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Abstract

We propose GeoNet, a jointly unsupervised learning

framework for monocular depth, optical flow and ego-

motion estimation from videos. The three components are

coupled by the nature of 3D scene geometry, jointly learned

by our framework in an end-to-end manner. Specifically, ge-

ometric relationships are extracted over the predictions of

individual modules and then combined as an image recon-

struction loss, reasoning about static and dynamic scene

parts separately. Furthermore, we propose an adaptive

geometric consistency loss to increase robustness towards

outliers and non-Lambertian regions, which resolves oc-

clusions and texture ambiguities effectively. Experimenta-

tion on the KITTI driving dataset reveals that our scheme

achieves state-of-the-art results in all of the three tasks, per-

forming better than previously unsupervised methods and

comparably with supervised ones.

1. Introduction

Understanding 3D scene geometry from video is a fun-

damental topic in visual perception. It includes many clas-

sical computer vision tasks, such as depth recovery, flow

estimation, visual odometry, etc. These technologies have

wide industrial applications, including autonomous driving

platforms [6], interactive collaborative robotics [11], and lo-

calization and navigation systems [12], etc.

Traditional Structure from Motion (SfM) methods [34,

42] tackle them in an integrated way, which aim to simulta-

neously reconstruct the scene structure and camera motion.

Advances have been achieved recently in robust and dis-

criminative feature descriptors [2, 39], more efficient track-

ing systems [55], and better exploitation of semantic level

information [4], etc. Even though, the proneness to outliers

and failure in non-textured regions are still not completely

eliminated for their inherent reliance on high-quality low-

level feature correspondences.

To break through these limitations, deep models [35, 45]

have been applied to each of the low-level subproblems and

achieve considerable gains against traditional methods. The

Figure 1. Example predictions by our method on KITTI 2015 [31].

Top to bottom: input image (one of the sequence), depth map and

optical flow. Our model is fully unsupervised and can handle dy-

namic objects and occlusions explicitly.

major advantage comes from big data, which helps captur-

ing high-level semantic correspondences for low level clue

learning, thus performing better even in ill-posed regions

compared with traditional methods.

Nevertheless, to preserve high performance with more

general scenarios, large corpus of groundtruth data are usu-

ally needed for deep learning. In most circumstances,

expensive laser-based setups and differential GPS are re-

quired, restricting the data grow to a large scale. More-

over, previous deep models are mostly tailored to solve one

specific task, such as depth [26], optical flow [8], camera

pose [22], etc. They do not explore the inherent redundancy

among these tasks, which can be formulated by geometry

regularities via the nature of 3D scene construction.

Recent works have emerged to formulate these problems

together with deep learning. But all possess certain inher-

ent limitations. For example, they require large quantities

of laser scanned depth data for supervision [48], demand

stereo cameras as additional equipment for data acquisi-

tion [15], or cannot explicitly handle non-rigidity and oc-

clusions [50, 56].

In this paper, we propose an unsupervised learning

framework GeoNet for jointly estimating monocular depth,

optical flow and camera motion from video. The foundation

of our approach is built upon the nature of 3D scene geome-

try (see Sec. 3.1 for details). An intuitive explanation is that

most of the natural scenes are comprised of rigid staic sur-
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faces, i.e. roads, houses, trees, etc. Their projected 2D im-

age motion between video frames can be fully determined

by the depth structure and camera motion. Meanwhile, dy-

namic objects such as pedestrians and cars commonly ex-

ist in such scenes and usually possess the characteristics of

large displacement and disarrangement.

As a result, we grasp the above intuition using a deep

convolutional network. Specifically, our paradigm employs

a divide-and-conquer strategy. A novel cascaded archi-

tecture consisting of two stages is designed to solve the

scene rigid flow and object motion adaptively. Therefore

the global motion field is able to get refined progressively,

making our full learning pipeline a decomposed and easier-

to-learn manner. The view synthesis loss guided by such

fused motion field leads to natural regularization for unsu-

pervised learning. Example predictions are shown in Fig. 1.

