
Shape from Shading through Shape Evolution

Dawei Yang Jia Deng

Computer Science and Engineering, University of Michigan

{ydawei,jiadeng}@umich.edu

Abstract

In this paper, we address the shape-from-shading prob-

lem by training deep networks with synthetic images. Un-

like conventional approaches that combine deep learning

and synthetic imagery, we propose an approach that does

not need any external shape dataset to render synthetic im-

ages. Our approach consists of two synergistic processes:

the evolution of complex shapes from simple primitives, and

the training of a deep network for shape-from-shading. The

evolution generates better shapes guided by the network

training, while the training improves by using the evolved

shapes. We show that our approach achieves state-of-the-

art performance on a shape-from-shading benchmark.

1. Introduction

Shape from Shading (SFS) is a classic computer vision

problem at the core of single-image 3D reconstruction [44].

Shading cues play an important role in recovering geometry

and are especially critical for textureless surfaces.

Traditionally, Shape from Shading has been approached

as an optimization problem where the task is to solve for a

plausible shape that can generate the pixels under a Lamber-

tian shading model [43, 15, 5, 4, 3]. The key challenge is to

design an appropriate optimization objective to sufficiently

constrain the solution space, and to design an optimization

algorithm to find a good solution efficiently.

In this paper, we address Shape from Shading by train-

ing deep networks on synthetic images. This follows an

emerging line of work on single-image 3D reconstruction

that combines synthetic imagery and deep learning [36, 25,

24, 45, 29, 37, 10, 42, 6]. Such an approach does away

with the manual design of optimization objectives and al-

gorithms, and instead trains a deep network to directly es-

timate shape. This approach can take advantage of a large

amount of training data, and has shown great promise on

tasks such as view point estimation [36], 3D object recon-

struction and recognition [37, 10, 42], and normal estima-

tion in indoor scenes [45].

One limitation of this data-driven approach, however, is

availability of 3D shapes needed for rendering synthetic im-

ages. Existing approaches have relied on manually con-

structed [8, 41, 1] or scanned shapes [9]. But such datasets

can be expensive to build. Furthermore, while synthetic

datasets can be augmented with varying viewpoints and

lighting, they are still constrained by the number of dis-

tinct shapes, which may limit the ability of trained models

to generalize to real images.

An intriguing question is whether it would be possible to

do away with manually curated 3D shapes while still being

able to use synthetic images to train deep networks. Our key

hypothesis is that shapes are compositional and we should

be able to compose complex shapes from simple primitives.

The challenge is how to enable automatic composition and

how to ensure that the composed shapes are useful for train-

ing deep networks.

We propose an evolutionary algorithm that jointly gener-

ates 3D shapes and trains a shape-from-shading deep net-

work. We evolve complex shapes entirely from simple

primitives such as spheres and cubes, and do so in tan-

dem with the training of a deep network to perform shape

from shading. The evolution of shapes and the training of

a deep network collaborate—the former generates shapes

needed by the latter, and the latter provides feedback to

guide the former. Our approach is significantly novel com-

pared to prior works that use synthetic images to train deep

networks, because they have all relied on manually curated

shape datasets [36, 24, 45, 37].

In this algorithm, we represent each shape using an im-

plicit function [28]. Each function is composed of simple

primitives, and the composition is encoded as a computa-

tion graph. Starting from simple primitives such as spheres

and cubes, we evolve a population of shapes through trans-

formations and compositions defined over graphs. We ren-

der synthetic images from each shape in the population and

use the synthetic images to train a shape-from-shading net-

work. The performance of the network on a validation set

of real images is then used to define the fitness score of

each shape. In each round of the evolution, fitter shapes

have better chance of survival whereas less fit shapes tend

to be eliminated. The end result is a population of surviving

3781

Shapes

Evolve

Evolve

..
.

Evaluate
Train

Evaluate
Train

..
.

..
.

Image-to-Normal Network

Render

Render

Render

Images Normals

Real Images

Real Images

..
.

Figure 1. The overview of our approach. Starting from simple primitives such as spheres and cubes, we evolve a population of complex

shapes. We render synthetic images from the shapes to incrementally train a shape-from-shading network. The performance of the network

on a validation set of real images is then used to guide the shape evolution.

shapes, along with a shape-from-shading network trained

with them. Fig. 1 illustrates the overall pipeline.

The shape-from-shading network is incrementally

trained in a way that is tightly integrated with shape evo-

lution. In each round of evolution, the network is fine-

tuned separately with each shape in the population, spawn-

ing one new network instance per shape. Then the best

network instance advances to the next round while the rest

are discarded. In other words, the network tries updating

its weights using each newly evolved shape, and the best

weights are kept to the next round.

