
Unsupervised Textual Grounding: Linking Words to Image Concepts

Raymond A. Yeh, Minh N. Do, Alexander G. Schwing
University of Illinois at Urbana-Champaign
{yeh17, minhdo, aschwing}@illinois.edu

Abstract

Textual grounding, i.e., linking words to objects in im-

ages, is a challenging but important task for robotics and

human-computer interaction. Existing techniques benefit

from recent progress in deep learning and generally for-

mulate the task as a supervised learning problem, select-

ing a bounding box from a set of possible options. To train

these deep net based approaches, access to a large-scale

datasets is required, however, constructing such a dataset

is time-consuming and expensive. Therefore, we develop a

completely unsupervised mechanism for textual grounding

using hypothesis testing as a mechanism to link words to

detected image concepts. We demonstrate our approach on

the ReferIt Game dataset and the Flickr30k data, outper-

forming baselines by 7.98% and 6.96% respectively.

1. Introduction

Textual grounding is an important task for robotics,

human-computer interaction, and assistive systems. In-

creasingly, we interact with computers using language, and

it won’t be long until we will guide autonomous systems

via commands such as ‘the coffee mug on the counter’ or

the ‘water bottle next to the sink.’ While it is easy for a

human to relate the nouns in those phrases to observed real

world objects, computers are challenged by the complexity

of the commands arising due to object variability and ambi-

guity in the description and the relations. E.g., the meaning

of the term ‘next to’ differs significantly depending on the

context.

To address those challenges, existing textual grounding

algorithms [13, 43, 52, 40] benefit significantly from the re-

cent progress in cognitive abilities, in particular from deep

net based object detection, object classification and seman-

tic segmentation. More specifically, for textual ground-

ing, deep net based systems extract high-level feature ab-

stractions from hypothesized bounding boxes and textual

queries. Both are then compared to assess their compatibil-

ity. Importantly, training of textual grounding systems such

as [13, 40] crucially relies on the availability of bounding

boxes. However, it is rather time-consuming to construct
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Figure 1. Test set results for grounding of textual phrases from our

approach. Left: Flickr30k Entities dataset, phrase and bounding

box are color coded. Right: ReferItGame dataset. (Groundtruth

box in green and predicted box in red)

large-scale datasets that facilitate training of deep net based

systems.

To address this issue, we propose a completely unsu-

pervised mechanism for textual grounding. Our approach

is based on a hypothesis testing formulation which links

words to activated image concepts such as semantic seg-

mentations or other spatial maps. More specifically, words

are linked to image concepts if observing a word provides

a significant signal that an image concept is activated. We

establish those links during a learning task, which uses a

dataset containing words and images. During inference

we extract the linked concepts and use their spatial map

to compute a bounding box using the seminal subwindow

search algorithm by Lampert et al. [26]. Compared to ex-

isting techniques, our results are easy to interpret. But more

importantly we emphasize that the approach can be easily

combined with a supervisory signal.

We demonstrate the effectiveness of the developed tech-

nique on the two benchmark datasets for textual ground-

ing, i.e., the ReferIt Game dataset [18] and the Flickr30k

data [40]. We show some results in Fig. 1 and we will

illustrate that our approach outperforms competing unsu-

pervised textual grounding approaches by a large margin of

7.98% and 6.96% on the ReferIt Game and the Flickr30k

dataset respectively.
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Figure 2. Overview of our proposed approach: We output the bounding box extracted from the active concept that is most relevant to the

input query. The relevance of a word-phrase and image concept is learned and represented in E(s, c).

2. Related Work

Our method for unsupervised textual grounding com-

bines the efficient subwindow search algorithm of Lampert

et al. [26] with attention based deep nets. We subsequently

discuss related work for textual grounding, attention mech-

anisms, as well as work on inference with efficient subwin-

dow search.

Textual grounding: Textual grounding in its earliest form

is related to image retrieval. Classical approaches learn

ranking functions via recurrent neural nets [34, 5], metric

learning [12], correlation analysis [23], or neural net em-

beddings [7, 22].

Other techniques explicitly ground natural language in

images and videos by jointly learning classifiers and seman-

tic parsers [35, 25]. Gong et al. [9] propose a canonical

correlation analysis technique to associate images with de-

scriptive sentences using a latent embedding space. In spirit

similar is work by Wang et al. [52], which learns a structure-

preserving embedding for image-sentence retrieval. It can

be applied to phrase localization using a ranking frame-

work.