As a second contribution, we introduce a novel adaptive

geometric consistency loss to overcome factors not included

in a pure view synthesis objective, such as occlusion han-

dling and photo inconsistency issues. By mimicking the tra-

ditional forward-backward (or left-right) consistency check,

our approach filters possible outliers and occlusions out au-

tomatically. Prediction coherence is enforced between dif-

ferent views in non-occluded regions, while erroneous pre-

dictions get smoothed out especially in occluded regions.

Finally, we perform comprehensive evaluation of our

model in all of the three tasks on the KITTI dataset [31].

Our unsupervised approach outperforms previously unsu-

pervised manners and achieves comparable results with su-

pervised ones, which manifests the effectiveness and advan-

tages of our paradigm.

2. Related Work

Traditional Scene Geometry Understanding Structure-

from-Motion (SfM) is a long standing problem which in-

fers scene structure and camera motion jointly from poten-

tially very large unordered image collections [13, 16]. Mod-

ern approaches commonly start with feature extraction and

matching, followed by geometric verification [40]. During

the reconstruction process, bundle adjustment [47] is iter-

atively applied for refining the global reconstructed struc-

ture. Lately wide varieties of methods have been proposed

in both global and incremental genres [44, 53]. However,

these existing methods still heavily rely on accurate feature

matching. Without good photo-consistency promise, the

performance cannot be guaranteed. Typical failure cases

may be caused by low texture, stereo ambiguities, occlu-

sions, etc., which may commonly appear in natural scenes.

Scene flow estimation is another closely related topic to

our work, which solves the dense 3D motion field of a scene

from stereoscopic image sequences [49]. Top ranked meth-

ods on the KITTI benchmark typically involve the joint rea-

soning of geometry, rigid motion and segmentation [3, 51].

MRFs [27] are widely adopted to model these factors as a

discrete labeling problem. However, since there exist large

quantities of variables to optimize, these off-the-shelf ap-

proaches are usually too slow for practical use. On the other

hand, several recent methods have emphasized the rigid reg-

ularities in generic scene flow. Taniai et al. [46] proposed

to segment out moving objects from the rigid scene with a

binary mask. Sevilla-Lara et al. [41] defined different mod-

els of image motion according to semantic segmentation.

Wulff et al. [54] modified the Plane+Parallax framework

with semantic rigid prior learned by a CNN. Different from

the above mentioned approaches, we employ deep neural

networks for better exploitation of high level cues, not re-

stricted to a specific scenario. Our end-to-end method only

takes on the order of milliseconds for geometry inference

on a consumer level GPU. Moreover, we robustly estimate

high-quality ego-motion which is not included in the classi-

cal scene flow conception.

Supervised Deep Models for Geometry Understanding

With recent development of deep learning, great progress

has been made in many tasks of 3D geometry understand-

ing, including depth, optical flow, pose estimation, etc.

By utilization of a two scale network, Eigen et al. [9]

demonstrated the capability of deep models for single view

depth estimation. While such monocular formulation typi-

cally has heavy reliance on scene priors, a stereo setting is

preferred by many recent methods. Mayer et al. [29] intro-

duced a correlation layer to mimic traditional stereo match-

ing techniques. Kendall et al. [24] proposed 3D convolu-

tions over cost volumes by deep features to better aggregate

stereo information. Similar spirits have also been adopted

in learning optical flow. E. Ilg et al. [18] trained a stacked

network on large corpus of synthetic data and achieved im-

pressive result on par with traditional methods.

Apart from the above problems as dense pixel predic-

tion, camera localization and tracking have also proven to

be tractable as a supervised learning task. Kendall et al. [23]

cast the 6-DoF camera pose relocalization problem as a

learning task, and extended it upon the foundations of multi-

view geometry [22]. Oliveira et al. [36] demonstrated how

to assemble visual odometry and topological localization

modules and outperformed traditional learning-free meth-

ods. Brahmbhatt et al. [5] exploited geometric constraints

from a diversity of sensory inputs for improving localization

accuracy on a broad scale.