We evaluate our approach using the MIT-Berkeley In-

trinsic Images dataset [5]. Experiments demonstrate that

we can train a deep network to achieve state-of-the-art per-

formance on real images using synthetic images rendered

entirely from evolved shapes, without the help of any man-

ually constructed or scanned shapes. In addition, we present

ablation studies which support the design of our evolution-

ary algorithm.

Our results are significant in that we demonstrate that it

is potentially possible to completely automate the genera-

tion of synthetic images used to train deep networks. We

also show that the generation procedure can be effectively

adapted, through evolution, to the training of a deep net-

work. This opens up the possibility of training 3D recon-

struction networks with a large number of shapes beyond

the reach of manually curated shape collections.

To summarize, our contributions are twofold: (1) we pro-

pose an evolutionary algorithm to jointly evolve 3D shapes

and train deep networks, which, to the best of our knowl-

edge, is the first time this has been done; (2) we demonstrate

that a network trained this way can achieve state-of-the-

art performance on a real-world shape-from-shading bench-

mark, without using any external dataset of 3D shapes.

2. Related Work

Recovering 3D properties from a single image is one of

the most fundamental problems of computer vision. Early

works mostly focused on developing analytical solutions

and optimization techniques, with zero or minimal learn-

ing [13, 44, 5, 4, 3]. Recent successes in this direction in-

clude the SIRFS algorithm by Barron and Malik [5], the

local shape from shading method by Xiong et al. [43], and

“polynomial SFS” algorithm by Ecker and Jepson [15]. All

these methods have interpretable, “glass box” models with

elegant insights, but in order to maintain analytical tractabil-

ity, they have to make substantial assumptions that may not

hold in unconstrained settings. For example, SIRFS [5] as-

sumes a known object boundary, which is often unavailable

in practice. The method by Xiong et al. assumes quadrati-

cally parameterized surfaces, which has difficulties approx-

imating sharp edges or depth discontinuities.

Learning-based methods are less interpretable but more

flexible. Seminal works include an MRF-based method pro-

posed by Hoiem et al. [19] and the Make3D [32] system

3782

by Saxena et al. Cole et al. [12] proposed a data-driven

method for 3D shape interpretation by retrieving similar

image patches from a training set and stitching the local

shapes together. Richter and Roth [30] used a discrimi-

native learning approach to recover shape from shading in

unknown illumination. Some recent works have used deep

neural networks for predicting surface normals [40, 2] or

depth [16, 39, 7] and have shown state-of-the-art results.

Learning-based methods cannot succeed without high-

quality training data. Recent years have seen many ef-

forts to acquire 3D ground truth from the real world, in-

cluding ScanNet [14], NYU Depth [26], the KITTI Vi-

sion Benchmark Suite [17], SUN RGB-D [33], B3DO [22],

and Make3D [32], all of which offer RGB-D images cap-

tured by depth sensors. The MIT-Berkeley Intrinsic Images

dataset [5] provides real world images with ground truth on

shading, reflectance, normals in addition to depth.

In addition to real world data, synthetic imagery has also

been explored as a source of supervision. Promising results

have been demonstrated on diverse 3D tasks such as pose

estimation [36, 24, 1], optical flow [6], object reconstruc-

tion [37, 10], and surface normal estimation [45]. Such

advances have been made possible by concomitant efforts

to collect 3D content needed for rendering. In particular,

the 3D shapes have come from a variety of sources, includ-

ing online CAD model repositories [8, 41], interior design

sites [45], video games [29, 31], and movies [6].

The collection of 3D shapes, from either the real world

or a virtual world, involves substantial manual effort—the

former requires depth sensors to be carried around whereas

the latter requires human artists to compose the 3D models.

Our work explores a new direction that automatically gen-

erates 3D shapes to serve an end task, bypassing real world

acquisition or human creation.

Our work draws inspiration from the work of Clune &

Lipson [11], which evolves 3D shapes as Compositional

Pattern Producing Networks [34]. Our work differs from

theirs in two important aspects. First, Clune & Lipson per-

form only shape generation, particularly the generation of

interesting shapes, where interestingness is defined by hu-

mans in the loop. In contrast, we jointly generate shapes and

train deep networks, which, to the best of our knowledge, is

the first this has been done. Second, we use a significantly

different evolution procedure. Clune & Lipson adopt the

NEAT algorithm [35], which uses generic graph operations

such as insertion and crossover at random nodes, whereas

our evolution operations represent common shape “edits”

such as translation, rotation, intersection, and union, which

are chosen to optimize the efficiency of evolving 3D shapes.

