-

gation, the depth of xt is modeled by a Gaussian distribu-

tion Nt(µt, σt). We evaluate xr’s depth distribution in Kt

and compare its consistency with Nt(µt, σt) to decide if the

propagated 3D point at xt should be discarded.

Specifically, we sample xr’s depth distribution

Nr(µr, σr) in the reference view, and compute its depth

in the keyframe Kt according to these sampled depths. In

this way, we can compute xr’s depth distribution in the

keyframe Kt, denoted as Nr→t(µr→t, σr→t). Now, we

compute the KL divergence between Nr→t(µr→t, σr→t)
and Nt(µt, σt), and discard the propagated 3D point at xt

if the KL divergence is larger than 0.5 or if the absolute dif-

ference of |µt − µr→t| is larger than 1% of |zmax − zmin|.
If a pixel xt in Kt is not projected by any point xr in Kr,

we also discard its propagated depth.

After discarding inconsistent points in ∆X
i
t, we update

the inlier set to X
i+1
t = X

i
t ∪∆X

i
t to move the depthmap

optimization to finish an iteration.

4.3. Depthmap optimization

The last step of the iteration enforces the photometric,

polarimetric, and spatio-temporal regularization constraints

to optimize the depthmap. Specifically, we minimize an en-

ergy function with a data term and a smooth term over three

neighboring keyframes Kt,Kt−1,Kt−2,

E =

∫

Ω

λEdata + Esmooth. (2)

3860

iteration 0 iteration 3 iteration 6

Figure 5: More inlier pixels (marked as green) are recon-

structed during the iterations.

Here, the weight λ balances the relative significance of the

smoothness regularization term, and is set to 5.0 in all our

experiments, and Ω is the image plane.

Data term Our data term is defined between two images,

a source keyframe (Kt) and a reference keyframe (Kt−1 or

Kt−2). For denotation simplicity, we denote the source as I

and the reference as I′ in the following. The data term con-

sists of a photometric error and a contour error, combined

with a weight τ . On very pixel p, we have,

Edata(p) = (1− τ(p))Ephoto(dp,np)+ τ(p)Econtour(zp).
(3)

The spatially variant weight τ(p) is defined as τ(p) =
e−ζ|∇Ip|

η

, where ∇Ip is the image gradient at p. We fix

the parameters η = 0.8, ζ = 3.1 in all our experiments.

This weight τ(p) is stronger on featureless areas and weaker

nearby image edges, since the photometric term tends to

produce better result at those well textured regions.

The photometric error with parameters of the surface

normal np and the distance to the origin dp follows the con-

ventional approach [13] with the detailed definition in our

supplementary file. The contour consistency error is evalu-

ated as

Econtour(zp) =

{

|zp − µp|, if p ∈ X
i
t;

c, otherwise.
(4)

where the zp is the depth at the pixel p (i.e. the distance

from a 3D point to the camera image plane), µp is the mean

of the Gaussian distribution of p’s depth computed through

propagation. The depth zp at a pixel p = (px, py) can be

computed from the parameters dp, np as,

zp =
−dpf

[px − cx, py − cy, f]np

. (5)

Here, f is the camera focal length and (cx, cy) is the princi-

pal point.

Smooth term The smoothness term also consists of two

components, namely,

Esmooth(p) =τ(p)|∇zp|ǫ

+ λaτ(p)|sin(φ)∇xzp − cos(φ)∇yzp|ǫ,

(6)

Here, the | · |ǫ defined as Huber norm with threshold of

ǫ. And the τ(p) is the gradient adaptive weight defined in

Equation 3 which gives a strong penalization on feature-

less area. The weight λa balances these two terms, and is

fixed to 0.4 in all our experiments. In second term, the op-

erators ∇x and ∇y compute the derivative along on x-axis

and y-axis respectively, and φ is the azimuth angle after dis-

ambiguation. This term is adopted from [5], which enforces

the depthmap gradient to be consistent to the azimuth angle,

i.e. tan(φp) = ∇yzp/∇xzp.