Unsupervised Learning of Geometry Understanding

For alleviating the reliances on expensive groundtruth data,

various unsupervised approaches have been proposed re-

cently to address the 3D understanding tasks. The core su-

pervision typically comes from a view synthesis objective

based on geometric inferences. Here we briefly review on
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the most closely related ones and indicate the crucial differ-

ences between ours.

Garg et al. [14] proposed a stereopsis based auto-encoder

for single view depth estimation. While their differentiable

inverse warping is based on Taylor expansion, making the

training objective sub-optimal. Both Ren et al. [37] and

Yu et al. [21] extended the image reconstruction loss to-

gether with a spatial smoothness loss for unsupervised opti-

cal flow learning, but took no advantage of geometric con-

sistency among predictions. By contrast, Godard et al. [15]

exploited such constraints in monocular depth estimation

by introducing a left-right consistency loss. However, they

treat all the pixels equally, which would affect the effec-

tiveness of geometric consistency loss in occluded regions.

Concurrent to our work, Meister et al. [30] also indepen-

dently introduce a bidirectional census loss. Different to

their stacked structure focusing on unsupervised learning

of optical flow, we tackle several geometry understanding

tasks jointly. Zhou et al. [56] mimicked the traditional

structure from motion by learning the monocular depth and

ego-motion in a coupled way. Building upon the rigid pro-

jective geometry, they do not consider the dynamic objects

explicitly and in turn learn a explainability mask for com-

pensation. Similarly, Vijayanarasimhan et al. [50] learned

several object masks and corresponding rigid motion pa-

rameters for modelling moving objects. In contrast, we in-

troduce a residual flow learning module to handle non-rigid

cases and emphasize the importance of enforcing geometric

consistency in predictions.

3. Method

In this section, we start by the nature of 3D scene geome-

try. Then we give an overview of our GeoNet. It follows by

its two components: rigid structure reconstructor and non-

rigid motion localizer respectively. Finally, we raise the ge-

ometric consistency enforcement, which is the core of our

GeoNet.

3.1. Nature of 3D Scene Geometry

Videos or images are the screenshots of 3D space pro-

jected into certain dimensions. The 3D scene is naturally

comprised of static background and moving objects. The

movement of static parts in a video is solely caused by cam-

era motion and depth structure. Whereas movement of dy-

namic objects is more complex, contributed by both homo-

geneous camera motion and specific object motion.

Understanding the homogeneous camera motion is rel-

atively easier compared to complete scene understanding,

since most of the region is bounded by its constraints. To

decompose the problem of 3D scene understanding by its

nature, we would like to learn the scene level consistent

movement governed by camera motion, namely the rigid

flow, and the object motion separately.

Here we briefly introduce the notations and basic con-

cepts used in our paper. To model the strictly restricted rigid

flow, we define the static scene geometries by a collection

of depth maps Di for frame i, and the relative camera mo-

tion Tt→s from target to source frame. The relative 2D rigid

flow from target image It to source image Is can be repre-

sented by1

f
rig
t→s(pt) = KTt→sDt(pt)K

−1pt − pt, (1)

where K denotes the camera intrinsic and pt denotes ho-

mogeneous coordinates of pixels in frame It. On the other

hand, we model the unconstrained object motion as classi-

cal optical flow conception, i.e. 2D displacement vectors.

We learn the residual flow fres
t→s instead of the full repre-

sentation for non-rigid cases, which we will explain later in

Sec. 3.4. For brevity, we mainly illustrate the cases from

target to source frames in the following, which one can eas-

ily generalize to the reversed cases. Guided by these posi-

tional constraints, we can apply differentiable inverse warp-

ing [20] between nearby frames, which later become the

foundation of our fully unsupervised learning scheme.