3. Shape Evolution

Our shape evolution follows the setup of a standard ge-

netic algorithm [20]. We start with an initial population of

shapes. Each shape in the population receives a fitness score

from an external evaluator. Then the shapes are sampled

according to their fitness scores, and undergo random geo-

metric operations to form a new population. This process

then repeats for successive iterations.

3.1. Shape Representation

We represent shapes using implicit surfaces [28]. An im-

plicit surface is defined by a function F : R3 → R. that

maps a 3D point to a scalar. The surface consists of points

(x, y, z) that satisfy the equation:

F (x, y, z) = 0.

And if we define the points F (x, y, z) < 0 as the interior,

then a solid shape is constructed from this function F . Note

that the shape is not guaranteed to be closed, i.e., may have

points at infinity. A simple workaround is to always confine

the points within a cube [11].

Our initial shape population consists of four common

shapes—sphere, cylinder, cube, and cone, which can be rep-

resented by the functions below:

Sphere : F (x, y, z) = x2 + y2 + z2 −R2

Cylinder : F (x, y, z) = max
(

x2+y2

R2 ,
|z|
H

)

− 1

Cube : F (x, y, z) = max(|x|, |y|, |z|)− L
2

Cone : F (x, y, z) = max(x
2+y2

R2 − z2

H2 ,−z, z −H)
(1)

An advantage of implicit surfaces is that the composi-

tion of shapes can be easily expressed as the composition of

functions, and a composite function can be represented by

a (directed acyclic) computation graph, in the same way a

neural network is represented as a computation graph.

Suppose a computation graph G = (V,E). It includes a

set of nodes V = {x, y, z} ∪ {v1, v2, · · · } ∪ {t}, which in-

cludes three input nodes {x, y, z}, a variable number of in-

ternal nodes {v1, v2, · · · }, and a single output node t. Each

node v ∈ V (excluding input nodes) is associated with a

scalar bias bv , a reduction function rv that maps a variable

number of real values to a single scalar, and an activation

function φv that maps a real value to a new value. In addi-

tion, each edge e ∈ E is associated with a weight we.

It is worth noting that different from a standard neu-

ral network or a Compositional Pattern Producing Network

(CPPN) that only uses sum as the reduction function, our

reduction function can be sum, max or min. As will be-

come clear, this is to allow straightforward composition of

shapes.

To evaluate the computation graph, each node takes the

weighted activations of its predecessors and applies the re-

duction function, followed by the activation function plus

the bias. Fig. 2 illustrates the graphs of the functions de-

fined in Eq. 1.

3783

x

y

z

sqr

sqr

sqr

=

z abs

=

x

y

sqr

sqr

=

max

1/R2

1/R2

1/H
−1

x

y

z

abs

abs

abs

=

max

−L/2 z

sqr

=

x

y

sqr

sqr

=
1/R2

1/R2

−1/H2

−1

=

−H

=

max

Sphere

−R2

Cylinder

Cube Cone

Figure 2. The computation graphs of four primitive shapes defined

in Eq. 1. The unlabeled edge weight and node bias are 0, and the

unlabeled reduction function is sum.

x

y

z

=

x’

y’

z’

x

y

z

=

−b
1

−b
2

−b
3(λA)−1

Figure 3. Shape transformation represented by graph operation.

Left: the graph of the shape before transformation. Right: the

graph of the shape after transformation.

Shape transformation To evolve shapes, we define graph

operations to generate new shapes from existing ones. We

first show how to transform an individual shape. Given an

existing shape represented by F (x, y, z), let F (T (x, y, z))
represent a transformed shape, where T : R3 → R

3 is a

3D-to-3D map. It is easy to verify that F (T (x, y, z)) repre-

sents the transformed shape under translation, rotation, and

scaling if we define T as

T (x, y, z) = (λA)−1[x, y, z]T − b,

where A is a rotation matrix, λ is the scalar, and the b is the

translation vector. Note that for simplicity our definitions

have only included a single global scalar, but more flexi-

bility can be easily introduced by allowing different scalars

along different axes or an arbitrary invertible matrix A.

This shape transformation can also be expressed in terms

of a graph transformation, as illustrated in Fig. 3. Given the

original graph of the shape, we insert 3 new input nodes

x′, y′, z′ before the original input nodes, connect new nodes

to the original nodes with weights corresponding to the ele-

ments of the matrix (λA)−1, and set the biases of the orig-

inal nodes to the vector −b.

Shape composition In addition to transforming individual

shapes, we also define binary operations over two shapes.

x

y

z

=F
1

(1)

(1)

(1)

x

y

z

(2)

(2)

(2)

=F
2

x

y

z

=F
1

=F
2

=min

Figure 4. The union of two shapes represented by graph merging.

Left: the respective graphs of the two shapes to be unioned. Right:

the graph of the unioned shape.