Optimization method The energy function in Equation (2)

is difficult to optimize, with a non-convex data term and a

convex regularizer [34, 28, 15]. Similar to [28], we intro-

duce an auxiliary variable a to simplify this problem, which

turns the original energy function into,

E′ =

∫

Ω

λEdata(z,n)+Esmooth(a)+
1

2θ
‖a− z‖22 . (7)

This auxiliary variable decouples the data term and smooth-

ness term, so that they can be optimized separately. The last

term 1
2θ ‖a− d‖22 is introduced to coupling the original and

auxiliary variables together by gradually reducing θ during

iterations.

After this decoupling, the data term becomes

Edata(p) =(1− τp)Ephoto(dp,np)

+ τpEcontour(zp) +
1

2θ
‖ap − zp‖

2
2 ,

(8)

Note that the dp can be converted from zp by Equation 5.

We adopted the PatchMatch variant [13] to minimize it,

which performs a parallel updating scheme that could run

efficiently on GPU architecture.

On the other hand, the smoothness term becomes,

Esmooth =τp|∇ap|ǫ + λaτp|sin(φ)∇xap − cos(φ)∇yap|ǫ

+
1

2θ
‖ap − zp‖

2
2 ,

(9)

and we can solve d by the ROF method [4], which is easy

to implement for parallel computation. At the first iteration,

we set the parameter θ = 3.0. We then iterate the opti-

mization of Edata and Esmooth while reducing the coupling

parameter θ with a factor of 1.5 over the iterations.

Figure 5 shows the propagated inlier 3D points in the 0th,

3rd, and 6th iterations, where the inlier pixels are colored in

green. As we can see, more inlier points will be generated

during the iterations, and featureless areas (e.g. the white

table) are filled with propagated inliers.

Finally, depthmaps at different keyframes are fused into

the final surface model by the InfiniTAM system [18].

3861

bear hammer statue desk pig vase

Figure 6: Our dataset captured by a PolarM[1] Camera. The top row shows some sample frames of the original sequence;

the second row shows the camera motion trajectory; and the bottom row shows the mesh fused by our system.

5. Experiments

We evaluate our system with a polarization camera, the

PolarM [1] camera, mounted with an 8-mm lens. The video

resolution is 772× 600 pixels, and the camera intrinsic pa-

rameters and lens distortions are calibrated beforehand with

the calibration package [39]. All experiments are carried

out on a computer with an Intel Core-i7 5820k CPU and

64G RAM and an NVIDIA GTX Titan X GPU running

Ubuntu 14.04. Our polarimetric dense monocular SLAM

(PDMS) takes 1.2 seconds to process a keyframe, includ-

ing the depth initialization, dis-ambiguiation, and iterative

processing. Each iteration of depth propagation, validation,

and optimization takes 124 ms.

Typical results with surface fusion Figure 6 shows our

results on various indoor and outdoor scenes, where the

first row shows some sample input frames, and the second

and third rows are the camera trajectories and fused dense

mesh respectively. The examples bear, desk, vase, and pig

are captured indoors under office light, while the examples

hammer and statue are captured outdoors under nature illu-

mination. Several examples contain large untextured areas

(e.g. statue, desk, pig, vase), some examples contain ob-

jects with strong specular reflection (e.g. statue, vase). Our

method consistently performs well on these various exam-

ples.

Compare with other dense reconstruction sys-

tems We compare our system with Remode[30] and

MonoFusion[31]. We modified the code shared by the

authors of Remode to use DSO [10] for camera tracking

to ensure a fair comparison. The MonoFusion [31] does

not have open source implementations, so we implement

it by ourselves with the more recent PatchMatch stereo

algorithm[13]. We further reinforce MonoFusion by incor-

porating a smoothness regularizer [15] in the PatchMatch

stereo. All these three methods only use photometric

information to solve a dense depthmap per keyframe.