3.2. Overview of GeoNet

Our proposed GeoNet perceives the 3D scene geometry

by its nature in an unsupervised manner. In particular, we

use separate components to learn the rigid flow and object

motion by rigid structure reconstructor and non-rigid mo-

tion localizer respectively. The image appearance similarity

is adopted to guide the unsupervised learning, which can be

generalized to infinite number of video sequences without

any labeling cost.

An overview of our GeoNet has been depicted in Fig. 2.

It contains two stages, the rigid structure reasoning stage

and the non-rigid motion refinement stage. The first stage to

infer scene layout is made up of two sub-networks, i.e. the

DepthNet and the PoseNet. Depth maps and camera poses

are regressed respectively and fused to produce the rigid

flow. Furthermore, the second stage is fulfilled by the Res-

FlowNet to handle dynamic objects. The residual non-rigid

flow learned by ResFlowNet is combined with rigid flow,

deriving our final flow prediction. Since each of our sub-

networks targets at a specific sub-task, the complex scene

geometry understanding goal is decomposed to some easier

ones. View synthesis at different stage works as fundamen-

tal supervision for our unsupervised learning paradigm.

Last but not the least, we conduct geometric consistency

check during training, which significantly enhances the co-

herence of our predictions and achieves impressive perfor-

mance.

1Similar to [56], we omit the necessary conversion to homogeneous

coordinates here for notation brevity.
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Figure 2. Overview of GeoNet. It consists of rigid structure reconstructor for estimating static scene geometry and non-rigid motion

localizer for capturing dynamic objects. Consistency check within any pair of bidirectional flow predictions is adopted for taking care of

occlusions and non-Lambertian surfaces.

3.3. Rigid Structure Reconstructor

Our first stage aims to reconstruct the rigid scene struc-

ture with robustness towards non-rigidity and outliers. The

training examples are temporal continuous frames Ii(i =
1 ∼ n) with known camera intrinsics. Typically, a target

frame It is specified as the reference view, and the other

frames are source frames Is. Our DepthNet takes single

view as input and exploits accumulated scene priors for

depth prediction. During training, the entire sequence is

treated as a mini-batch of independent images and fed into

the DepthNet. In contrast, to better utilize the feature corre-

spondences between different views, our PoseNet takes the

entire sequence concated along channel dimension as input

to regress all the relative 6DoF camera poses Tt→s at once.

Building upon these elementary predictions, we are able to

derive the global rigid flow according to Eq. (1). Imme-

diately we can synthesize the other view between any pair

of target and source frames. Let us denote Ĩrigs as the in-

verse warped image from Is to target image plane by f
rig
t→s.

Thereby the supervision signal for our current stage natu-

rally comes in form of minimizing the dissimilarities be-

tween the synthesized view Ĩrigs and original frame It (or

inversely).

However, it should be pointed out that rigid flow only

dominates the motion of non-occluded rigid region while

becomes invalid in non-rigid region. Although such neg-

ative effect is slightly mitigated within the rather short

sequence, we adopt a robust image similarity measure-

ment [15] for the photometric loss, which maintains the bal-

ance between appropriate assessment of perceptual similar-

ity and modest resilience for outliers, and is differentiable

in nature as follows

Lrw = α
1− SSIM(It, Ĩ

rig
s )

2
+(1−α)‖It− Ĩrigs ‖1, (2)

where SSIM denotes the structural similarity index [52] and

α is taken to be 0.85 by cross validation. Apart from the

rigid warping loss Lrw, to filter out erroneous predictions

and preserve sharp details, we introduce an edge-aware

depth smoothness loss Lds weighted by image gradients

Lds =
∑

pt

|∇D(pt)| · (e
−|∇I(pt)|)T , (3)

where | · | denotes elementwise absolute value, ∇ is the vec-

tor differential operator, and T denotes the transpose of im-

age gradient weighting.

3.4. Nonrigid Motion Localizer

The first stage provides us with a stereoscopic perception

of rigid scene layout, but ignores the common existence of

dynamic objects. Therefore, we raise our second compo-

nent, i.e. the ResFlowNet to localize non-rigid motion.

