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Abstract

Semantic embeddings for images and sentences have
been widely studied recently. The ability of deep neural net-
works on learning rich and robust visual and textual rep-
resentations offers the opportunity to develop effective se-
mantic embedding models. Currently, the state-of-the-art
approaches in semantic learning first employ deep neural
networks to encode images and sentences into a common
semantic space. Then, the learning objective is to ensure
a larger similarity between matching image and sentence
pairs than randomly sampled pairs. Usually, Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) are employed for learning image and sentence rep-
resentations, respectively. On one hand, CNNs are known to
produce robust visual features at different levels and RNNs
are known for capturing dependencies in sequential data.
Therefore, this simple framework can be sufficiently effec-
tive in learning visual and textual semantics. On the other
hand, different from CNNs, RNNs cannot produce middle-
level (e.g. phrase-level in text) representations. As a re-
sult, only global representations are available for seman-
tic learning. This could potentially limit the performance
of the model due to the hierarchical structures in images
and sentences. In this work, we apply Convolutional Neu-
ral Networks to process both images and sentences. Con-
sequently, we can employ mid-level representations to as-
sist global semantic learning by introducing a new learning
objective on the convolutional layers. The experimental re-
sults show that our proposed textual CNN models with the
new learning objective lead to better performance than the
state-of-the-art approaches.

1. Introduction

Convolutional Neural Networks (CNNs) have achieved
significant success on a wide range of computer vision
tasks [21]. Meanwhile, Recurrent Neural Networks (RNNs)
have also been extensively deployed to model sequential
data, such as machine translation [1, 32] and speech recog-
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Figure 1. Motivation of using CNNs for semantic embeddings.
CNN s can produce hierarchical feature representations, which can
be exploited for semantic learning.

nition [8]. Until recently, CNNs are applied to natural lan-
guage processing tasks and show competitive performance
on several tasks, including sentence classification [16] and
machine translation [7]. Part of the success can be at-
tributed to their ability in modeling complex hierarchical
structures of languages. In semantic embedding learning,
we are also interested in the structures presented in images
and sentences [28] for understanding of their semantic re-
lations at different levels. However, the state-of-the-art ap-
proaches usually use RNNs for language modeling due to
their success on processing sequential data, including sen-
tences. However, RNNs have their limitations. On one
hand, structural representations cannot be obtained from
RNNSs. On the other hand, they are known for their inca-
pability of capturing long range dependencies in sequen-
tial data. To solve this issue, different variants, such as
Long Short-Term Memory (LSTM) [! 1] and Gated Recur-
rent Units [3], are carefully designed to keep the informa-
tion propagate smoothly and robustly. However, there still
exist the possibility of unstable gradients.

Different from RNNs, CNNs can represent visual con-
tent in multiple levels, from low-level filters to middle-level
parts and the whole objects [35]. This kind of multiple level
representations offers opportunity for visual and textual se-
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mantic embeddings. In particular, we first design a Convo-
lutional Neural Network architecture for text to obtain mul-
tiple level (e.g. word-level, phrase-level and sentence-level)
semantic representations of sentences. Next, we deploy the
semantic learning objective at different levels of visual and
textual representations. In such a way, we expect the model
to learn more robust semantic representations.

For given image and sentence pairs, both the visual
and textual CNNs can be trained in an end-to-end fashion,
which we call Convolutional Semantic Embeddings (CSE).
Figure 1 shows our motivation for convolutional semantic
embedding. Convolutional Neural Networks can provide
hierarchical feature maps for both visual and textual modal-
ities. Different colors of image regions and phrases are rep-
resented at different convolutional feature maps. The lo-
cal semantic mechanism, which considers the intermediate
convolutional feature maps, will assist the learning of global
semantic embeddings.

However, until recently, CNNs are rarely applied to NLP
tasks. Notably, CNNs are first applied to sentence classi-
fication [16]. Since then, many other works applied CNN
in NLP, including [36, 9, 2, 4, 7] for instance. These re-
sults, again, suggest the effectiveness of CNNs on process-
ing language related tasks, which also provides supports for
our motivation of using CNNs for cross-modality semantic
learning.