This allows complex shapes to emerge from the composi-

tion of simple ones. Suppose we have two shapes with the

implicit representations F1(x, y, z) and F2(x, y, z). As a

basic fact [28], the union, intersection, and difference of the

two can be represented as follows:

Funion(x, y, z) = min(F1(x, y, z), F2(x, y, z))

Fintersection(x, y, z) = max(F1(x, y, z), F2(x, y, z))

Fdifference(1,2)(x, y, z) = max(F1(x, y, z),−F2(x, y, z)).

In terms of graph operations, composing two shapes to-

gether corresponds to merging two graphs. As illustrated

by Fig. 4, we merge the input nodes of the two graphs and

add a new output node that is connected to the two origi-

nal output nodes. We set the reduction function (max, min,

or sum) and the weights of the incoming edges to the new

output node according to the specific composition chosen.

3.2. Evolution Algorithm

Our evolution process follows a standard setup. It starts

with an initial population of n shapes: {s1, s2, · · · , sn}, all

of which are primitive shapes described in Eq. 1. Next, m

new shapes ({s′1, s
′
2, · · · , s

′
m}) are created from two ran-

domly sampled existing shapes (i.e., two parent shapes).

Specifically, the two parent shapes each undergo a random

rotation, a random scaling and a random translation, and are

then combined by a random operation chosen from union,

intersection and difference to generate a new child shape.

Now, the population consists of a total of n + m (n par-

ent shapes and m child shapes). Each shape is then evalu-

ated and given a fitness score, based on which n shapes are

selected to form the next population. This process is then

repeated to evolve more complex shapes.

Having outlined the overall algorithm, we now discuss

several specific designs we introduce to make our evolution

more efficient and effective.

Fitness propagation Simply evaluating fitness as a function

3784

of individual shape is suboptimal in our case. Our shapes

are evolved based on composition, and to generate a new

shape requires combining existing shapes. If we define fit-

ness strictly on an individual basis, simple shape primitives,

which may be useful in producing more complex shapes,

can be eliminated during the early rounds of evolution. For

example, suppose our goal is to evolve an implicit represen-

tation of a target shape. As the population nears the target

shape, smaller and simpler cuts and additions are needed

to further refine the population. However, if small, simple

shapes, which poorly represent the target shape, have been

eliminated, such refinement cannot take place.

We introduce fitness propagation to combat this prob-

lem. We propagate fitness scores from a child shape to

its parents to account for the fact that a parent shape may

not have a high fitness in itself, but nonetheless should re-

main in the population because it can be combined with

others to yield good shapes. Suppose in one round of evo-

lution, we evaluate each of the n existing shapes and m

newly composed shapes and obtain n + m fitness scores

{f1, · · · , fn, f
′
1, · · · , f

′
m}. But instead of directly assign-

ing the scores, we propagate the m fitness scores of the

child shapes back to the parent shapes. A parent shape fi is

assigned the best fitness score obtained by its children and

itself:

fi ← max
(

{f ′
j : si ∈ π(s′j)} ∪ {fi}

)

,

where π(s′j) is the parents of shape s′j .

Computational resource constraint Because shapes

evolve through composition, in the course of evolution the

shapes will naturally become more complex and have larger

computation graphs. It is easy to verify that the size of the

computational graph of a composed shape will at least dou-

ble in the subsequent population. Thus without any con-

straint, the average computational cost of a shape will grow

exponentially in the number of iterations as the population

evolves, quickly depleting available computing resources

before useful shapes emerge. To overcome this issue, we

impose a resource constraint by capping the growth of the

graphs to be linear in the number of rounds of evolution.

If the number of nodes of a computation graph exceeds βt,

where β is a hyperparameter and t is time, the graph will be

removed from the population and will not be used to con-

struct the next generation of shapes.

Discarding trivial compositions A random composition of

two shapes can often result in trivial combinations. For in-

stance, the intersection of shape A and shape B may be

empty, and the union of two shapes can be the same as one

of the parent. We detect and eliminate such cases to prevent

them from slowing down the evolution.

Promoting diversity Diversity of the population is impor-

tant because it prevents the evolution process from over-

committing to a narrow range of directions. If the externally

given fitness score is the only criterion for selection, shapes

deemed less fit at the moment tend to go extinct quickly,

and evolution can get stuck due to a homogenized popula-

tion. Therefore, we incorporate a diversity constraint into

our algorithm: a fixed proportion of the shapes in the pop-

ulation are sampled not based on fitness, but based on the

size of their computation graph, with bigger shapes sampled

proportionally less often.

4. Joint Training of Deep Network

The shapes are evolved in conjunction with training a

deep network to perform shape-from-shading. The network

takes a rendered image as input, and predicts the surface

normal at each pixel. To train this network, we render syn-

thetic images and obtain the ground truth normals using the

evolved shapes.