In [10], text is generated for a set of candidate object

regions which is subsequently compared to a query. The re-

verse operation, i.e., generating visual features from query

text which is subsequently matched to image regions is dis-

cussed in [2].

In [24], 3D cuboids are aligned to a set of 21 nouns rel-

evant to indoor scenes using a Markov random field based

technique. A method for grounding of scene graph queries

in images is presented in [14]. Grounding of dependency

tree relations is discussed in [16] and reformulated using

recurrent nets in [15].

Subject-Verb-Object phrases are considered in [45] to

develop a visual knowledge extraction system. Their algo-

rithm reasons about the spatial consistency of the configu-

rations of the involved entities.

In [13, 33] caption generation techniques are used to

score a set of proposal boxes and returning the hight-

est ranking one. To avoid application of a text gener-

ation pipeline on bounding box proposals, [43] improve

the phrase encoding using a long short-term memory

(LSTM) [11] based deep net.

Common datasets for visual grounding are the Refer-

ItGame dataset [18] and a newly introduced Flickr30k Enti-

ties dataset [40], which provides bounding box annotations

for noun phrases of the original Flickr30k dataset [59].

Video datasets, although not directly related to our

work in this paper, were used for spatiotemporal language

grounding in [28, 60].

In contrast to all of the aforementioned methods which

are largely based on region proposal we suggest usage of

efficient subwindow search as a suitable inference engine.

Visual attention: Over the past few years, single image

embeddings extracted from a deep net (e.g., [32, 31, 46])

have been extended to a variety of image attention modules,

when considering VQA. For example, a textual long short

term memory net (LSTM) may be augmented with a spatial

attention [62]. Similarly, Andreas et al. [1] employ a lan-

guage parser together with a series of neural net modules,

one of which attends to regions in an image. The language

parser suggests which neural net module to use. Stacking

of attention units was also investigated by Yang et al. [57].

Their stacked attention network predicts the answer succes-

sively. Dynamic memory network modules which capture

contextual information from neighboring image regions has

been considered by Xiong et al. [53]. Shih et al. [48] use

object proposals and and rank regions according to rele-
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Figure 3. Pipeline of our proposed network for learning image

concepts. The network successfully learns the spatial and class

information of objects/words in the image and new concepts, e.g.

classes like “sky” or “water” are not part of the pre-trained classes.

Although, the score maps may not be of pixel-accurate quality, ex-

tracting useful bounding boxes from them are still feasible.

vance. The multi-hop attention scheme of Xu et al. [54]

was proposed to extract fine-grained details. A joint atten-

tion mechanism was discussed by Lu et al. [30] and Fukui

et al. [8] suggest an efficient outer product mechanism to

combine visual representation and text representation be-

fore applying attention over the combined representation.

Additionally, they suggested the use of glimpses. Very re-

cently, Kazemi et al. [17] showed a similar approach using

concatenation instead of outer product. Importantly, all of

these approaches model attention as a single network. The

fact that multiple modalities are involved is often not con-

sidered explicitly which contrasts the aforementioned ap-

proaches from the technique we present.

Very recently Kim et al. [20] presented a technique

that also interprets attention as a multi-variate probabilistic

model, to incorporate structural dependencies into the deep

net. Other recent techniques are work by Nam et al. [37]

on dual attention mechanisms and work by Kim et al. [19]

on bilinear models. In contrast to the latter two models our

approach is easy to extend to any number of data modalities.

Efficient subwindow search: Efficient subwindow search

was proposed by Lampert et al. [26] for object localiza-

tion. It is based on an extremely effective branch and bound

scheme that can be applied to a large class of energy func-

tions. The approach has been applied, among others, to very

efficient deformable part models [56], for object class de-

tection [27], for weakly supervised localization [4], indoor

scene understanding [47], spatiotemporal object detection

proposals [38], and textual grounding [58].