Our contributions are summarized as follows:

e We design and apply Convolutional Neural Networks
(CNNs) for visual and textual semantic embeddings.
For given sentences and images, the network can be
trained end-to-end.

e We employ the intermediate convolutional features as
well as the global semantics features for local context
feature learning. Then, we introduce the intermediate
objective to assist the global semantic learning using
local context features.

e The experimental results on both Flickr30k [27] and
MS-COCO [22] datasets demonstrate the effectiveness
of the proposed model.

2. Related Work

Our work is closely related to visual and textual seman-
tic embeddings and Convolutional Neural Networks for text
analysis. We discuss the main related publications on these
two research topics as follows.

2.1. Semantic Embeddings

Semantic embedding understanding of visual and textual
content has been considered as the fundamental task for re-
trieval applications [12]. The state-of-the-art approaches

mainly employ deep learning to encode both text and im-
ages. Next, the retrieval results are obtained by computing
their similarities using the learned semantic representations.

Deep visual semantic embedding model [6] firstly em-
ployed deep learning models to learn the embeddings of im-
ages and their labels. The learning objective is to make sure
that matching image and label pairs have larger similarities
than mismatching pairs. This task is extended to images
and sentences retrieval in [19], where the encoding model
for text becomes the Recurrent Neural Networks, instead
of the Word2Vec model [25]. Following work has tried to
develop novel learning objectives for this task [19, 30, 20].

More recently, the retrieval performance of using deep
semantic embeddings has been significantly improved by
novel architectures. Inspired by metric learning, neighbor-
hood structure preserving was considered as a constraint in
the learning objective in [31]. Selective multimodal Long
Short-Term Memory network (sm-LSTM) [14] employed
attention mechanism to select salient pairs from images
and sentences. Then, they were passed to a multimodal
LSTM network for local similarity measurement and aggre-
gation. Euclidean loss [5] was utilized to approximate the
correlation-based loss in a tied two-way network model and
showed promising retrieval results. Meanwhile, recurrent
residual fusion (RRF) model [23], which consists of sev-
eral recurrent units with residual blocks and a fusion model,
showed improved performance on both Flickr30K and MS-
COCO benchmarking datasets.

2.2. CNNs for Text Analysis

Recently, Convolutional Neural Networks have also been
employed on language processing tasks. The authors
in [17] applied one dimensional Convolutional Neural Net-
works for sentence classification. Later, character-level
CNNs [36, 18] were successfully applied to several differ-
ent tasks including language modeling, sentiment analysis
and classification. The work from [13] showed that CNNs
can generate rich matching patterns at different levels for
semantic sentence matching. Their architecture of convolu-
tional network consists of several one-dimensional convo-
lution layers and pooling layers to generate a fixed length
global vector for each input sentence. Their results suggest
that CNNs are capable of encoding sentence for a variety
of tasks. He et al. [9] applied CNNs for sentence sim-
ilarity modeling. Due to the hierarchical structure repre-
sentations of CNNss, they developed a structured similarity
measure to consider multiple levels of similarity granular-
ities. Furthermore, attention model was taken into consid-
eration for modeling sentence pairs in [34]. More recently,
Gehring et al. [7] exploited CNNs for machine translation.
Their model achieved the state-of-the-art results on several
benchmarking datasets.

The above results suggest that with well-designed ar-
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chitecture, CNNs can be successful in natural language
processing tasks. When designing our CNN architecture
for semantic learning, we carefully include several one-
dimensional convolutional layers for encoding phrases with
different length. Next, we apply several convolutional
highway network layers to further process these encoded
phrases. Each additional highway network layer enables the
network to cover a larger range of context. Furthermore, the
carry gate of highway network [29] offers the mechanism of
including semantics at different levels.

