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Abstract

Convolutional neural networks (CNNs) have been widely

used for image classification. Despite its high accuracies,

CNN has been shown to be easily fooled by some adver-

sarial examples, indicating that CNN is not robust enough

for pattern classification. In this paper, we argue that the

lack of robustness for CNN is caused by the softmax layer,

which is a totally discriminative model and based on the as-

sumption of closed world (i.e., with a fixed number of cat-

egories). To improve the robustness, we propose a novel

learning framework called convolutional prototype learn-

ing (CPL). The advantage of using prototypes is that it can

well handle the open world recognition problem and there-

fore improve the robustness. Under the framework of C-

PL, we design multiple classification criteria to train the

network. Moreover, a prototype loss (PL) is proposed as

a regularization to improve the intra-class compactness of

the feature representation, which can be viewed as a gener-

ative model based on the Gaussian assumption of different

classes. Experiments on several datasets demonstrate that

CPL can achieve comparable or even better results than

traditional CNN, and from the robustness perspective, C-

PL shows great advantages for both the rejection and in-

cremental category learning tasks.

1. Introduction

In recent years, convolutional neural networks [16] (C-

NNs) have achieved great success for pattern recognition

and computer vision, leading to important progress in a va-

riety of tasks, like image classification [15, 8, 7, 34], object

detection [1, 29, 9], instance segmentation [28, 6] and so

on.

Despite the success of CNN, it still suffer from some se-

rious problems. One example is the existence of adversar-

ial samples [37], when we add small noises or make some

small changes to the initial samples, CNN will give differ-

ent predictions for these samples with high confidence, al-

Figure 1. Feature representation learned by traditional CNN model

on MNIST. Different colors represent different classes. It is shown

that the inter-class variation is even smaller than the intra-class

variation.

though visually we can hardly find any significant changes

in the images. Another example is the rejection ability of

CNN, when feed a sample from an unseen class to CN-

N, it will still allocate the sample to a known class with

high confidence. These two phenomena indicate that CNN

is not robust, though it can achieve human-level or even bet-

ter accuracy on some specific datasets, its performance will

degenerate obviously in the complex scenes of the reality.

This greatly limits the application of CNN in real worlds.

The main reasons for these problems include two aspects:

First, CNN is a purely discriminative model, it essentially

learns a partition of the “whole” feature space, therefore, the

samples from unseen classes are still predicted to some spe-

cific regions under the partition, and CNN still views these

samples as some known classes with high confidence. This

explains why the rejection ability of CNN is poor; Second,

from the perspective of representation learning, the learned

representation of CNN is linear separable, see Fig. 1 for an

illustration, and under this kind of representation, the inter-

class distance is sometimes even smaller than the intra-class

distance, this significantly reduces the robustness of CNN in

real and complicated environments.

Several methods have been proposed to improve the ro-
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bustness of CNN and most of them concentrate on design-

ing better loss functions. [36] and [33] proposed the con-

trastive loss and triplet loss to learn a more robust feature

representation, in which the input pairs and triplets need to

be carefully selected from the training data to ensure the

convergence and stability. [38] proposed the center loss to

improve the performance of softmax-based CNN, howev-

er, the centers can not be learned jointly with the CNN and

are only updated according to some pre-defined rules rather

than learned directly from data. Our CPL is more general

than the center loss, since we totally abandon softmax layer

and all the prototypes are learned automatically from data.

Moreover, previous work of [26] and [25] also made im-

provements and extensions for the softmax based loss but

they still kept the softmax layer with the traditional frame-

work of CNN for classification.

In this paper, we propose a novel framework called con-

volutional prototype learning (CPL) for image classifica-

tion. In the bottom of CPL, the convolutional layers are

used to extract discriminative features just like traditional

CNN, but in the top of CPL we assign multiple prototypes

to represent different classes. The classification is simply

implemented by finding the nearest prototype (using Eu-

clidean distance) in the feature space. We design multiple

loss functions for this framework, making the CNN feature

extractor and the prototypes being learned jointly from the

raw data. Therefore, the whole framework can be trained

efficiently and effectively. Experiments on several datasets

demonstrate that the CPL framework can achieve compara-

ble or even better classification accuracies compared with

traditional CNN models.