3. Approach

We illustrate our approach for unsupervised textual

grounding in Fig. 2, where we show how to link a set of ‘im-

age concepts,’ c, (e.g., object detections, and semantic seg-

mentations) to words, s, without ever observing any bound-

ing boxes. The image concepts are represented in the form

of score maps, which contain both the spatial location, and,

when considering the magnitude of the value at every pixel,

the strength of the corresponding ‘concept’ at a particular

pixel. By linking a word to an ‘image concept,’ i.e., by es-

tablishing a data-dependent assignment between words and

image concepts, we find the visual expression of each word.

Importantly, for simplicity of the framework, each word is

only assigned to a single concept. The bounding-box accu-

mulating within its interior the highest score of the linked

‘image concept’ score map is the final prediction.

We refer to capturing the ‘image-concept’-word rele-

vance E(s, c) as learning. We propose as a useful cue, sta-

tistical hypothesis tests, which assess whether activation of

a concept is independent of the word observation. If the

probability for a concept activation being independent of a

word observation is small, we obtain a strong link between

the corresponding ‘image concept’ and the word.

For inference, given a query and an image as in-

put, we find its linked score map by combining the data

statistics E(s, c) obtained during training with image and

query statistics. While the query statistics indicate word-

occurrences, image statistics are given by ‘image concept’

activations. To compute the ‘image concept’ activations we

detect a bounding-box on its corresponding score map using

a branch-and-bound technique akin to the seminal efficient

subwindow search algorithm. If the detected bounding box

has confidence greater than 0.5, and covers more than 5%

of the image we say that the concept is activated. The con-

fidence of the bounding box is obtained by averaging the

probability within the bounding box. We then use the ac-

tivated words and ‘image concepts’ to select the activated

sub-matrix from E(s, c) which captures statistics about ‘im-

age concept’-word relevance. From this submatrix, we se-

lect the concept that has the lowest probability of being in-

dependent from any of the activated word observations. The

bounding box detected on the score map corresponding to

the selected concept is the inference result.

Beyond a proper assignment we also need the ‘image

concepts’ themselves. We demonstrate encouraging results

with a set of pre-trained concepts, such as object detections,

and semantic segmentations. We also obtain a set of ‘im-

age concepts’ by training a convolutional neural network

to predict the probability of a word s given image I . By

change the architecture’s final output layer to spatial aver-

age pooling, we obtain a score map for each of the words.

We include the score maps if the predicted word accuracy

exceeds 50%.

In the following, we first describe the problem formu-

lation by introducing the notation. We then discuss our

formulation for learning (i.e., linking words to given ‘im-

age concepts’) and for computation of the ‘image concepts.’

Lastly, we describe our inference algorithm (i.e., estimation

of the bounding box given a word and image concepts).

3.1. Problem Formulation

Let x refer to both the input query Q and the input im-

age I , i.e., x = (Q, I). The image I has width W and

height H . To parameterize a bounding box we use the tuple
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Approach Image Features Accuracy (%)

Supervised

SCRC (2016) [13] VGG-cls 17.93

GroundeR (2016) [43] VGG-cls 26.93

Unsupervised

GroundeR (2016) [43] VGG-cls 10.70

GroundeR (2016) [43] VGG-det -

Entire image None 14.62

Largest proposal None 14.73

Mutual Info. VGG-det 16.00

Ours VGG-cls 18.68

Ours VGG-det 17.88

Ours Deeplab-seg 16.83

Ours YOLO-det 17.96

Ours VGG-cls + VGG-det 20.10

Ours VGG-cls + YOLO-det 20.91

Table 1. Phrase localization performance on ReferItGame (accuracy

in %).

Approach Image Features Accuracy (%)

Supervised

CCA (2015) [40] VGG-cls 27.42

SCRC (2016) [13] VGG-cls 27.80

CCA (2016) [41] VGG-det 43.84

GroundeR (2016) [43] VGG-det 47.81

Unsupervised

GroundeR (2016) [43] VGG-cls 24.66

GroundeR (2016) [43] VGG-det 28.94

Entire image None 21.99

Largest proposal None 24.34

Mutual Info. VGG-det 31.19

Ours VGG-cls 22.31

Ours VGG-det 35.90

Ours Deeplab-seg 30.72

Ours YOLO-det 36.93

Table 2. Phrase localization performance on Flickr 30k Entities (ac-

curacy in %).

y = (y1, . . . , y4) which contains the top left corner (y1, y2)
and the bottom right corner (y3, y4). We use Y to refer to

the set of all bounding boxes y = (y1, . . . , y4) ∈ Y =
∏4

i=1{0, . . . , yi,max}. Hereby yi,max indicates the maxi-

mum coordinate that can be considered for the i-th variable

(i ∈ {1, . . . , 4}) when processing image I .