It should be noted that the authors in [24] also employed
convolutional neural networks to encode sentence for the
two retrieval tasks. However, their architecture of convolu-
tional neural network is directly derived from the standard
CNNs for images, which consists of several convolutional
layers and pooling layers. This plainly transferred architec-
ture, without much careful tuning for text, may not produce
high-quality textual semantic representations. In addition,
their learning objective does not consider the intermediate
loss from convolutional layers, as proposed in this work.

3. Convolutional Semantic Embeddings

We employ Convolutional Neural Networks to encode
both visual and textual content. We call this model Convo-
lutional Semantic Embeddings (CSE).

3.1. Overview of the Framework

Our model is inspired by semantic learning from [19].
The main idea is to encode images and their descriptive sen-
tences into a common semantic embedding space. This is
achieved by first producing equal dimensional features for
both visual and textual content. Next, the learning objective
is designed to pull together matching image and sentence
pairs, and separate mismatching pairs at the same time. This
drives both visual and textual models to learn feature repre-
sentations within the same semantic space.

Due to the sequential nature of sentences, Recurrent
Neural Networks are widely employed to produce textual
features. In our proposed framework, as shown in Fig-
ure 2, the image descriptions are encoded using a Convo-
lutional Neural Network. Similar to the approach in [19],
we map images and sentences into a common semantic
space, but employing CNN for sentence encoding instead
of RNN. Again, the objective is to make matching image
and sentence pairs more similar than mismatching pairs in
the global semantic space, as shown in the top of Figure 2.

Meanwhile, the hierarchical representations of CNNs
make intermediate semantic learning in convolutional lay-
ers possible. Specifically, instead of only forcing a consis-
tency in the semantic space of global features, we can also
add the consistency constraints on the intermediate regional
features. This additional constraint encourages the model to

consider the regional semantics into consideration. Even-
tually, this design is expected to produce more robust and
better global semantics.

3.2. Learning Objectives

As shown in Figure 2, our model consists of two learn-
ing objectives. The first learning objective, also defined as
global objective, is to learn the semantic embeddings us-
ing the feature representations of the whole images as well
as the whole sentences. Currently, margin-based ranking
loss, also known as hinge ranking loss, has been widely
deployed to guide the learning of visual and textual se-
mantics [0, 19, 15]. This objective maintains the seman-
tic state, which attempts to pull together the matching pairs
and separate the mismatching pairs. To achieve this goal,
it tries to assure that the similarity between each matching
pair (v;, s;) is larger than the similarities between any mis-
matching pairs (v;, s;) or (vk, s;) (i # j,i # k) by a margin
a. Otherwise, the model will be penalized by a loss com-
puted as follows

ZZ (a— f(vi,85) + f(vi,s5))

)
+ ZZ(a — f(vi,si) + f(v,s:)),

where « is the margin, v; and s;, in this studied problem,
are the global representations for the ¢-th image and i-th
sentence respectively, and f(-,-) is the similarity function
between two vectors. Here we use the same settings as [19],
where f(-,-) is the cosine similarity function.

Following this definition, we introduce the second objec-
tive function, intermediate objective. Indeed, direct applica-
tion of the loss in Eqn.(1) to convolutional features could be
problematic. The first difficulty comes from the dimension-
ality of intermediate convolutional features. Usually, they
have high dimensions, e.g. 2D convolutional features has
three dimensions (f x h x w, f is number of filters, i and
w are the height and width respectively). A possible so-
lution is to flatten the convolutional features into a vector.
However, this may lead to very high dimensionality of the
feature space, which makes the local semantics difficult to
learn. Second, the main motivation of this local objective
function is to help the learning of global semantics. This
implies that the global semantic embeddings are supposed
to participate in the design of this local loss.