Benefited from the prototype-based decision function, a

natural prototype loss (PL) can be added to our CPL frame-

work, to pull the feature vector closer to their correspond-

ing prototypes (genuine class representation). The PL is

akin to the maximum likelihood (ML) regularization pro-

posed in [23, 22]. On one hand, it acts like a regulariz-

er, which can prevents the model form over-fitting and im-

proves the performance of CPL. On the other hand, it can

also improves the intra-class compactness in feature rep-

resentation. Therefore, the final learned representation is

intra-class compact and inter-class separable, which makes

the representation more discriminative and robust. From

the perspective of probability, our CPL and PL framework

essentially extract, transform, and model the data of each

class as a Gaussian mixture distribution and the prototypes

act as the means of Gaussian components for each class, this

enables integrating probabilistic methods such as Bayesian

models into our framework. Compared with the traditional

CNN framework, we do not make partition for the “whole”

feature space, but project the samples to some specific re-

gions of the feature space (near the prototypes), thus our

model is more robust to samples from unseen classes and

more suitable for rejection. CPL can also be viewed as a

hybrid discriminative and generative model (like the dis-

criminative density model in [23]) which will lead to better

generalization performance.

2. Related works

In this section, we describe related works from two as-

pects: robust representation learning and prototype learn-

ing. Most recent methods concentrate on modifying or

proposing new loss functions to learn discriminative and ro-

bust representations. Among these methods, [36] combined

the cross entropy loss and contrastive loss [5] to train the

CNN, the cross entropy loss can increase the inter-personal

variations while the contrastive loss can reduce the intra-

personal variations, and both losses guide the CNN to learn

more discriminative representations. [33] designed a triplet

loss for CNN to learn representations in a compact Eu-

clidean space where distances directly correspond to a mea-

sure of similarity, and the learned representation perform-

s well on several tasks including recognition, verification,

and clustering. [38] proposed a center loss and combine it

with cross entropy loss to train the CNN for learning more

discriminative features, and they also propose a mini-batch

based update method for the centers, which was proved to

be useful for face recognition and verification. [26] pro-

posed a generalized large-margin softmax loss which ex-

plicitly encourages intra-class compactness and inter-class

separability between learned representations, making the

representation more discriminative and robust. [25] fur-

ther proposed a angular soft-max loss, which can ensure

the learned representations more angularly discriminative,

and this method was proved to be efficient under open-set

protocols.

Prototype learning is a classical and representative

method in patter recognition society. The earliest prototype

learning method is k-nearest-neighbor (K-NN). In order to

reduce the heavy burden of storages space and computation

requirement of K-NN, an improvement called learning vec-

tor quantization (LVQ) is proposed [12]. The LVQ has been

studied in many works and it has a lot of variations. Accord-

ing to the updating methods of the prototypes, we can clas-

sify the LVQ methods into two main categories. The first

category concentrates on designing suitable updating condi-

tions and rules to learn the prototypes, and the representing

works include [12, 13, 3, 18, 20]. The other category learns

the prototypes in a parameter optimization way, by defining

loss functions with regard to the prototypes and learning the

prototypes through optimizing the loss functions. The rep-

resentative methods include [31, 32, 10, 27, 2]. A detailed

review and evaluation of the prototype based learning meth-

ods can be found in [21]. Previous prototype learning meth-

ods are mainly based on hand-designed features and they

were widely used in different pattern recognition tasks be-
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Figure 2. An illustration of convolutional prototype learning.

fore the arrival of CNN. To the best of our knowledge, this

is the first work on combining the prototype based classi-

fiers with deep convolutional neural networks for both high

accuracy and robust pattern classification.