The network is trained incrementally with a training set

that consists of evolved shapes. Let Di be the training set

after the ith iteration of the evolution, and let Ni be the

network at the same time. The training set is initialized to

empty before the evolution starts, i.e. D0 = ∅, and the net-

work is initialized with random weights.

In the ith evolution iteration, to compute the fitness score

of a shape d in the population, we fine-tune the current net-

work Ni−1 with Di−1 ∪ {d}—the current training set plus

the shape in consideration—to produce a fine-tuned net-

work Nd
i−1, which is evaluated on a validation set of real

images to produce an error metric that is then used to de-

fine the fitness score of shape d. After we have evaluated

the fitness of every shape in the population, we update the

training set with the fittest shape d∗i ,

Di = Di−1 ∪ {d
∗
i },

and set the Nd∗

i−1 as the current network,

Ni = Nd∗

i−1.

In other words, we maintain a growing training set for

the network. In each evolution iteration, for each shape in

the population we evaluate what would happen if we add the

shape to the training set and continue to train the network

with the new training set. This is done for each shape in

the population separately, resulting in as many new network

instances as there are shapes in the current population. The

best shape is then officially added to the training set, and

the corresponding fine-tuned network is also kept while the

other network instances are discarded.

5. Experiments

5.1. Standalone Evolution

We first experiment with shape evolution as a standalone

module and study the role of several design choices. Sim-

ilar to [11], we evaluate whether our evolution process is

3785

Target Evolved shapes

t = 50t = 5 t = 100 t = 200

t = 10 t = 100 t = 200 t = 400

Figure 5. Evolution towards a target shape. Left: targets. Right:

The fittest shapes in the population as the evolution progresses at

different iterations.

capable of generating shapes close to a given target shape.

We define the fitness score of an evolved shape as its inter-

section over union (IoU) of volume with the target shape.

Implementation details To select the shapes during evolu-

tion, half of the population are sampled based on the rank r

of their fitness score (from high to low), with the selection

probability set to 0.2r. The other half of the population are

sampled based on the rank s of their computation graph size

(from small to large), with the relative selection probability

set to 0.2s, in order to maintain diversity. To compute the

volume, we voxelize the shapes to 32× 32× 32 grids. The

population size n is 1000 and the number of child shapes

m = 1000.

Results We use two target shapes, a heart and a torus. Fig. 5

shows the two target shapes along with the fittest shape in

the population as the evolution progresses. We can see that

the evolution is able to produce shapes very close to the

targets. Quantitatively, after around 600 iterations, the best

IoU of the evolved shapes reaches 94.9% for the heart and

93.5% for the torus.

We also study the effect of the design choices described

in Sec. 3.2, including fitness propagation, discarding trivial

compositions, and promoting diversity. Fig. 6 plots, for dif-

ferent combinations of these choices, the best IoU with the

target shape (heart) versus evolution time, in terms of both

wall time and the number of iterations. We can see that each

of them is beneficial and enabling all three achieves fastest

evolution in terms of wall time. Note that, the diversity con-

straint slows down evolution initially in terms of the number

of iterations, but it prevents early saturation and is faster in

terms of wall time because of lower computational cost in

each iteration.

5.2. Joint Evolution and Training

We now evaluate our full algorithm that jointly evolves

shapes and trains a deep network. We first describe in detail

the setup of our individual components.

Setup of network training We use a stacked hourglass net-

work [27] as our shape-from-shading network. The network

0 25 50 75 100 125 150 175

time / hour

0.00

0.25

0.50

0.75

Io
U FitnessProp + DiscardTrivial + Diversity

FitnessProp + DiscardTrivial

DiscardTrivial ONLY

FitnessProp ONLY

0 100 200 300 400 500 600

#iterations

0.00

0.25

0.50

0.75

Io
U

Figure 6. The best IoU with the target shape (heart) versus evolu-

tion time (top) and the number of iterations (bottom) for different

combinations of design choices.

consists of a stack of 4 hourglasses, with 16 feature chan-

nels for each hourglass and 32 feature channels for the ini-

tial layers before the hourglasses. In each round of evolu-

tion, we fine-tune the network for τ = 100 iterations using

RMSprop [38], a batch size of 4, and the mean angle error

as the loss function. Before fine-tuning on the new dataset,

we re-initialize the RMSprop optimizer.