From the above discussions, we design the following
computing mechanism, which intends to remedy the above
discussed issues. The global visual features v € R? and
textual features s € R will serve as reference features for
intermediate loss computation'. Let [, € RfvXhvXwv apd

1v; and s; are features for the i-th image and sentence pair. However,

to keep it concise, we drop the subindex ¢ if no confusion arises.
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Figure 2. Framework of the proposed convolutional semantic embedding model. There are two objectives (in light shade area), the global
and the intermediate objective. In the top, we learn the global semantic embedding space for visual and textual modalities. Both modalities
are processed by Convolutional Neural Networks to obtain the global visual and textual representations. Meanwhile, the intermediate

objective is designed to assist the convergence of the global semantics.

ls € Rfsxhsxws denote the intermediate convolutional fea-
tures for image and text respectively. We employ a linear
model to map the local features [, into a space with the
same dimensionality as the global features.

l;) = T(lv)vvv + bva (2)

where T'(1,,)) € R(w>xwo)Xfv g 3 reshape operation, W, €
Rf**? and b, € R are the learnable parameters. Now,
I/ € Rhwxwo)xd hecomes the new local features on a total
of h, x w, local regions [33]. Instantly, we are able to
compute the relevance between these local features and the
global textual feature s as follows

a, = softmax(l)s). 3)

Then, we manage to compute the contextual visual features
as a weighted sum of the mapped local visual features

co =Y auilly, ). @)

The textual context cs can be computed in a similar ap-
proach.

The above computational scheme, to some extent, solves
the issues of using local convolutional features to guide the
semantic learning. In addition, since the role of this inter-
mediate loss is to assist the global semantic learning, the
local loss of the i-th image and sentence pair is only ac-
tivated when its global loss defined in Eqn.(1) is positive.
Given the context vector ¢, and c,, we define the local loss

in a similar way to the global loss in Eqn.(1) as follows

Z I(4) Z (7 = F(uir5i) + F(Coir55))

5
ZI(Z) Z (v = flvi, csi) + f(v5,¢51)) -

J

Again, v is the margin and f(-,-) is the cosine similarity
function between two vectors and I(7) is an indicator func-
tion as follows

I(i) = (6)

1 if global loss for the i-th pair is positive,
0 otherwise.

3.3. Convolutional Neural Networks for Semantics

In this work, we employ the recently proposed
ResNet [10] as image representation while designing a
novel Convolutional Neural Network for text semantic
learning.

As shown in Figure 3, the inputs are the words of sen-
tences in sequential order, where each word is embedded
into a feature space with dimension D. Following the
design in [16], the word embeddings are initialized using
pre-trained word2vec model on Google News corpus [25].
Next, we include four one dimensional convolutional lay-
ers with different kernel sizes to capture semantics of dif-
ferent n-grams. The concatenation of their outputs pro-
duces the inputs for the following convolutional highway
layers [29], which have also been employed for language
modeling [18]. In each convolutional highway network, the
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Figure 3. The proposed Convolutional Neural Network architecture for text representation learning. It consists of several convolutional
layers with different kernel sizes and several highway network layers for hierarchical text representation learning.

inputs are firstly convolved with a one dimensional convo-
lutional neural network. Then, given input z, the output z
of the highway network is computed as

t = o(Convid(x,k)) 7
t* Convid(z,k) + (1 — 1) xz (8)

z

where o (-) is the sigmoid function and Conv1d is a one di-
mensional convolutional operator with kernel size k, left
zero padding of size k — 1, and stride of size 1. This de-
sign guarantees that the convolved outputs have the same
dimensionality as the inputs.

Since the kernel size of the convolutional dimensionality
is k, the model is expected to cover an additional (k —1) in-
put words in each added highway network layer. Moreover,
with the mechanism of carry gate in Eqn.(8), the model
can automatically decide how much to keep from previ-
ous context z and how much to add from current context
Convild(zx, k). We append a Max-Pooling layer, which op-
erates on the last dimension of the outputs from the last
highway network, to generate the global semantic features
for the input sentence {wy, wa, ..., wr}.

4. Experiments

We evaluate the proposed model on two benchmark
datasets on semantic embedding learning, Flickr30K and
MS-COCO. Both datasets contain images collected from
Flickr (https://www.flickr.com). Each image has
about 5 sentences written by different Amazon Mechani-
cal Turkers. The evaluation has two tasks: image retrieval
and sentence retrieval. Public splits of training, testing and

validating for both datasets are available online (https:
//github.com/karpathy/neuraltalk). We use
these splits to train our model to make fair comparisons with
other state-of-the-art models.