Comparison with them demonstrate the effectiveness of

incorporating polarimetric information. Figure 9 shows

the depthmaps computed at a single keyframe for the

bear, hammer, statue, and desk examples. To make the

comparison easier, for each example, we further provide

a color-coded surface normals which is computed from

the depthmap. Remode[30] generates much sparse re-

construction which leads to poorly fused mesh (see the

supplementary video). The bear example is relatively easy

with rich texture everywhere except the hat (highlighted

in a red rectangle) to facilitate stereo matching. Our

method produces smoother and denser point clouds, which

can be better seen from the normal map. The hammer

example is captured in outdoor under strong sunlight,

where RGB-D sensors will not work. For this example,

only our method captures the shape of the hammer faith-

fully. The PatchMatch stereo[13] in our implementation

of MonoFusion generates noisy 3D points floating in

space. The regularizer[15] can alleviate this problem, but

still generates distorted reconstruction, especially at the

handle (see the region highlighted by a red frame). These

comparisons are most evident in the normal map. The

statue is a challenging outdoor example, with some black

metal statues sit on a white featureless base. Again, the

PatchMatch stereo generates a large hole on the featureless

3862

Scene Our method Method in [5]

Figure 7: Comparison with the method in [5]. We register

all the depthmaps computed by [5] together to compare with

our fused result.

base, even the regularizer will not solve this problem. In

comparison, our method recovers iso-depth contours to

propagate depth information into the hole from its boundary

(more comparisons are in the supplmentary video). The

desk examples is a small scale scene with multiple objects.

Unlike the other methods, our method captures faithful

shape details.

Comparison with [5] We further compare our system

with [5] which is an offline polarimetric multi-view stereo

method. The authors of [5] kindly run their system on our

data with camera poses solved by our method. Figure 7

shows the comparison on an indoor scenes. The method in

[5] produces noisy results on the vase, because it is designed

for reconstructing a single object with manually prepared

segmentation masks to avoid propagating outliers at occlu-

sion boundaries. In comparison, the two-view propagation

and validation strategy in our method successfully solved

this problem. Furthermore, the method in [5] takes around

100 seconds to reconstruct a depthmap, while our method

takes only 1.2 seconds, achieving a significant speedup by

two magnitudes.

Quantitative Analysis In order to quantitatively analyze

the improvement made by the polarimetric approach, we

evaluate the reconstruction quality of a planar surface in

the statue example. As shown in the lower right corner

of Figure 8, we mark some pixels (as indicated in red) as

the region of interest to compute the cumulative distribu-

tion function (CDF) of reconstruction errors of our method,

MonoFusion, and the reinforced MonoFusion. We do not

include Remode[30] because it tends to generate a sparse

set of reliable points, which leads to poor fusion. To obtain

a reference ‘ground truth’, we apply RANSAC to fit a plane

from some manually picked 3D points on the base. For each

reconstructed 3D point, we compute its shortest distance to

this fitted plane as its reconstruction error. In this way, we

can evaluate the reconstruction error for all the three meth-

ods. The CDFs of the three methods are shown in Figure 8,

where the horizontal axis is the reconstruction error and the

vertical axis is the percentage of pixels. In this chart, the

unit of reconstruction error is set to the length of the white

base under the statues. These curves tell us at each error

level what percent of 3D points have accuracy higher than

10 4 10 3 10 2 10 1

Reconstruction Error

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f 3
D

 P
oi

nt
s

Cumulative Distribution Function (CDF)
 curves of the Reconstruction Errors

MonoFusion
MonoFusion+Reg.
Ours

Figure 8: The cumulative distribution function (CDF)

curves of the reconstruction errors from our method, the

PatchMatch stereo [13] and the PatchMatch reinforced with

a regularizer[15]. The image in the lower-right corner

shows the region of interest in red.

that error level. It is clear that our polarimetric method pro-

duces more accurate result than both PatchMatch stereo[13]

and the one reinforced with a regularizer[15]. For example,

60% of 3D points of our reconstructed points have a error

smaller than 0.01, while that percentage drops to 40% and

32% for the reinforced MonoFusion and MonoFusion re-

spectively.

6. Conclusion

This paper presents a polarimetric dense monocular

SLAM (PDMS) algorithm that reconstructs a dense 3D

depthmap in real-time for each keyframe of the input video.

These individual depthmaps are further fused to produce an

integrated triangle mesh to facilitate other applications. Our

method exploits a novel camera, the polarization camera,

to enhance 3D reconstruction at featureless and specular

regions, which are long-standing difficulties in multi-view

stereo vision. In particular, we design an iterative frame-

work of two-view depth propagation, validation, and opti-

mization to make the polarimetric multi-view stereo work

without manually segmented object masks. To our knowl-

edge, this is the first real-time polarimetric dense monocular

SLAM algorithm.