Rendering synthetic images To render shapes into syn-

thetic images, we use the Mitsuba renderer [21], a physi-

cally based photorealistic renderer. We run the marching

cubes algorithm [23] on the implicit function of a shape

with a resolution of 64 × 64 × 64 to generate the trian-

gle mesh for rendering. We use a randomly placed ortho-

graphic camera, and a directional light with a random di-

rection within 60◦ of the viewing direction to ensure a suf-

ficiently lit shape. All shapes are rendered with diffuse tex-

tureless surfaces, along with self occlusion and shadows. In

addition to the images, we also generate ground truth sur-

face normals.

Real images with ground truth For both training and test-

ing, we need a set of real-world images with ground truth

of surface normals. For training, we need a validation set

of real images to evaluate the fitness of shapes, which is

defined as how well they help the performance of a shape-

from-shading network on real images. For testing, we need

a test set of real images to evaluate the performance of the

final network.

We use the MIT-Berkeley Intrinsic Image dataset [5, 18]

as the source of real images. It includes images of 20 objects

captured in a lab setting; each object has two images, one

3786

with texture and the other textureless. We use the texture-

less version of the dataset because our method only evolves

shape but not texture. We adopt the official 50-50 train-test

split, using the 10 training images as the validation set for

fitness evaluation and the 10 test images to evaluate the per-

formance of the final network.

Setup of shape evolution In each iteration of shape evo-

lution, the population size is maintained at n = 100, and

m = 100 new shapes are composed. To select the shapes,

90% of the population are sampled by a roulette wheel

where the probability of each shape being chosen is propor-

tional to its fitness score. The fitness score is the reciprocal

of the mean angle error on the validation set. The remain-

ing 10% are sampled using the diversity promoting strategy,

where the shapes are sampled also based on the rank s of

their computation graph size (from small to large), with the

relative selection probability set to 0.5s.

Evaluation protocol To evaluate the shape-from-shading

performance of the final network, we use standard metrics

proposed by prior work [40, 5]. We measure N-MAE and

N-MSE, i.e. the mean angle distance (in radians) between

the predicted normals and ground-truth normals, and the

mean squared errors of the normal vectors. We also measure

the fraction of the pixels whose normals are within 11.25,

22.5, 30 degrees angle distance of the ground-truth normals.

Since our network only accepts 128×128 input size but

the images in the MIT-Berkeley dataset have different sizes,

we pad the images and scale them to 128×128 to feed into

the network, and then scale them back and crop to the orig-

inal sizes for evaluation.

5.2.1 Baselines approaches

We compare with a number of baseline approaches includ-

ing ablated versions of our algorithm. We describe them in

detail below.

SIRFS SIRFS [5] is an algorithm with state-of-the-art per-

formance on shape from shading. It is primarily based on

optimization and manually designed priors, with a small

number of learned parameters. Our method only evolves

shapes but not texture, so we compare with SIRFS using

the textureless images. Because the published results [5]

only textured objects from the MIT-Berkeley Intrinsic Im-

age dataset, we obtained the results on textureless objects

using their open source code.

Training with ShapeNet We also compare a baseline ap-

proach that trains the shape-from-shading network using

synthetic images rendered from an external shape dataset.

We use a version of ShapeNet [8], a large dataset of 3D

CAD models that consists of approximately 51,300 shapes.

We evaluate two variants of this approach.

• ShapeNet-vanilla We train a single deep network

on the synthetic images rendered using shapes in

ShapeNet. Both the network structure and the render-

ing setting are the same as in the evolutionary algo-

rithm. For every τ RMSprop iterations (the number of

iterations used to fine-tune a network in the evolution

algorithm), we record the validation performance and

save the snapshot of the network. When testing, the

snapshot with the best validation performance is used.

• ShapeNet-incremental Same as the first ShapeNet-

incremental, except that we restart the RMSprop train-

ing every τ iterations, initializing from the latest

weights. This is because in our evolution algorithm

only the network weights are reloaded for incremen-

tal training, while the RMSprop training starts from

scratch. We include this baseline to eliminate any ad-

vantage the restarts might bring in our evolution algo-

rithm.

Ablated versions of our algorithm We consider three ab-

lated versions of our algorithm:

• Ours-no-feedback The fitness score is replaced by a

random value, while all other parts of the algorithm

remain unchanged. The shapes are still being evolved,

and the networks are still being trained, but there is no

feedback on how good the shapes are.

• Ours-no-evolution The evolution is disabled, which

means the population remains to be the initial set of

primitive shapes throughout the whole process. This

ablated version is equivalent to training a set of net-

works on a fixed dataset and picking the one from

n + m networks that has the best performance on the

validation set every τ training iterations.

• Ours-no-evolution-plus-ShapeNet The evolution is

disabled, and maintain a population of n + m net-

work instances being trained simultaneously. For each

τ iterations, the network with the best validation per-

formance is selected and copied to replace the entire

population. It is equivalent to Ours-no-evolution ex-

cept that the primitive shapes are replaced by shapes

randomly sampled from ShapeNet each time we ren-

der an image. This ablation is to evaluate whether our

evolved shapes are better than ShapeNet shapes, con-

trolling for any advantage our training algorithm might

have even without any evolution taking place.