4.1. Implementation Details

We implement the proposed model using PyTorch
(http://pytorch.orqg). As discussed in Section 3.3,
we use the pre-trained ResNet [10] on ImageNet for visual
feature extraction. For the text, we use the proposed text
CNN and initialize the word embeddings using pre-trained
Word2Vec [25] model on GoogleNews corpus. In both vi-
sual and textual CNN, we use the outputs of the second to
the last convolutional layer to represent the local regional
features. On one hand, this convolutional layer has a larger
coverage context in both images and sentences. On the
other hand, the last convolutional layer provides the free-
dom for global semantic learning.

We set the global semantic embedding size to 1024. The
margin « in global loss (Eqn.(1)) is set to 0.5. Meanwhile,
for the local objective, we only intend to make sure that the
computed context of matching pairs should have a larger
score than unmatched pairs. Thus we set v (Eqn.(5)) to zero.

For the pre-trained ResNet, only the last two convolu-
tional layers for local and global feature extraction are fine-
tuned together with the text CNN. The rest layers of the
ResNet are freezed without fine-tuning. For the proposed
text CNN architecture, we have four one dimensional con-
volutional layers with kernel sizes one, three, five and seven.
We have three convolutional highway network layers, with
the same kernel size of three. The whole network is trained
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Model Sentence Retrieval Image Retrieval Sum
R@l R@5 RIO0 Medianr | R@l R@5 R@10 Medianr
1K testing split

m-CNN (Ens) [24] 428 73.1 84.1 3 32.6 68.6 82.8 3 384
Order-embeddings [30] | 46.7 - 88.9 2 37.9 - 85.9 2 -
DSPE [31] 50.1  79.7 89.2 - 39.6 752 86.9 - 420.7
SM-LSTM [14] 524  81.7 90.8 1 38.6 734 84.6 2 421.5
SM-LSTM (Ens) [14] 532 831 915 1 40.7  75.8 87.4 2 431.8
2WayNet [5] 55.8 752 - - 39.7 633 - -

RRF-Net [23] 564 853 915 - 439  78.1 88.6 - 443.8
CSE (Ours) 563 844 922 1 457 812 90.6 2 450.4
5K testing split

Order-embeddings [30] | 23.3 - 65.0 5.0 18.0 - 57.6 7.0 -
CSE (ours) 279 571 704 4 222 502 644 5 292.2

Table 1. Evaluation results on MS-COCO testing split. CSE is the performance of the proposed model with the intermediate loss.

using Adam optimization algorithm with a learning rate of
0.001. The mini-batch size is 128 and both local and global
loss are computed within each mini-batch. During the test-
ing stage, we compute the Top-K (K = 1,5, 10) recall for
both image and sentence retrieval tasks.

4.2. Performance on MS-COCO Dataset

MS-COCO has a total of 82,783 training images and
40, 504 validating images. We train our model on the train-
ing split. We do not include any validation images to aug-
ment the training dataset. The online public validating split
is used to select the model and the performance on the test-
ing split is reported for comparisons with other approaches.

The performance on MS-COCO dataset is shown in Ta-
ble 1. For the 1K testing split, our model shows comparable
performance with the recent proposed model RRF-Net [23]
on image retrieval task. Both of RRF-Net and the proposed
Convolutional Semantic Embeddings (CSE) demonstrate
significant performance improvements over other state-of-
the-art results. In addition, on the sentence retrieval task,
CSE outperforms all other state-of-the-art models. This
suggests the effectiveness of the proposed text Convolu-
tional Neural Network for textual semantic learning. Over-
all, our model has the best result in terms of sums over all
the recalls on both retrieval tasks. The bottom of Table 1
shows the results of our model on the 5K testing dataset of
MS-COCO. Again, our model shows improved results on
both tasks compared with baseline results.