The problem of unsupervised textual grounding is the

task of predicting the corresponding bounding box y given

the input x, while the training dataset D contains only im-

ages and corresponding queries, i.e., D = {(x)}. We em-

phasize that no ‘bounding box’-query pairs are ever ob-

served, neither during learning nor during inference. Fol-

lowing prior work, pre-trained detection or classification

features are assumed to be readily available, but no pre-

trained natural language features are employed. We sub-

sequently discuss our formulation for those two tasks, i.e.,

inference and learning.

3.2. Learning

We learn the ‘image concept’-word relevance E(s, c)
from training data D = {(x)}. Importantly, E(s, c) cap-

tures the relevance in the form of a distance, i.e., if a word

s is related to a concept c, then E(s, c) should be small.

We first make some assumptions about the data and the

model. We introduce a set of words of interest, S . All other

words are captured by a special token which is also part

of the set S . We use ts(Q) ∈ {0, 1} to denote the exis-

tence of the token s ∈ S in a query Q. Additionally, we

let C denote a set of concepts of interest. Further, we use

ac(I) ∈ {0, 1} to denote whether image concept c is acti-

vated in image I . As mentioned before, we say a concept is

activated if the bounding box extracted with efficient sub-

window search has a confidence greater than 0.5, and if it

covers more than 5% of the image area.

Our ‘image concept’-word relevance E(s, c) is inspired

by the following intuitive observation: if a word s is rel-

evant to a concept c, then the conditional probability of

observing such concept given existence of the word, i.e.,

P (ac = 1|ts = 1), should be larger than the unconditional

probability P (ac = 1). For example, let’s say the query

contains the word “man.” We would then expect the proba-

bility of the “person” concept to be higher given knowledge

that the word “man” was observed. To capture this intuition

quantitatively, we perform statistical hypothesis testing for

each ‘image concept’-word pair.

For each word s and image concept c, we construct the

following null hypothesis H0(c, s) and the corresponding

alternative hypothesis H1(c, s):

H0(s, c) : P (ac = 1|ts = 1) = P (ac = 1),

H1(s, c) : P (ac = 1|ts = 1) > P (ac = 1).

The null hypothesis checks whether the probability of an

activated concept is independent of observing an activated

word. Note that we don’t care about capturing a decrease of

P (ac = 1|ts = 1) compared to P (ac). Hence, we perform

a one-sided hypothesis test.

Given training data D = {(x)} containing image-

query pairs x = (Q, I), we can count how many times

the word s ∈ S appeared, which we denote N(s) =
∑

Q∈D
ts(Q). Next, we count how many times the word s

and the concept c co-occur, which we refer to via N(s, c) =
∑

(Q,I)∈D
ac(I) · ts(Q). Note that N(s, c) ≤ N(s).

We now introduce a random variable ns,c which mod-

els the number of times concept c occurs when knowing

that sentence token s appears. Assuming ac to follow a

Bernoulli distribution, then ns,c follows the Binomial distri-

bution with N(s) trials and a success probability of P (ac =
1|ts = 1), i.e., P (ns,c) = Bin(N(s), P (ac = 1|ts = 1)).
For large sentence token counts N(s), the Binomial distri-

bution

P (ns,c) = Bin(N(s), P (ac = 1|ts = 1)) ≈ N (µ, σ2)

can be approximated by a normal distribution N with

mean µ = N(s)P (ac = 1|ts = 1) and variance σ2 =
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people clothing body parts animals vehicles instruments scene other

# Instances 5,656 2,306 523 518 400 162 1,619 3,374

Entire Image 27.83 5.24 0.76 17.56 25.50 15.43 45.77 16.56

Largest proposal 31.80 7.58 2.10 30.11 34.50 17.28 41.21 17.21

GroundeR, VGG-det (2016) 44.32 9.02 0.96 46.91 46.00 19.14 28.23 16.98

Ours, VGG-det 61.93 16.86 2.48 64.28 54.0 9.87 16.66 14.25

Ours, YOLO-det 58.37 14.87 2.29 68.91 55.00 22.22 24.87 20.77

Table 3. Unsupervised phrase localization performance over types on Flickr 30k Entities (accuracy in %).