Acknowledgements
This project is supported by the Canada NSERC Discov-

ery project 611664 and Discovery Acceleration Supplement

611633.

References

[1] The polarm camera. https://www.4dtechnology.

com/products/polarimeters/polarcam/.

3863

https://www.4dtechnology.com/products/polarimeters/polarcam/
https://www.4dtechnology.com/products/polarimeters/polarcam/

Our Result MonoFusion [31] Our reinforced MonoFusion Remode [30]

Figure 9: Comparison with Remode[30], MonoFusion[31], and our reinforced MonoFusion. Please refer to the main text for

details.

3864

[2] G. A. Atkinson and E. R. Hancock. Recovery of surface

orientation from diffuse polarization. IEEE Trans. on Image

Processing (TIP), 15(6):1653–1664, 2006.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-

muzza, J. Neira, I. Reid, and J. J. Leonard. Past, present,

and future of simultaneous localization and mapping: To-

ward the robust-perception age. IEEE Trans. on Robotics,

32(6):1309–1332, 2016.

[4] A. Chambolle. An algorithm for total variation minimiza-

tion and applications. Journal of Mathematical Imaging and

Vision, 20(1):89–97, 2004.

[5] Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz. Polarimetric

multi-view stereo. In Proc. of Computer Vision and Pattern

Recognition (CVPR), 2017.

[6] A. Dai, M. Niesner, M. Zollhöfer, S. Izadi, and C. Theobalt.

Bundlefusion: Real-time globally consistent 3d reconstruc-

tion using on-the-fly surface reintegration. ACM Trans. on

Graphics (TOG), 36(3), 2017.

[7] I. M. Daly, M. J. How, J. C. Partridge, S. E. Temple, N. J.

Marshall, T. W. Cronin, and N. W. Roberts. Dynamic polar-

ization vision in mantis shrimps. Nature Communications.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

Monoslam: Real-time single camera slam. IEEE Trans. on

Pattern Analysis and Machine Intelligence (PAMI), 29(6),

2007.

[9] O. Drbohlav and R. Šára. Unambiguous determination of

shape from photometric stereo with unknown light sources.

In Proc. of Internatoinal Conference on Computer Vision

(ICCV), 2001.

[10] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

IEEE Trans. on Pattern Analysis and Machine Intelligence

(PAMI).

[11] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale

direct monocular slam. In Proc. of European Conference on

Computer Vision (ECCV), pages 834–849. Springer, 2014.

[12] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual

odometry for a monocular camera. In Proc. of Internatoinal

Conference on Computer Vision (ICCV), pages 1449–1456,

2013.

[13] S. Galliani, K. Lasinger, and K. Schindler. Massively parallel

multiview stereopsis by surface normal diffusion. In Proc. of

Internatoinal Conference on Computer Vision (ICCV), pages

873–881, 2015.

[14] R. C. Gonzalez and R. E. Woods. Digital Image Processing

(3rd Edition). Prentice-Hall, Inc., 2006.

[15] P. Heise, S. Klose, B. Jensen, and A. Knoll. Pm-huber:

Patchmatch with huber regularization for stereo matching.

In Proc. of Internatoinal Conference on Computer Vision

(ICCV), pages 2360–2367, 2013.

[16] K. Jo, M. Gupta, and S. K. Nayar. Spedo: 6 dof ego-motion

sensor using speckle defocus imaging. In Proc. of Interna-

toinal Conference on Computer Vision (ICCV), pages 4319–

4327, 2015.

[17] A. Kadambi, V. Taamazyan, B. Shi, and R. Raskar. Polar-

ized 3d: High-quality depth sensing with polarization cues.

In Proc. of Internatoinal Conference on Computer Vision

(ICCV), 2015.

[18] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr,

and D. W. Murray. Very high frame rate volumetric integra-

tion of depth images on mobile device. IEEE Trans. on Vi-

sualization and Computer Graphics (TVCG), 22(11), 2015.

[19] H. Kim, S. Leutenegger, and A. J. Davison. A new varia-

tional framework for multiview surface reconstruction. In

Proc. of European Conference on Computer Vision (ECCV).

Springer, 2016.

[20] G. Klein and D. Murray. Parallel tracking and mapping for

small ar workspaces. In Proc. of International Symposium

on Mixed and Augmented Reality (ISMAR), pages 225–234.