Intuitively, generic optical flow can directly model the

unconstrained motion, which is commonly adopted in off-

the-shelf deep models [8, 18]. But they do not fully exploit

the well-constrained property of rigid regions, which we

have already done in the first stage actually. Instead, we for-

mulate our ResFlowNet for learning the residual non-rigid
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Figure 3. Comparison between flow predictions at different stages.

Rigid flow gives satisfactory result in most static regions, while

residual flow module focuses on localizing non-rigid motion such

as cars, and refining initial prediction in challenging cases such as

dark illuminations and thin structures.

flow, the shift solely caused by relative object movement to

the world plane. Specifically, we cascade the ResFlowNet

after the first stage in a way recommended by [18]. For any

given pair of frames, the ResFlowNet takes advantage of

output from our rigid structure reconstructor, and predicts

the corresponding residual signal fres
t→s. The final full flow

prediction f
full
t→s is constituted by f

rig
t→s + fres

t→s.

As illustrated in Fig. 3, our first stage, rigid structure re-

constructor, produces high-quality reconstruction in most

rigid scenes, which sets a good starting point for our sec-

ond stage. Thereby, our ResFlowNet in motion localizer

simply focuses on other non-rigid residues. Note that Res-

FlowNet can not only rectify wrong predictions in dynamic

objects, but also refine imperfect results from first stage

thanks to our end-to-end learning protocol, which may arise

from high saturations and extreme lighting conditions.

Likewise, we can extend the supervision in Sec. 3.3 to

current stage with slight modifications. In detail, following

the full flow f
full
t→s , we perform image warping between any

pair of target and source frames again. Replacing the Ĩrigs

with Ĩfulls in Eq. (2), we obtain the full flow warping loss

Lfw. Similarly, we extend the smoothness loss in Eq. (3)

over 2D optical flow field, which we denote as Lfs.

3.5. Geometric Consistency Enforcement

Our GeoNet takes rigid structure reconstructor for static

scene, and non-rigid motion localizer as compensation for

dynamic objects. Both stages utilize the view synthesis

objective as supervision, with the implicit assumption of

photometric consistency. Though we employ robust im-

age similarity assessment such as Eq. (2), occlusions and

non-Lambertian surfaces still cannot be perfectly handled

in practice.

To further mitigate these effects, we apply a forward-

backward consistency check in our learning framework

without changing the network architecture. The work by

Godard et al. [15] incorporated similar idea into their depth

learning scheme with the left-right consistency loss. How-

ever, we argue that such consistency constraints, as well as

the warping loss, should not be imposed at occluded regions

(see Sec. 4.3). Instead we optimize an adaptive consistency

loss across the final motion field.

Concretely, our geometric consistency enforcement is

fulfilled by optimizing the following objective

Lgc =
∑

pt

[δ(pt)] · ‖∆f
full
t→s (pt)‖1, (4)

where ∆f
full
t→s (pt) is the full flow difference computed by

forward-backward consistency check at pixel pt in It, [·] is

the Iverson bracket, and δ(pt) denotes the condition of

‖∆f
full
t→s (pt)‖2 < max{α, β‖ffull

t→s (pt)‖2}, (5)

in which (α, β) are set to be (3.0, 0.05) in our experiment.

Pixels where the forward/backward flows contradict seri-

ously are considered as possible outliers. Since these re-

gions violate the photo consistency as well as geometric

consistency assumptions, we handle them only with the

smoothness loss Lfs. Therefore both our full flow warping

loss Lfw and geometric consistency loss Lgc are weighted

by [δ(pt)] pixelwise.

To summarize, our final loss through the entire pipeline

becomes

L =
∑

l

∑

〈t,s〉

{Lrw + λdsLds + Lfw + λfsLfs + λgcLgc},

(6)

where λ denotes respective loss weight, l indexes over pyra-

mid image scales, and 〈t, s〉 indexes over all the target and

source frame pairs and their inverse combinations.