N(s)P (ac = 1|ts = 1)(1 − P (ac = 1|ts = 1)). Since we

use a continuous distribution to approximate a discrete one,

we apply the classical continuity correction. Justified by a

mean occurrence count of 428 in our case, we use this ap-

proximation for computational simplicity in the following.

We note that an exact computation is feasible as well, albeit

being computationally slightly more demanding.

To check whether the null hypothesis is reasonable, we

assume it to hold, and compute the probability of observing

occurrence counts larger than the observed N(s, c). The

lower the probability, the more appropriate to reject the null

hypothesis and assume P (ac = 1|ts = 1) > P (ac = 1),
i.e., we accept the alternative hypothesis H1(s, c).

Formally, we compute

E(s, c) = P (ns,c > N(s, c)|H0(s, c) True), (1)

which captures the probability that the value of the random

variable ns,c is larger than the observed co-occurence count

N(s, c) when assuming the null hypothesis H0(s, c) to be

true. Since we assume H0(s, c) to be true and because of

the approximation of P (ns,c) with a normal distribution, we

obtain

P (ns,c>N(s, c)|H0(s, c) True)=
1

2
−1

2
erf

(

N(s, c)− µ

σ
√
2

)

,

where erf is the error function, mean µ = P (ac = 1) and

standard deviation σ =
√

N(s)P (ac = 1)(1− P (ac = 1).
Intuitively, if the probability E(s, c) = P (ns,c >

N(s, c)|H0(s, c) True) is low, we prefer a distribution that

is higher at larger counts. Considering the mean of the

normal approximation under the assumption H0(s, c) true,

i.e., µ = N(s)P (ac = 1), we achieve a higher probabil-

ity at larger counts if we accept the alternative hypothesis

P (ac = 1|ts = 1) > P (ac = 1).
To compute E(s, c) = P (ns,c > N(s, c)|H0(s, c) True)

we require P (ac = 1) for which we use the maximum

likelihood estimator N(c)/|D| obtained from the dataset D,

while N(c) =
∑

(Q,I)∈D
ac(I).

In summary, our learning formulation retrieves the ma-

trix E(s, c) which captures a signal indicating whether the

null hypothesis H0(s, c), i.e., independence of concept and

word, is true. Given the dataset D we can obtain this matrix

for all tokens s ∈ S and for all ‘image concepts’ c ∈ C.

3.3. Inference

Inference is based on a query Q, a set of ‘image con-

cepts,’ C, such as object detections or semantic segmenta-

tions, and the matrix E(s, c) which captures the ‘image-

concept‘-word relevance. Each image concept c ∈ C is rep-

resented by a score map φc(I) ∈ R
W×H , with image width

W and height H .

Given these inputs we compute the activated concepts

ac(I) ∈ {0, 1} by first detecting for each score map c ∈ C
a bounding box via efficient subwindow search and assess-

ing whether it covers at least 5% of the image and whether

it has a confidence greater than 0.5. We obtain the token

activations ts(Q) ∈ {0, 1} directly from the query Q.

Based on the activated concepts and the activated word

tokens we find that concept c∗ which has the lowest evi-

dence of the null hypothesis being true via

c∗ = argmin
c∈C:ac(I)=1

min
s∈S:ts(Q)=1

E(s, c). (2)

We obtain the estimated bounding box estimate for query

Q and image I from concept φc∗ via an efficient subwindow

search. It is guaranteed to cover at least 5% of the image

while having a confidence larger than 0.5. We note that, if

the lowest E(s, c) is too large, i.e., if there is not enough

evidence to reject the null hypothesis, then we will simply

return a bounding box corresponding to the entire image.

3.4. Image Concepts

It remains to answer which image concepts C to use. In

this section, we describe how to utilize concepts pre-trained

from semantic segmentation, object detection, or by directly

learning an image classification network from the afore-

mentioned dataset D.

A semantic segmentation framework results in an esti-

mated class probability for each pixel, directly encoding the

spatial and concept information. To convert this probability

map to a score map, we threshold the probability at 0.5, set-

ting locations greater than 0.5 to 1, otherwise we use -1.