3. Convolutional prototype learning

3.1. Architecture of the framework

Compared with hand-designed features, the features au-

tomatically learned from data usually perform better for

classification. Thus, we use a CNN as feature extractor in

our framework, which is denoted as f(x; θ), x and θ denote

the raw input and parameters of the CNN respectively. D-

ifferent from the traditional CNN which use softmax layer

for linear classification on the learned features, we maintain

and learn several prototypes on the features for each class

and use prototype matching for classification. The proto-

types are denoted as mij where i ∈ {1, 2, ..., C} represents

the index of the classes and j ∈ {1, 2, ...,K} represents

the index of the prototypes in each class. Here we assume

each class having equal number of K prototypes and this

assumption can be easily relaxed in real application.

The CNN feature extractor f(x; θ) and the prototypes

{mij} are jointly trained from data. In the classification

stage, we classify the objects by prototype matching, i.e.,

we find the nearest prototype according the Euclidean dis-

tance and assign the class of this prototype to the particular

object. A graphic description of our framework can be seen

in Fig. 2.

3.2. Feedforward for prediction

Given an input pattern x, we first get its abstract repre-

sentation by the CNN feature extractor, then we compare

the abstract feature with all prototypes and classify it to the

category where the nearest prototype belongs to:

x ∈ class arg
C

max
i=1

gi(x) (1)

where gi(x) is the discriminant function for class i:

gi(x) = −
K
min
j=1

‖f(x; θ)−mij‖
2
2 (2)

3.3. Backward for training

The trainable parameters in our framework are composed

by two parts. One is the parameters of the CNN extractor,

which is denoted as θ; the other is the prototypes in each

class, which is denoted as M = {mij |i = 1, ..., C; j =
1, ...,K}. The parameters of θ and M should be trained

jointly in an end-to-end manner, and this can make them

cooperate better with each other, which is beneficial for the

performance of classification. To train the framework, we

should first define the corresponding loss function. Besides,

the loss function should be derivable with respect to θ and

M as well. The loss function should also be closely related

to the classification accuracy. In following subsections, we

introduce multiple loss functions designed to train CPL.

3.3.1 Minimum classification error loss (MCE)

Minimum classification error (MCE) loss is firstly proposed

by [30]. We modify this loss function and make it applicable

in our framework. In prototype learning, the discriminant

function is defined as Eq. 2. Then the misclassification

measure of a sample from class y is given by:

µy(x) = −gy(x) +





1

C − 1

∑

j 6=y

gj(x)
η





1/η

(3)

when η approaches infinity, the misclassification measure

becomes:

µy(x) = −gy(x) + gr(x) (4)

where gr(x) is the most competitive class, i.e.,

gr(x) = max
k 6=y

gk(x) (5)

then we can rewritten the misclassification measure as

µy(x) = ‖f(x)−myi‖
2
2 − ‖f(x)−mrj‖

2
2 (6)

where myi is the closest prototype from the genuine class

while mrj is the closest prototype from incorrect classes.

Then, the loss function is defined as:

l((x, y); θ,M) =
1

1 + e−ξµy
. (7)

From the definition of the loss function, we can see that

during minimizing the loss function, the µy is also min-

imized. This means ‖f(x)−myi‖
2
2 is decreased and

‖f(x)−mrj‖
2
2 is increased, which acts like pull the fea-

ture closer to its class but push it away from the other class-

es. Thus, the training can help the framework to achieve

better classification performance on the training samples.

The MCE loss is derivable with regard to M and f , the

derivatives can be calculated as:
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∂l

∂f
= 2ξl(1− l)(mrj −myi). (8)

∂l

∂myi
= 2ξl(1− l)(myi − f(x)) (9)

∂l

∂mrj
= 2ξl(1− l)(f(x)−mrj) (10)

and for the remainder prototypes, we have:

∂l

∂m
= 0. (11)

Note that f is the output of the CNN feature extractor, ac-

cording to the error back propagation algorithm, the deriva-

tives with regard to the parameters of CNN can be calculat-

ed start from ∂l/∂f . Given the gradients of the loss func-

tion, the gradient based optimization methods can be used

to update the whole framework.