4. Experiments

In this section, we firstly introduce our network architec-

ture and training details. Then we will show qualitative and

quantitative results in monocular depth, optical flow and

camera pose estimation tasks respectively.

4.1. Implementation Details

Network Architecture Our GeoNet mainly contains

three subnetworks, the DepthNet, the PoseNet, together to

form the rigid structure reconstructor, and the ResFlowNet,

incorporated with the output from previous stage to localize

non-rigid motion. Since both the DepthNet and the Res-

FlowNet reason about pixel-level geometry, we adopt the

network architecture in [15] as backbone. Their structure

mainly consists of two components: the encoder and the

decoder parts. The encoder follows the basic structure of

ResNet50 as its more effective residual learning manner.

The decoder is made up of deconvolution layers to enlarge

the spatial feature maps to full scale as input. To preserve
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Input Groundtruth Eigen et al. Zhou et al. Ours

Figure 4. Comparison of monocular depth estimation between Eigen et al. [9] (supervised by depth), Zhou et al. [56] (unsupervised) and

ours (unsupervised). The groundtruth is interpolated for visualization purpose. Our method captures details in thin structures and preserves

consistently high-quality predictions both in close and distant regions.

both global high-level and local detailed information, we

use skip connections between encoder and decoder parts

at different corresponding resolutions. Both the depth and

residual flow are predicted in a multi-scale scheme. The in-

put to ResFlowNet consists of batches of tensors concated

in channel dimension, including the image pair Is and It,

the rigid flow f
rig
t→s, the synthesized view Ĩrigs and its er-

ror map compared with original frame It. Our PoseNet re-

gresses the 6-DoF camera poses, i.e. the euler angles and

translational vectors. The architecture is same as in [56],

which contains 8 convolutional layers followed by a global

average pooling layer before final prediction. We adopt

batch normalization [19] and ReLUs [33] interlaced with

all the convolutional layers except the prediction layers.

Training Details Our experiment is conducted using the

TensorFlow framework [1]. Though the sub-networks can

be trained together in an end-to-end fashion, there is no

guarantee that the local gradient optimization could get

the network to that optimal point. Therefore, we adopt a

stage-wise training strategy, reducing computational cost

and memory consumption at meantime. Generally speak-

ing, we first train the DepthNet and the PoseNet, then by fix-

ing their weights, the ResFlowNet is trained thereafter. We

also evaluated finetuning the overall network with a smaller

batch size and learning rate afterwards, but achieved lim-

ited gains. During training, we resize the image sequences

to a resolution of 128 × 416. We also perform random re-

sizing, cropping, and other color augmentations to prevent

overfitting. The network is optimized by Adam [25], where

β1 = 0.9, β2 = 0.999. The loss weights are set to be

λds = 0.5, λfs = 0.2 and λgc = 0.2 for all the experi-

ments. We take an initial learning rate of 0.0002 and mini-

batch size of 4 at both stages. The network is trained on a

single TitanXP GPU and infers depth, optical flow and cam-

era pose with the speed of 15ms, 45ms and 4ms per exam-

ple at test time. The training process typically takes around

30 epochs for the first stage and 200 epochs for the second

stage to converge. To make a fair evaluation, we compare

our method with different training/test split for each task on

the popular KITTI dataset [31].

4.2. Monocular Depth Estimation

To evaluate the performance of our GeoNet in monoc-

ular depth estimation, we take the split of Eigen et al. [9]

to compare with related works. Visually similar frames to

the test scenes as well as static frames are excluded fol-

lowing [56]. The groundtruth is obtained by projecting the

Velodyne laser scanned points into image plane. To evalu-

ate at input image resolution, we resize our predictions by

interlinear interpolation. The sequence length is set to be 3

during training.