5.2.2 Results and analysis

Tab. 1 compares the baselines with our approach. We first

see that the deep network trained through shape evolution

outperforms the state-of-the-art SIRFS algorithm, without

using any external dataset except for the 10 training images

in the MIT-Berkeley dataset that are also used by SIRFS.

3787

Input

Prediction

Our

Angle

Error

Angle

Error

Truth

Ground

Prediction

SIRFS

Figure 7. The qualitative results of our method and SIRFS [5] on the test data.

Summary Stats ↑ Errors ↓

≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ MAE MSE

Random∗ 1.9% 7.5% 13.1% 1.1627 1.3071

SIRFS [5] 20.4% 53.3% 70.9% 0.4575 0.2964

ShapeNet-vanilla 12.7% 42.4% 62.8% 0.4831 0.2901

ShapeNet-incremental 15.2% 48.4% 66.4% 0.4597 0.2717

Ours-no-evolution-plus-ShapeNet 14.2% 53.0% 72.1% 0.4232 0.2233

Ours-no-evolution 17.3% 50.2% 66.1% 0.4673 0.2903

Ours-no-feedback 19.1% 49.5% 66.3% 0.4477 0.2624

Ours 21.6% 55.5% 73.5% 0.4064 0.2204

Table 1. The results of baselines and our approach on the test im-

ages. ∗Measured by uniformly randomly outputting unit vectors

on the +z hemisphere.

Shape evolution over time ShapeNet

Figure 8. Example shapes at different stages of the evolution and

shapes from ShapeNet.

We also see that our algorithm outperforms all base-

lines trained on ShapeNet as well as all ablated versions.

This shows that our approach can do away with an external

shape dataset and generate useful shapes from simple prim-

itives, and the evolved shapes are as useful as shapes from

ShapeNet for this shape-from-shading task. Fig. 8 shows

example shapes at different stages of the evolution, as well

as shapes from ShapeNet, and Fig. 7 shows qualitative re-

sults of our method and SIRFS on the test data.

More specifically, the Ours-no-evolution-plus-ShapeNet

ablation shows that our evolved shapes are actually more

useful than ShapeNet for the task, although this is not sur-

prising given that the evolution is biased toward being use-

ful. Also it shows that the advantage our method has over

using ShapeNet is due to evolution, not idiosyncrasies of

our training procedure.

The Ours-no-evolution ablation shows that our good per-

formance is not a result of well chosen primitive shapes, and

evolution actually generates better shapes. The Ours-no-

feedback ablation shows that the joint evolution and train-

ing is also important—random evolution can produce com-

plex shapes, but without guidance from network training,

the shapes are only slightly more useful than the primitives.

6. Conclusion

We have introduced a new algorithm to jointly evolve

3D shapes and train a shape-from-shading network through

synthetic images. We show that our approach can achieve

state-of-the-art performance on real images without using

an external shape dataset.

Acknowledgments This work is partially supported by the

National Science Foundation under Grant No. 1617767.

3788

References

[1] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.

Seeing 3d chairs: exemplar part-based 2d-3d alignment us-

ing a large dataset of cad models. In CVPR, 2014.

[2] A. Bansal, B. Russell, and A. Gupta. Marr Revisited: 2D-3D

model alignment via surface normal prediction. In CVPR,

2016.

[3] J. T. Barron and J. Malik. High-frequency shape and albedo

from shading using natural image statistics. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on, pages 2521–2528. IEEE, 2011.

[4] J. T. Barron and J. Malik. Shape, albedo, and illumination

from a single image of an unknown object. In Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-

ence on, pages 334–341. IEEE, 2012.

[5] J. T. Barron and J. Malik. Shape, illumination, and re-

flectance from shading. TPAMI, 2015.

[6] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012.

[7] A. Chakrabarti, J. Shao, and G. Shakhnarovich. Depth from

a single image by harmonizing overcomplete local network

predictions. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 29, pages 2658–2666. Curran

Associates, Inc., 2016.

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich

3D Model Repository. Technical Report arXiv:1512.03012

[cs.GR], Stanford University — Princeton University —

Toyota Technological Institute at Chicago, 2015.

[9] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset

of object scans. arXiv:1602.02481, 2016.

[10] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-

r2n2: A unified approach for single and multi-view 3d object

reconstruction. In Proceedings of the European Conference

on Computer Vision (ECCV), 2016.