An object detection framework provides a set of boxes

with its corresponding class label and estimated probability

as output. To use this type of information we first drop all

the boxes with confidence less than 0.5. We then create a

score map by assigning a value of one to pixel locations

within a bounding box, and a value of negative one to the

remaining pixels.

An image classification framework provides a probabil-

ity for each class, and generally doesn’t provide any form

of spatial information. Therefore, we subsequently describe

a modified deep net architecture for classification of words
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The baby boy is playing with a large

red stick with other balls in ...

Two pilots are standing and talking in

front of a British Airways airplane.

Four guys standing around the bed of

a white pickup truck.

bike that is upright bench under lady in black rocking chair to the right

Figure 4. Results from our approach on the test set for grounding of textual phrases. Top Row: Flickr 30k Entities Dataset. Bottom Row:

ReferItGame Dataset (Groundtruth box in green and predicted box in red).

from images, which is more suitable for retaining the spatial

information. It can be trained with the information available

in the aforementioned dataset D.

To obtain score maps given an image I and correspond-

ing class labels, e.g., words, we train a deep net with pa-

rameters θ, to predict whether a word shows up in the query

Q of the corresponding image, i.e., the deep net estimates

the probabilities pθ(t̂s|I), t̂s ∈ {0, 1} for all words s ∈ S
given an image I . The deep net is trained by minimizing

the negative cross-entropy between groundtruth ts(Q) and

estimated probability pθ(ts(Q)|I) using the negative binary

cross-entropy loss:

L =
∑

(I,Q)∈D,s∈S

ts(Q) ln pθ(t̂s|I) + (1− ts(Q))(1− ln pθ(t̂s|I)).

(3)

To obtain appropriate score maps φs(I) for each word

s ∈ S , we designed a new output architecture. Our design

uses a per channel attention mechanism, i.e., internally, the

network outputs a mask in the range of (0, 1) and multi-

plies it with the hidden activation units. Lastly, we apply

global average pooling across the spatial dimension to cre-

ate the output vector. We extract the activation right before

the global average pooling as the score-maps.

In Fig. 3, we visualize the network architecture; we re-

move the layers of the VGG16 architecture after the Conv5

block and added two convolution layers with 256 channels

followed by a convolution layer having |S| channels to cre-

ate the attention mask. The attention mask goes through

a sigmoid non-linearity to obtain a range of (0, 1). Next,

the attention mask is element-wise multiplied with a sepa-

rate branch of a convolution layer with |S| number of chan-

nels. Lastly, an average pooling across the spatial dimen-

sion gives a final vector of dimension 1 × |S| representing

the estimated binary probabilities of each word in |S|.
The main motivation of the architecture is to separately

model spatial and semantic information, hence the two

branch structure. Unlike classical attention mechanisms,

which use a single mask over the image at the input [55],

our attention mechanism is ‘per class.’ Additionally, in or-

der to preserve the spatial information as much as possible,

our network architecture is fully convolutional until the very

end. A similar architecture has been used for image classi-

fication in [50]. Zhou et al. [61] also use the average pool-

ing technique on the feature maps to visualize the internal

workings of a trained deep network. More advanced net-

work architecture and attention mechanism could be used,

but this is beyond the scope of this paper.

Once the network has been trained, we obtain |S| score

maps. However, we don’t expect all maps to be of accept-

able quality. Therefore, we remove the score maps, where

the word accuracy on the training set is less than 50%. We

provide more visualization of the learned score maps and an

ablation study in the experimental section.

4. Experimental Evaluation

We first discuss the datasets and provide additional im-

plementation details before discussing the results of our ap-

proach.

Datasets: The ReferItGame dataset consists of more than

99,000 regions with natural language expressions from

20,000 images. We use the same train, validation, and test

split as in [43]. The Flickr30k Entities dataset consists

of more than 275k bounding boxes with natural language

phrases from 31k images. We use the same train, valida-

tion, and test split as in [40].

Language processing: To process the free-form textual

phrases, we restrict the vocabulary to a fixed set of the most
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a low cut field a rough stretch of river a robe

Figure 5. Flickr30k Failure Cases, (Green box: ground-truth, Red box: predicted).

frequent words in the training set and introduce an addi-

tional ‘unkown’ token, <UKN>, to represent the remaining

words. For the ReferItGame dataset we use the top 200

words and for the Flickr30k Entities we use the top 1000

words. These choices cover ∼90% of all phrases in the

training set. We do not consider punctuation, and don’t dif-

ferentiate between lower an upper case.