4.3. Performance on Flickr30K Dataset

Flickr30K has a total of 29,783 training images, 1000
validation images and 1000 testing images. Compared with
MS-COCO, this dataset is quite smaller. However, it is
also widely used to test the performance of different mod-
els with relatively insufficient training data. When training
on this smaller dataset, we use the same settings on MS-

COCO. The performance comparisons of our model with
other state-of-the-art models are summarized in Table 2.

Overall, DAN (ResNet) [26] shows the best retrieval per-
formance than other models. This could be due to the appli-
cation of large image size (448 x 448 compared to 256 x 256
used by other models). Meanwhile, both the recent pro-
posed RRF-Net [30] and CSE outperform other state-of-
the-art baselines on the two sentence retrieval and image re-
trieval tasks. Our model does not show better performance
than RRF-Net on sentence retrieval. However, the proposed
CSE model still shows slightly better performance on the
task of image retrieval. We argue that the performance gap
between ours and RRF-Net may be attributed to the text
part. Different from the visual CNN, which is pre-trained on
the ImageNet dataset, the textual CNN is relatively trained
from scratch. Without sufficient data, the textual CNN can
only learn to encode the sentence to be semantically close
to its matching image. However, it may be difficult to dis-
tinguish between different sentences without seeing suffi-
ciently diverse examples.

On the other hand, the RRF-Net employs the Hybrid
Gaussian-Laplacian Mixture Model (HGLMM) [20]. From
this well-crafted discriminative textual feature extractor,
RRF-Net can produce even better results. More importantly,
our model can be trained end-to-end. Differently, RRF-Net
firstly used HGLMM to produce a 18000-dimensional vec-
tor for each sentence. Then, they apply principal compo-
nent analysis (PCA) to reduce the feature vector to 6000. It
cannot be trained from end-to-end. In addition, this 6000
dimensional features also introduce more parameters (com-
pared to our 1024 dimensional vector).

4.4. Analysis of Intermediate Objective

It is also interesting to investigate the impact of the inter-
mediate loss defined in Eqn.(5). In particular, we train the
network on both datasets with the same settings. However,
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Model Sentence Retrieval Image Retrieval Sum
R@l1 R@5 RI0 Medianr | R@l R@5 R@10 Medianr

m-CNN (Ens) [24] 336 641 749 3 26.2 563 69.6 4 324.7
DSPE [31] 403 689 799 - 29.7  60.1 72.1 - 351
SM-LSTM [14] 424 675 799 2 282 570 684 4 343.4
SM-LSTM (Ens) [14] | 425 719 81.5 2 302 604 723 3 358.7
2WayNet [5] 498 675 - - 36.0 556 - -

RRF-Net [23] 476 774 87.1 - 354 683 799 - 395.7
DAN (ResNet) [26] 55.0 81.8 89.0 1 394 692 79.1 2 413.5
CSE (Ours) 446 743 838 2 369 69.1 79.6 2 388.4

Table 2. Evaluation results on Flickr30K testing split. CSE is the performance of the proposed model with the intermediate loss. Note that

DAN [

this time we turn off the intermediate loss and only optimize
the global loss. The results are summarized in Table 3. In
both datasets, the performance of the model becomes worse
when the intermediate loss is turned off. The differences in
R@1 metric are the largest. This may partially prove that
the intermediate loss can drive the model to converge to a
better local optimum with better retrieval performance.

Dataset Image to Text | Text to Image

R@1 | R@5 | R@1 | R@5
Flickr30K (CSE) 446 | 743 | 369 | 69.1
Flickr30K (w/o inter.) 432 | 73.6 | 357 | 68.2
MS-COCO (CSE) 563 | 844 | 457 | 81.2
MS-COCO (w/ointer.) | 51.6 | 833 | 434 | 79.0

Table 3. Performance comparisons between CSE and CSE without
the intermediate loss.

Meanwhile, since we can compute the context embed-
dings in Eqn.(4), it is possible to use this context vector to
represent each image or sentence for the retrieval task. In
particular, we test the following cases. We use sentence
retrieval as an example to explain the details of different
approaches. Image retrieval is similar and can be easily de-
rived for each case.

e Context In this setting, we use the image context vec-
tor ¢, to retrieve sentences represented by global se-
mantics s.