3.3.2 Margin based classification loss (MCL)

For a training sample (x, y), let myi and mrj denote the

closest prototypes from the correct class and the most com-

petitive class respectively. If the sample is classified cor-

rectly, then d(f(x),myi) < d(f(x),mrj) and we think

the loss should be 0. If the sample is misclassified, then

d(f(x),myi) > d(f(x),mrj) and we think the loss exist-

s in this situation. Naturally, the loss now can be defined

as d(f(x),myi)− d(f(x),mrj). Putting the two situations

together, we can define the loss function as:

l((x, y); θ,M) = [d(f(x),myi)− d(f(x),mrj)]+ (12)

To increase the classification ability of the framework, a

margin is added to the loss function 12, leading to the new

margin based classification loss (MCL) function, which is

denoted as:

l((x, y); θ,M) = [d(f(x),myi)− d(f(x),mrj) +m]+
(13)

where m is a positive number and acts as the margin. Com-

pared with Eq. 12, MCL is stricter, it penalize the frame-

work even though it classifies some sample correctly (with-

in the margin). Thus, it can increase the discriminative abil-

ity of the framework.

In order to apply MCL successfully, the margin m
should be carefully selected and it should have same scale

with d(f(x),myi) − d(f(x),mrj). However, the scale of

d(f(x),myi) − d(f(x),mrj) is unknown and we have to

compute and estimate it from the training data. To avoid

this problem, a generalized margin based classification loss

(GMCL) function is proposed and defined as:

l((x, y); θ,M) =

[

d(f(x),myi)− d(f(x),mrj)

d(f(x),myi) + d(f(x),mrj)
+m

]

+
(14)

In Eq. 14, −1 <
d(f(x),myi)−d(f(x),mrj)
d(f(x),myi)+d(f(x),mrj)

< 1, thus we can

simply choose margin m from (0, 1).
Both MCL and GMCL are derivable with regard to M

and f , for MCL, the gradients can be computed by:

∂l

∂f
=

{

2(mrj −myi) l > 0

0 l ≤ 0
(15)

∂l

∂myi
=

{

2(myi − f) l > 0

0 l ≤ 0
(16)

∂l

∂mrj
=

{

2(f −mrj) l > 0

0 l ≤ 0
(17)

for other prototypes, we have

∂l/∂mij = 0 (18)

Similarly, the gradients of GMCL can also be computed di-

rectly and we do not list the equations any more.

Equally, the gradients of the loss function with regard

to θ can also be computed by the error back propagation

algorithm beginning from ∂l/∂f . In MCL and GMCL, the

framework is updated only when the loss exists and during

the updating, only two prototypes are trained but the other

prototypes are kept unchanged.

3.3.3 Distance based cross entropy loss (DCE)

In our CPL framework, the distance can be used to mea-

sure the similarity between the samples and the prototypes.

Thus, the probability of a sample (x, y) belonging to the

prototype mij can be measured by the distance between

them:

p(x ∈ mij |x) ∝ −‖f(x)−mij‖
2
2 . (19)

To satisfy the non-negative and sum-to-one properties of the

probability, we further define the probability p(x ∈ mij |x)
as:

p(x ∈ mij |x) =
e−γd(f(x),mij)

∑C
k=1

∑K
l=1 e

−γd(f(x),mkl)
(20)

where d(f(x),mij) = ‖f(x)−mij‖
2
2 represents the dis-

tance between f(x) and mij . γ is a hyper-parameter that

control the hardness of probability assignment. Given the

definition of p(x ∈ mij |x), we can further define the prob-

ability of p(y|x) as:

p(y|x) =

K
∑

j=1

p(x ∈ myj |x). (21)

Based on the probability of p(y|x), we can define the cross

entropy (CE) loss under our framework as:

l((x, y); θ,M) = −logp(y|x). (22)
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This loss function is defined based on the distance, to dis-

tinguish it from the traditional cross entropy loss, we call it

distance based cross entropy (DCE) loss. From Eq. 20, 21

and 22, we can see that minimizing the loss function essen-

tially means decreasing the distance between the samples

with the prototypes which come from the genuine class of

the samples.