[11] J. Clune and H. Lipson. Evolving 3d objects with a genera-

tive encoding inspired by developmental biology. SIGEVO-

lution, 5(4):2–12, Nov. 2011.

[12] F. Cole, P. Isola, W. T. Freeman, F. Durand, and E. H. Adel-

son. Shapecollage: Occlusion-aware, example-based shape

interpretation. In Computer Vision–ECCV 2012, pages 665–

678. Springer, 2012.

[13] A. Criminisi and A. Zisserman. Shape from texture: Homo-

geneity revisited. In BMVC, pages 1–10, 2000.

[14] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,

and M. Nießner. Scannet: Richly-annotated 3d reconstruc-

tions of indoor scenes. In Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 2017.

[15] A. Ecker and A. D. Jepson. Polynomial shape from shading.

In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 145–152, June 2010.

[16] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In ICCV, 2015.

[17] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[18] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Free-

man. Ground truth dataset and baseline evaluations for in-

trinsic image algorithms. In Computer Vision, 2009 IEEE

12th International Conference on, pages 2335–2342. IEEE,

2009.

[19] D. Hoiem, A. N. Stein, A. Efros, M. Hebert, et al. Recover-

ing occlusion boundaries from a single image. In Computer

Vision, 2007. ICCV 2007. IEEE 11th International Confer-

ence on, pages 1–8. IEEE, 2007.

[20] J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, MI, 1975. second

edition, 1992.

[21] W. Jakob. Mitsuba renderer, 2010. http://www.mitsuba-

renderer.org.

[22] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,

K. Saenko, and T. Darrell. A category-level 3d object dataset:

Putting the kinect to work. In Consumer Depth Cameras for

Computer Vision, pages 141–165. Springer, 2013.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high res-

olution 3d surface construction algorithm. In Proceedings of

the 14th Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH ’87, pages 163–169, New

York, NY, USA, 1987. ACM.

[24] F. Massa, B. Russell, and M. Aubry. Deep exemplar 2d-3d

detection by adapting from real to rendered views. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016.

[25] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison.

Scenenet rgb-d: Can 5m synthetic images beat generic im-

agenet pre-training on indoor segmentation? In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017.

[26] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, 2012.

[27] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In B. Leibe, J. Matas,

N. Sebe, and M. Welling, editors, Computer Vision - ECCV

2016 - 14th European Conference, Amsterdam, The Nether-

lands, October 11-14, 2016, Proceedings, Part VIII, volume

9912 of Lecture Notes in Computer Science, pages 483–499.

Springer, 2016.

[28] A. Ricci. A constructive geometry for computer graphics.

The Computer Journal, 16(2):157–160, 1973.

[29] S. R. Richter, Z. Hayder, and V. Koltun. Playing for bench-

marks. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[30] S. R. Richter and S. Roth. Discriminative shape from shad-

ing in uncalibrated illumination. In 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1128–1136, June 2015.

3789

[31] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing

for data: Ground truth from computer games. In B. Leibe,

J. Matas, N. Sebe, and M. Welling, editors, European Con-

ference on Computer Vision (ECCV), volume 9906 of LNCS,

pages 102–118. Springer International Publishing, 2016.

[32] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d

scene structure from a single still image. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 31(5):824–

840, 2009.

[33] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 567–576, 2015.

[34] K. O. Stanley. Compositional pattern producing networks:

A novel abstraction of development. Genetic programming

and evolvable machines, 8(2):131–162, 2007.

[35] K. O. Stanley and R. Miikkulainen. Evolving neural net-

works through augmenting topologies. Evolutionary Com-

putation, 10(2):99–127, 2002.

[36] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn:

Viewpoint estimation in images using cnns trained with ren-

dered 3d model views. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2686–2694,

2015.

[37] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d

models from single images with a convolutional network. In

European Conference on Computer Vision (ECCV), 2016.

[38] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012.

[39] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L.

Yuille. Towards unified depth and semantic prediction from

a single image. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2800–

2809, 2015.

[40] X. Wang, D. Fouhey, and A. Gupta. Designing deep net-

works for surface normal estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 539–547, 2015.

[41] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015.

[42] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mot-

taghi, L. Guibas, and S. Savarese. Objectnet3d: A large scale

database for 3d object recognition. In European Conference

Computer Vision (ECCV), 2016.

[43] Y. Xiong, A. Chakrabarti, R. Basri, S. J. Gortler, D. W. Ja-

cobs, and T. Zickler. From shading to local shape. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

37(1):67–79, 2015.

[44] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from

shading: A survey. IEEE Trans. Pattern Anal. Mach. Intell.,

21(8):690–706, Aug. 1999.

[45] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and

T. Funkhouser. Physically-based rendering for indoor scene

understanding using convolutional neural networks. The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017.

3790