Image concepts: Our image concepts can be categorized

into two parts, learned concepts and pre-trained concepts.

For the learned concept, we utilize VGG-16 [49] trained

on the ILSVRC-2012 classification task [44], which we de-

note as VGG-cls. We only train the last output layer, and

keep the pre-trained parameters fixed. For optimization we

use Adam [21] with a learning rate of 1e−4. We monitor

the training and validation log-loss to determine when the

model doesn’t improve further.

For the pre-traiend concepts, we extract the score maps

using a VGG-16 based detection network fine-tuned for ob-

ject detection on PASCAL VOC-2012 [6], which we refer

to as VGG-det. This choice ensures a fair comparison to

earlier work.

To illustrate that our approach supports a varierty of fea-

tures, and to ensure that we are not over-fitting to the score-

maps extracted from the VGG architecture, we evaluated

on semantic segmentation from the DeepLab system [3]

trained on PASCAL VOC-2012 [6], and an additional set

of 80 score-maps extracted from the YOLO object detec-

tion system [42] trained on MSCOCO [29].

Quantitative evaluation: In Tab. 1, Tab. 2 and Tab. 3

we quantitatively evaluate the effectiveness of our approach

comparing to state-of-the-art. We use the same accuracy

metric as in previous work: prediction is considered to be

correct, if the IoU with the ground-truth box is more than

0.5. We observe that our approach, when using the same

features, outperforms state-of-the-art unsupervised methods

by 6.96% on Flickr30k Entities dataset and by 7.98% on the

ReferIt Game dataset.

We also provide an ablation study in Tab. 1 and Tab. 2

showing the effectiveness of each of the components in

our system. We observe that object detection features per-

form better than semantic segmentation based score maps.

Bounding boxes extracted from semantic segmentation tend

to be too conservative, i.e., the extracted boxes tend to cover

only regions within the object and do not include any back-

ground, which is not desirable for object bounding boxes.

For classification features, on the ReferIt dataset, it learned

scenery concepts such as “sky,” “grass,” and “water,” which

provided useful spatial information. On the other hand,

on the Flickr30k dataset, learned concepts include “man,”

“people,” and “dog.” However, we found the score maps

for “man” and “people” to also cover other concepts in the

background that are highly correlated, e.g., buildings and

indoor scenes. Interestingly, the learned “dog” concept is of

high fidelity, which is likely due to the large amount of train-

ing data on dogs in the ILSVRC-2012 classification dataset.

We note that more advanced attention mechanisms and net-

work architectures could be used.

Since our approach boxes the entire image when none of

the concepts are relevant, we provided two additional base-

lines. ‘Entire image’ denotes the performance, where we

always output the bounding box capturing the entire image.

‘Largest proposal’ refers to picking the largest box out of

bounding box proposals. Following [43], we use the top

100 boxes from Selective Search [51] for Flickr30k Entities

and the top 100 boxes from Edge Boxes [63] for the ReferIt

Game dataset. We want to emphasize that GroundeR [43]

was designed as a semi-supervised method and quickly out-

performs those baselines once labeled boxes are provided.

Inspired by [64], we also compared with another baseline,

where E(s, c) is replaced with mutual information.

Next, our approach also generalizes and benefits from

having more concepts, i.e., our best system using the score-

maps extracted from YOLO attains approximately another

1% improvement.

Lastly, in the unsupervised setting, pre-trained language

information is assumed to not be available, i.e. we treat

the words and concepts as tokens and do not utilize any

word level meaning. Nonetheless we compared with a

baseline which uses NLP information by replacing E(s, c)
with word vectors extracted from GloVe, pretrained on

Wikipedia [39]. Our approach outperforms this baseline by

0.5% on Flickr and 2% on ReferIt with VGG-det features.

We suspect that there is a mismatch between word distribu-

tions of the grounding datasets and Wikipedia.