Obviously, the DCE is also derivable with regard to M
and f , here we don’t list the equation of the corresponding

gradients any more. Similarly, the derivatives with regard to

the parameters of CNN can also be calculated starting from

∂l/∂f by the chain rule. Compared with MCL and GM-

CL, DCE updates all the prototypes every time during the

training, thus it converges faster than the MCL and GMCL.

3.4. Generalized CPL with prototype loss

The loss functions defined in section 3.3 are used as

measurements of classification accuracy, and by minimiz-

ing these losses, we can train the model to classify the data

correctly. However, directly minimizing the classification

loss may lead to over-fitting. In light of this, we propose

a new prototype loss (PL) as a regularization, which acts

like a generative model to improve the generalization per-

formance of CPL.

From the prediction function defined in Eq. 1, we can

derive the decision boundary of the CPL:

‖f −mij‖
2
2 = ‖f −mkl‖

2
2 (23)

2f · (mkl −mij) + ‖mij‖
2
2 − ‖mkl‖

2
2 = 0. (24)

We can see that the resulted decision boundary is still linear.

Like traditional CNN framework for classification, the CPL

still separates the whole feature space and the learned rep-

resentation is still linearly separable. As stated before, this

kind of framework is not robust, it can not reject the samples

from unseen classes and can not be extended to new classes

conveniently. To overcome this problem, a new loss func-

tion called prototype loss (PL) is added in our framework,

which is defined as:

pl((x, y); θ,M) = ‖f(x)−myj‖
2
2 (25)

where myj is the closest prototype with f(x) from the cor-

responding class y. The prototype loss can be combined

with the classification loss defined in section 3.3 to train the

model. Then the total loss can be defined as:

loss((x, y); θ,M) = l((x, y); θ,M) + λpl((x, y); θ,M)
(26)

where λ is a hyper-parameter which control the weight of

prototype loss. The PL can also be viewed as the maximum-

likelihood (ML) regularization [23, 22] which is widely

used in pattern recognition [11, 19].

PL can further boost the performance of CPL, because:

(1) PL pull the features of samples close to their correspond-

ing prototypes, making the features within the same class

more compact, this can implicitly increase the distance be-

tween the classes, which is beneficial for classification; (2)

the classification loss stresses the separation property of the

representation and the prototype loss stresses the compact-

ness property of the representation, by combining them to-

gether, we can learn intra-class compact and inter-class sep-

arable representations, which are more robust and more ap-

propriate for rejection and open set problems. We denote

CPL equipped with PL as generalized convolutional proto-

type learning (GCPL).

4. Application of GCPL

Besides classification, GCPL can also be used for re-

jection and class-incremental learning. In this paper, we

did not invent new rejection and class-incremental learning

methods, but only show that our framework is suitable for

these two tasks. Most rejection strategies are based on the

probabilities (confidences) produced by the softmax layer

of CNN model. In our framework, we can also obtain clas-

sification probabilities by Eq. 21, so the same strategies can

also be used in our framework. The distance is also a mean-

ingful measurement for the classification confidence in our

framework, thus the same strategies can also be implement-

ed based on the distance outputted by GCPL.

For class-incremental learning, we only consider the

most general case. That is, given a trained framework

and some samples from a new class, we should extend the

framework to recognize the new class correctly and keep

the accuracy on the old classes. In GCPL framework, the

learned representations have better clustering property, for

samples of the new class, the resulted features are also com-

pact. Thus we can cluster the features of new class or use

the mean of these features as the prototypes for the new

class. Therefore, the framework can be expanded to the

new class easily. In the following experimental section,

we will show that this approach is very effective for class-

incremental learning.