IEEE, 2007.

[21] A. H. Mahmoud, M. T. El-Melegy, and A. A. Farag. Direct

method for shape recovery from polarization and shading. In

International Conference on Image Processing (ICIP), 2012.

[22] J. Manfroid. On ccd standard stars and flat-field calibration.

Astronomy and Astrophysics Supplement Series, 118(2):391–

395, 1996.

[23] D. Miyazaki, M. Kagesawa, and K. Ikeuchi. Transparent

surface modeling from a pair of polarization images. IEEE

Trans. on Pattern Analysis and Machine Intelligence (PAMI),

26(1):73–82, 2004.

[24] D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi.

Polarization-based inverse rendering from a single view.

In Proc. of Internatoinal Conference on Computer Vision

(ICCV), 2003.

[25] O. Morel, F. Meriaudeau, C. Stolz, and P. GorriaK. Polariza-

tion imaging applied to 3D reconstruction of specular metal-

lic surfaces. In Proc. of Machine Vision Applications in In-

dustrial Inspection, 2005.

[26] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam:

a versatile and accurate monocular slam system. IEEE Trans.

on Robotics, 31(5):1147–1163, 2015.

[27] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges,

and A. Fitzgibbon. Kinectfusion: Real-time dense surface

mapping and tracking. In Proc. of International Symposium

on Mixed and Augmented Reality (ISMAR), pages 127–136.

IEEE, 2011.

[28] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In Proc. of In-

ternatoinal Conference on Computer Vision (ICCV), pages

2320–2327. IEEE, 2011.

[29] T. T. Ngo, H. Nagahara, and R. Taniguchi. Shape and light

directions from shading and polarization. In Proc. of Com-

puter Vision and Pattern Recognition (CVPR), 2015.

[30] M. Pizzoli, C. Forster, and D. Scaramuzza. Remode: Prob-

abilistic, monocular dense reconstruction in real time. In

Proc. of International Conference on Robotics and Automa-

tion (ICRA), pages 2609–2616. IEEE, 2014.

[31] V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and

S. Bathiche. Monofusion: Real-time 3d reconstruction of

small scenes with a single web camera. In Proc. of Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2013.

[32] S. Rahmann and N. Canterakis. Reconstruction of specular

surfaces using polarization imaging. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2001.

3865

[33] W. A. P. Smith, R. Ramamoorthi, and S. Tozza. Linear depth

estimation from an uncalibrated, monocular polarisation im-

age. In Proc. of European Conference on Computer Vision

(ECCV), 2016.

[34] F. Steinbrücker, T. Pock, and D. Cremers. Large displace-

ment optical flow computation without warping. In Proc. of

Internatoinal Conference on Computer Vision (ICCV), pages

1609–1614. IEEE, 2009.

[35] J. Stühmer, S. Gumhold, and D. Cremers. Real-time dense

geometry from a handheld camera. In Joint Pattern Recog-

nition Symposium, pages 11–20. Springer, 2010.

[36] S. Tozza, W. A. P. Smith, D. Zhu, R. Ramamoorthi, and

E. R. Hancock. Linear differential constraints for photo-

polarimetric height estimation. In Proc. of Internatoinal

Conference on Computer Vision (ICCV), 2017.

[37] R. Wehner and M. Muller. The significance of direct sun-

light and polarized skylight in the ants celestial system of

navigation. Proceedings of the National Academy of Science

(PNAS), 103(33):12575–12579, 2006.

[38] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof.

Dense reconstruction on-the-fly. In Proc. of Computer Vision

and Pattern Recognition (CVPR), pages 1450–1457. IEEE,

2012.

[39] Z. Zhang. A flexible new technique for camera calibration.

IEEE Trans. on Pattern Analysis and Machine Intelligence

(PAMI), 22(11):1330–1334, 2000.

[40] Q.-Y. Zhou and V. Koltun. Depth camera tracking with con-

tour cues. In Proc. of Computer Vision and Pattern Recogni-

tion (CVPR), pages 632–638, 2015.

[41] Z. Zhou, Z. Wu, and P. Tan. Multi-view photometric stereo

with spatially varying isotropic materials. In Proc. of Com-

puter Vision and Pattern Recognition (CVPR), 2013.

3866