As shown in Table 1, “Ours VGG” trained only on KITTI

shares the same network architecture with “Zhou et al. [56]

without BN”, which reveals the effectiveness of our loss

functions. While the difference between “Ours VGG” and

“Ours ResNet” validates the gains achieved by different net-

work architectures. Our method significantly outperforms

both supervised methods [9, 28] and previously unsuper-

vised work [14, 56]. A qualitative comparison has been vi-

sualized in Fig. 4. Interestingly, our result is slightly inferior

to Godard et al. [15] when trained on KITTI and Cityscapes
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Method Supervised Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.25
2

δ < 1.25
3

Eigen et al. [9] Coarse Depth K 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [9] Fine Depth K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [28] Depth K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [15] Pose K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [56] No K 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [56] updated2 No K 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Ours VGG No K 0.164 1.303 6.090 0.247 0.765 0.919 0.968

Ours ResNet No K 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Garg et al. [14] cap 50m Pose K 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Ours VGG cap 50m No K 0.157 0.990 4.600 0.231 0.781 0.931 0.974

Ours ResNet cap 50m No K 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Godard et al. [15] Pose CS + K 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Zhou et al. [56] No CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Ours ResNet No CS + K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Table 1. Monocular depth results on KITTI 2015 [31] by the split of Eigen et al. [9]. For training, K is the KITTI dataset [31] and CS is

Cityscapes [7]. Errors for other methods are taken from [15, 56]. We show the best result trained only on KITTI in bold. The results of

Garg et al. [14] are capped at 50m and we seperately list them for comparison.

datasets both. We believe this is due to the profound dis-

tinctions between training data characteristics, i.e. rectified

stereo image pairs and monocular video sequences. Still,

the results manifest the geometry understanding ability of

our GeoNet, which successfully captures the regularities

among different tasks out of videos.

4.3. Optical Flow Estimation

The performance of optical flow component is validated

on the KITTI stereo/flow split. The official 200 training im-

ages are adopted as testing set. Thanks to our unsupervised

nature, we could take the raw images without groundtruth

for training. All the related images in the 28 scenes covered

by testing data are excluded. To compare our residual flow

learning scheme with direct flow learning, we specifically

trained modified versions of FlowNetS [8] with the unsu-

pervised losses: “Our DirFlowNetS (no GC)” is guided by

the warping loss and smoothness loss as in Sec. 3.4, while

“Our DirFlowNetS” further incorporates the geometric con-

sistency loss as in Sec. 3.5 during training. Moreover, we

conduct ablation study in adaptive consistency loss versus

naive consistency loss, i.e. without weighting in Eq. (4).

As demonstrated in Table 2, our GeoNet achieves the

lowest EPE in overall regions and comparable result in non-

occluded regions against other unsupervised baselines. The

comparison between “Our DirFlowNetS (no GC)” and “Our

DirFlowNetS” already manifests the effectiveness of our

geometric consistency loss even in a variant architecture.

Futhermore, “Our GeoNet” adopts the same losses but beats

“Our DirFlowNetS” in overall regions, demonstrating the

advantages of our architecture based on nature of 3D scene

geometry (see Fig. 5 for visualized comparison). Neverthe-

2 Results are updated from https://github.com/tinghuiz/

SfMLearner with improved implementation.

Method Dataset Noc All

EpicFlow [38] - 4.45 9.57

FlowNetS [8] C+S 8.12 14.19

FlowNet2 [18] C+T 4.93 10.06

DSTFlow [37] K 6.96 16.79

Our DirFlowNetS (no GC) K 6.80 12.86

Our DirFlowNetS K 6.77 12.21

Our Naive GeoNet K 8.57 17.18

Our GeoNet K 8.05 10.81

Table 2. Average end-point error (EPE) on KITTI 2015 flow train-

ing set over non-occluded regions (Noc) and overall regions (All).

The handcrafted EpicFlow takes 16s per frame at runtime; The su-

pervised FlowNetS is trained on FlyingChairs and Sintel; Likewise

the FlowNet2 is trained on FlyingChairs and FlyingThings3D.

less, naively enforcing consistency loss proves to deterio-

rate accuracy as shown in “Our Naive GeoNet” entry.