5. Experiments

5.1. Experiments and analysis on MNIST [17]

In this experiment, the architecture of CNN feature ex-

tractor is the same as the network used in [38] with the

ReLU activation function. The output of the CNN feature

vector is set to be two, thus we can directly plot the fea-

tures on the 2-D surface for visualization. We maintain one

prototype in each class and train the framework under the

DCE loss and DCE+PL loss respectively. Meanwhile, we

also give the accuracy of the traditional softmax based CN-

N framework under the same architecture as [38]. We set
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method test accuracy (%)

soft-max 99.08

CPL (DCE) 99.28

GCPL(DCE+PL)

λ = 0.001 99.33

λ = 0.01 99.29

λ = 0.1 99.30

Table 1. Test accuracy of different methods on MNIST

Figure 3. The learned representations of CPL and GCPL on M-

NIST. Different colors represent different classes

the initial learning rate as 0.001, the batch size as 50, and

the hyper-parameter γ in DCE as 1.0 during the training.

The final results can be seen in table 1 and Fig. 3.

From table 1, we can see that our new proposed CPL

framework can achieve comparable performance with tradi-

tional softmax based CNN under the same structure. More-

over, by cooperating with PL, our GCPL can achieve even

better results. This demonstrates that the PL, which acts as

an implicit regularization, is beneficial for classification as

well. Meanwhile, we can also see that the test accuracy is

not sensitive to the parameter λ, the change of λ did not

greatly impact the results. From Fig. 3 (a), we can see that

when only use the classification loss, the resulted represen-

tations are still linear separable, this demonstrates that our

analysis in section 3.4 is correct. From Fig. 3 (b) to (d),

we can see the learned representations under GCPL frame-

work are really inter-class separable and intra-class com-

pact. With the increasing of the weight λ on PL loss, the

learned representations within the same class become more

and more compact. This demonstrate our GCPL framework

can really learn robust and discriminative representations.

5.2. Experiments and analysis on CIFAR­10

We realized several CNN structures on CIFAR-10 [14],

including the model C appeared in [35], a modified version

of model C that adds batch normalization layers after each

convolutional and fully connected layers in model C, resid-

ual net 20 and residual net 32 in [8]. Then we compare the

CNN structure soft-max CPL GCPL

model C [35] 90.26 [35] 90.70 90.80

model C with BN 91.37 91.59 91.90

ResNet 20 91.32 91.46 91.63

ResNet 32 92.50 92.60 92.63

Table 2. The accuracy of different CNN structures and different

models on CIFAR-10

loss function accuracy (%)

soft-max 97.55 [40]

MCE 97.35

MCL 97.61

GMCL 97.36

DCE 97.58

Table 3. The accuracy of GCPL on OLHWDB dataset

performance of the traditional softmax based classification,

CPL, and GCPL methods under these CNN structures. In

all experiments, we maintain one prototype for each class

and the prototypes are initialized as zero vectors. The im-

ages data are whitened and contrast normalized following

[4]. The experimental results are shown in table 2.

From table 2, we can see that the proposed CPL frame-

work can achieve comparable or even better results than the

traditional softmax based classification method under dif-

ferent network structures. This further demonstrates the

efficiency and generality of the proposed framework. Be-

sides, the GCPL framework, which has an additional proto-

type loss during training, performs best in all experiments

on CIFAR-10.

5.3. Experiments and analysis on OLHWDB

Online handwriting database (OLHWDB [24]) is a large

scale Chinese handwriting dataset. Following the settings

in [40] and [39], the training and test datasets include

2,697,673 and 224,590 samples respectively, which are

come from 3755 classes. We use the same CNN structure as

[40] and make little modifications with batch normalization

and ReLU to improve training process. We mainly test the

GCPL framework on this dataset and adopt different clas-

sification loss functions to study their influence on the per-

formance. We maintain only one prototype for each class

and the prototypes are initialized as the mean of training

features in the corresponding classes. We use the same data

pre-processing method as [40]. The experimental results are

listed in table 3. From table 3, we can see that our frame-

work also performs well or even better on large scale clas-

sification problems, which again demonstrate its efficiency

and generality.