Qualitative evaluation: In Fig. 4 we evaluate our approach

qualitatively, showing the success cases. Our approach suc-

cessfully captures the objects and scenes described by the

query. In Fig. 5, we show failure cases. Our system may fail
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Input score-map for sky

Input score-map for people

Figure 6. Success and failure case of the learned score-maps. Top

Row: The learned score map successfully extracts the spatial in-

formation of sky. Bottom Row: The learned score map fails to

pick up the concept of people. The score-map picks up indoor

items instead.

bicycle

bird
boat

bottle

bus
car

cat
chair

concept, c

bike

bird

ship

beer
bus

car

cat

chair

w
o
rd

,
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
an

w
om

an

cow
horse

biker

cyclist

bike
bicycle

ocean

w
ave

surf

Query word, s0

man

woman
cow

horse

biker

cyclist
bike

bicycle
ocean
wave

surf

Q
u
e
ry

w
o
rd

,
s

0.0

0.5

1.0

1.5

2.0

(a) (b)
Figure 7. (a) Trained E(s, c) visualized on word, s, and detection

concepts c, (b) Euclidean distance visualized between the vector

E(s, :) and E(s′, :). Both visualizations are trained on Flickr30k.

when concepts are not in the pre-trained or learned concept

set. For example, words related to clothing are linked to the

person concept, and words for scene are linked to concepts

that co-occur with the scene, e.g., river is linked boat, and

field is linked to dogs.

In Fig. 6 we show the success and failure case of the

learned image concepts. For the ReferIt dataset, the at-

tention mechanism approach successfully captures the spa-

tial scenery concepts (e.g., sky, grass). On the Flickr30k

dataset, the approach fails to capture spatial information,

the deep network is using indoor information to determine

where the word “people” will show up. This is likely caused

by the fact that people are typically present in indoor scenes.

Effectiveness of attention mechanism: To demonstrate

the effectiveness of the attention mechanism discussed in

Sec. 3.4, we performed an ablation study; We removed

the attention mechanism, and added convolutional layers

to match the number of parameters. Without the attention

mechanism, the performance drops by 2.11% on the ReferIt

Game dataset.

Word Most relevant concepts

man person, surfboard, toilet, hot dog, tie

woman person, broccoli, handbag, scissors, knife

boy skateboard, bed, person, sports ball, toothbrush

girl bed, person, fork, sofa, toothbrush

police bus, motorbike, horse, traffic light, car

chef knife, spoon, bowl, apple, sink

Table 4. The top five relevant concepts for each word based on

E(s, c) trained on Flickr30k using YOLO-det image features.

Interpretability and dataset biases: Our approach learns

a value, E(s, c), capturing the relationship for each word-

concept pair. We visualize this quantity in Fig. 7 on a sub-

set of words and concepts. Observe that when E(s, c) is

small, the phrase word and image concept are related (e.g.,

s=beer, c=bottle). As observed, our approach captures the

relevant relationships between phrases and image concepts.

Additionally, we can interpret the vector E(s, :) as a word

embedding. In Fig. 7 (b) we visualize the Euclidean dis-

tance between pairs of word vectors. We clearly observe

groups of words, for example (man, woman), (cow, horse),

(biker, cyclist), (bike, bicycle), (ocean, wave, surf). In spirit

those word embeddings are similar to word2vec [36] where

the embedding uses the surrounding words to capture the

meaning. In our case, word vectors use the detected objects

in an image.

Lastly, E(s, c) can be used to understand dataset biases.

In Tab. 4, we list, in order, the most relevant concepts for

a subset of the words. For example, we were able to quan-

tify gender biases: man linked to surfboard; woman linked

to broccoli; but also other occurrence biases for example:

police near some vehicle; chef near knife and spoon.

Computational Efficiency: Regarding computational effi-

ciency for inference we note that there are three parts: (1)

extracting image features; (2) extracting language features;

and (3) computing scores. Our approach requires a single

pass for the entire image, whereas GroundeR requires a for-

ward pass for each of the 100 proposal boxes. Each forward

pass needs on average 142.85ms. The remaining two parts

have negligible contribution to the running time, 21ms for

our approach and 1ms for GroundeR.

5. Conclusion

The discussed approach for unsupervised textual ground-

ing outperforms competing unsupervised approaches on the

two classical datasets by 7.98% (ReferIt Game dataset) and

6.96% (Flickr30K dataset). We think it is important to ad-

dress this task because labeling of bounding boxes is ex-

pensive, and data pairs containing an image and a caption is

more readily available.
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