Gradient Locality of Warping Loss However, the direct

unsupervised flow network DirFlowNetS performs better in

non-occluded regions than GeoNet, which seems unreason-

able. We investigate into the end-point error (EPE) dis-

tribution over different magnitudes of groundtruth residual

flow i.e. ‖fgt − frig‖, where fgt denotes the groundtruth

full flow. As shown in Fig. 6, our GeoNet achieves much

lower error in small displacement relative to frig , while the

error increases with large displacement. Experimentally, we

find that GeoNet is extremely good at rectifying small er-

rors from rigid flow. However, the predicted residual flow

tends to prematurely converge to a certain range, which is in

consistency with the observations of [15]. It is because the

gradients of warping based loss are derived by local pixel

intensity differences, which would be amplified in a more

complicated cascaded architecture, i.e. the GeoNet. We

have experimented by replacing the warping loss with a nu-
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Figure 5. Comparison of direct flow learning method DirFlowNetS (geometric consistency loss enforced) and our GeoNet framework. As

shown in the figure, GeoNet shows clear advantages in occluded, texture ambiguous regions, and even in shaded dim area.
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Figure 6. Average EPE at different magnitude of groundtruth resid-

ual flow. In total regions (All), GeoNet consistently outperforms

direct flow regression; but in non-occluded regions (Noc), the ad-

vantage of GeoNet is restricted to the neighbourhood of rigid flow.

merically supervised one (guided by groundtruth or knowl-

edge distilled from the DirFlowNetS [17]) without changing

network architecture, and found such issue disappeared. In-

vestigating practical solution to avoid the gradient locality

of warping loss is left as our future work.

4.4. Camera Pose Estimation

We have evaluated the performance of our GeoNet on

the official KITTI visual odometry split. To compare

with Zhou et al. [56], we divide the 11 sequences with

groundtruth into two parts: the 00-08 sequences are used

for training and the 09-10 sequences for testing. The se-

quence length is set to be 5 during training. Moreover,

we compare our method with a traditional representative

SLAM framework: ORB-SLAM [32]. It involves global

optimization steps such as loop closure detection and bun-

dle adjustment. Here we present two versions: “The ORB-

SLAM (short)” only takes 5 frames as input and “ORB-

SLAM (long)” takes the entire sequence as input. All of

the results are evaluated in terms of 5-frame trajectories,

and scaling factor is optimized to align with groundtruth

to resolve scale ambiguity [43]. As shown in Table 3, our

method outperforms all of the competing baselines. Note

that even though our GeoNet only utlizes limited informa-

tion within a rather short sequence, it still achieves better

result than “ORB-SLAM(full)”. This reveals again that our

geometry anchored GeoNet captures additional high level

cues other than sole low level feature correspondences. Fi-

nally, we analyse the failure cases and find the network

sometimes gets confused about the reference system when

large dynamic objects appear nearby in front of the camera,

which commonly exist in direct visual SLAM [10].

Method Seq.09 Seq.10

ORB-SLAM (full) 0.014± 0.008 0.012± 0.011

ORB-SLAM (short) 0.064± 0.141 0.064± 0.130

Zhou et al. [56] 0.021± 0.017 0.020± 0.015

Zhou et al. [56] updated 0.016± 0.009 0.013± 0.009

Our GeoNet 0.012 ± 0.007 0.012 ± 0.009

Table 3. Absolute Trajectory Error (ATE) on KITTI odometry

dataset. The results of other baselines are taken from [56]. Our

method outperforms all of the other methods.

5. Conclusion

We propose the jointly unsupervised learning framework

GeoNet, and demonstrate the advantages of exploiting ge-

ometric relationships over different previously “isolated”

tasks. Our unsupervised nature profoundly reveals the capa-

bility of neural networks in capturing both high level cues

and feature correspondences for geometry reasoning. The

impressive results compared to other baselines including the

supervised ones indicate possibility of learning these low

level vision tasks without costly collected groundtruth data.

For future work, we would like to tackle the gradient lo-

cality issue of warping based loss, and validate the possible

improvement of introducing semantic information into our

GeoNet.
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