Note that our purpose is not to achieve significantly bet-

ter accuracy than previous softmax-based CNN model, we

only want to show that, from the accuracy perspective, our

framework can match or work slightly better than tradition-
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softmax GCPL Prob GCPL Dist

AR RR AR RR AR RR

100.0 0.000 100.0 0.000 94.20 100.0

99.98 0.200 99.99 15.67 97.39 100.0

99.72 8.110 99.80 46.12 98.07 100.0

99.14 25.17 99.39 87.07 98.43 100.0

98.52 40.60 99.30 93.43 98.57 99.99

97.61 57.54 99.21 96.31 98.73 99.99

83.95 71.66 98.96 98.69 98.89 99.99

76.67 85.97 98.73 99.46 99.09 99.99

75.49 98.02 98.21 99.86 99.20 99.99

Table 4. The tradeoff between acceptance rate AR (%) and rejec-

tion rate RR (%) for different methods.

al CNN model. The advantage of our model in another per-

spective is that it can significantly improve the robustness of

pattern recognition. In following subsections, we will show

this from the viewpoints of rejection and class-incremental

learning.

5.4. Experiments for rejection

To test the robustness of our GCPL framework, we fur-

ther conduct experiments for rejection. We firstly train a

network on MNIST training set. To evaluate its robustness,

we use two test sets (MNIST and CIFAR-10 test sets) for

this network. The CIFAR-10 test samples are not digits,

and therefore, they should be viewed as outliers and then

be rejected by this network. At the same time, the samples

from the MNIST test set should still be accepted since they

are from the same domain as the training data. Actually, the

rejection and acceptance performance are closely coupled,

we can only get a tradeoff between them.

To fairly evaluate the performance, we use two measure-

ments of acceptance rate (AR) and rejection rate (RR). AR

denotes the percentage of accepted samples in MNIST test

set (how many MNIST samples have been accepted), while

RR denotes the percentage of rejected samples in CIFAR-

10 test set (how many CIFAR-10 samples have been reject-

ed). The higher of these two measurements, the better of

the model in robustness. We adopt the most frequently used

threshold-based rejection strategy, i.e., if the output confi-

dence for a sample is larger than the pre-defined threshold,

then it will be accepted, otherwise it will be rejected. The

confidence can be obtained by the output probability or dis-

tance in GCPL (section 4). Different from the probability,

the smaller distance represents larger confidence. We use

the same structure of CNN feature extractor as section 5.1.

For comparison, we also test the rejection performance of

traditional softmax based framework under the same CN-

N structure. The results are showed in table 4. Note these

results are obtained by using different (smoothly changed)

thresholds to give the AR-RR tradeoffs.

From table 4, we can see that the softmax-based model

is confused by the MNIST and CIFAR-10 samples, the high

AR and high RR is not able to coexist. This explains that the

softmax-based model is not robust in outlier detection. Dif-

ferently, our GCPL model can achieve better rejection per-

formance and meantime keep satisfactory acceptance rate.

For example, while over 99% CIFAR-10 samples being re-

jected, we can still keep over 99% MNIST samples accept-

ed. This is a significant advantage compared with softmax

based approach, which demonstrates the robustness of the

GCPL framework.

5.5. Experiments for class­incremental learning

We conduct experiments on MNIST and CIFAR dataset

to demonstrate the superiority of GCPL framework for

class-incremental learning. We treat all MNIST samples

(from class 0 to 9) as the known class data and choose

one class from CIFAR-10 as the new class (which should

be learned incrementally). We use the same network struc-

ture as described in section 5.1 and train the GCPL on the

MNIST training set, then we feed the test data from both

known and unknown classes to the trained GCPL and ob-

tain their representations, the results are shown in Fig. 4.

Figure 4. The learned representations for both known and un-

known (new) classes

From Fig. 4, we can find that the learned representations

for both known and unknown (new) classes are intra-class

compact and inter-class separable, this again demonstrates

the robustness of the GCPL framework. Based on such rep-

resentations, we can simply use the mean of the training

data from the new class as the prototype for the new class,

then we can directly extend the GCPL to make predictions

for both the new class and the previous classes. To evaluate

the accuracy of GCPL for class-incremental learning, we

further give the accuracy of the extended GCPL on the test
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new class ID (CIFAR) test accuracy (11-class)

0 99.23

1 99.23

3 99.24

5 99.23

6 99.24

7 99.22

8 99.20

9 99.23

without new class 99.27

Table 5. Accuracy (%) of GCPL on test samples from both known

and new classes

samples from both known and new classes (total 11 classes)

in table 5. From table 5, we can see the GCPL still keep-

s high performance when extended to the new class. Note

that in this class-incremental learning process, we did not

re-train any part of the model, and due to the advantage of

prototype-based decision making, we can directly add a new

prototype to represent the new class. This demonstrates the

advantage of GCLP for class-incremental learning.

5.6. Experiments with small sample size

Another aspect of robust classification is the ability to

deal with small sample size (SSS). To further demonstrate

the robustness of GCPL, we conduct experiments under the

condition of SSS. We use different number (percentages)

of samples in MNIST training set to train the models and

then observe their accuracy on the MNIST test set. For GC-

PL, We use the same net structure and training settings as

described in section 5.1, the weight λ for prototype loss is

0.001. For comparison, we also give the test accuracy of the

traditional softmax-based CNN framework under the same

architecture and training data. We repeat the experiments

for five times and show the statistical results in table 6.

sample size (%) soft-max GCPL

100 99.08± 0.10 99.33± 0.10
50 98.07± 0.39 99.12± 0.10
30 92.68± 4.52 98.89± 0.10
10 86.12± 6.00 97.80± 0.22
5 73.95± 6.10 96.44± 0.40
3 50.79± 17.44 94.90± 0.58

Table 6. Test accuracy (%) under different percentages of training

samples.

From table 6, we can find that the decreasing of training

samples has less impact on the performance of GCPL. Com-

pared with the softmax-based framework, the performance

of GCPL declines much slower when the sample size is re-

duced. In particular, when training with very small number

of training samples (e.g., with only 5% or 3% training sam-

ples), the test accuracies for softmax-based framework are

very low (with large variance), which demonstrates that the

softmax-based model is not robust for SSS problem. On the

contrary, under the same situation, the GCPL is still very ef-

fective for different sizes of training samples. GCPL not on-

ly achieves much higher accuracy but also shows more sta-

ble results with smaller variances. This again demonstrates

the robustness of GCPL in dealing with SSS problem.

5.7. Experiments with multiple prototypes

In all previous experiments, we set the number of proto-

types K in each class as 1. In this section, we adopt dif-

ferent values for K and investigate its effect on the classifi-

cation performance. We use model C (described in section

5.2) with DCE loss, and conduct the experiment on CIFAR-

10 dataset. For different K, we use the same settings for the

hyper-parameters during the training, the results are shown

in table 7.

K 1 2 3 4 5

accuracy (%) 90.70 90.40 90.37 90.67 90.46

Table 7. Test accuracy (%) under different values of K.

From table 7, we can see that more prototypes didn’t

lead to better results. Actually, CNN is very powerful for

feature extraction, even though the initial intra-class distri-

bution may be very complex, after CNN transformation, it

can still be well modeled with a single Gaussian distribution

(a single prototype). However, in more complicated scenar-

ios, where the data distributions are difficult to model, more

prototypes may be beneficial.

6. Conclusion

This paper proposed a convolutional prototype learning

(CPL) framework for pattern recognition. Different from

the softmax-based models, CPL directly learn multiple pro-

totypes (in convolutional feature space) for each class and

then use prototype matching for decision making. CPL can

achieve comparable or even better classification accuracy

than softmax-based CNN models. To further improve the

robustness, we propose a prototype loss (PL) to increase

the intra-class compactness, resulting in a generalized CPL

(GCPL) model. The GCPL has great advantage compared

with traditional CNN models in the perspectives of outlier

rejection and class-incremental learning. In future, we will

try to conduct more detailed experiments to evaluate other

properties of GCPL such as the adaptation ability in chang-

ing environment, dealing with weakly labeled data, and so

on.
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