¢ Early fusion For sentence retrieval, we use (¢, +v)/2
to represent images and use global s to represent sen-
tences.

e Late fusion Assuming f* and f! are the similarities
of sentence s; with global semantics of v, and ¢, re-
spectively, we choose F* = (f* + f! )/2 as the final
similarities and then compute the ranks.

e Best Let 7 and rﬁ be the rank of i-th sentence using
v and ¢, respectively. We choose R* = min(r',r, ).

] uses image size of 448 x 448 instead of 256 x 256 by other models.

This is kind of the upper bound of fusing the two rank-
ing results due to the usage of oracle labels. The pur-
pose of this result is to show the overlaps of top ranks
between the context and the global semantics.

Dataset Image to Text | Text to Image

R@1 | R@5 | R@]l | R@5
Flickr30K (CSE) 446 | 743 | 369 | 69.1
Flickr30K (Context) 369 | 70.7 | 26.6 | 57.5
Flickr30K (Early) 447 | 744 | 37.1 | 69.2
Flickr30K (Late) 447 | 744 | 37.1 69.2
Flickr30K (Best) 54.1 | 81.1 | 435 | 73.6
MS-COCO (CSE) 563 | 844 | 457 | 81.2
MS-COCO (Context) | 41.5 | 78.7 | 355 | 71.7
MS-COCO (Early) 563 | 844 | 457 | 813
MS-COCO (Late) 563 | 844 | 4577 | 813
MS-COCO (Best) 644 | 902 | 555 | 86.8

Table 4. Performance of using local context embeddings for re-
trieval. See the body text for details of each different case.

The fusing results are summarized in Table 4. It is inter-
esting that even though the local objective is only designed
to assist the global semantic learning, we can still obtain
promising retrieval results using the context vector itself
for the task. Meanwhile, both late fusion and early fusion
have almost the same performance with the global seman-
tics. This is expected as the goal of the intermediate loss
is to make predictions consistent with the global semantics.
However, from the “Best” column, in terms of the ranking
positions, the two loss terms are indeed quite different.
Figure 4 also show some examples of the retrieval re-
sults for CSE and CSE Context. For this given example,
we select one image and one of its descriptions for image
retrieval and sentence retrieval respectively. As expected,
CSE gives better results than CSE Context. However, using
the context vector, the top ranked retrieval results are quite
similar to CSE, but with different ranks. More analysis and
inspection between the global and intermediate semantics
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Sentence Retrieval Image Retrieval
Cross-dataset Method R@I R@5 RI0 | R@I R@5 R@I0
- _ RRE-Net[23] | 248 53.0 64.8 | 188 441 585
Train: Flickr30K, Test: MS-COCO =g 246 492 625 191 444 586
_ . RRE-Net[23] | 288 538 664 | 213 427 537
Train: MS-COCO, Test: Flickr30K g 30.6 593 710 | 260 520 643

Table 5. Performance on cross-dataset evaluation.

1. Man riding a motor bike on a dirt road on the countryside.
2. A man with a red helmet on a small moped on a dirt road.

3. A dirt path with a young person on a motor bike rests
to the foreground of a verdant area with a bridge and a
background of cloud-wreathed mountains.

4. A manin ared shirt and a red hat is on a motorcycle on a hill side.

1. A man with a red helmet on a small moped on a dirt road.
2. Onlooker on sidewalk watching group of elephants in city setting.

3. A dirt path with a young person on a motor bike rests to
the foreground of a verdant area with a bridge and a
background of cloud-wreathed mountains.

4. Man riding a motor bike on a dirt road on the countryside.

5. aman looks out into the mountains

5. aman looks out into the mountains

(a) CSE

(b) CSE Context

A manwith a
red helmet on
a small moped
on adirt road.

Query Sentence

) ) @

(3)

(d) CSE Context G @

Figure 4. Examples of image retrieval and sentence retrieval for CSE and CSE Context. For sentence retrieval, blue sentences are the
ground-truth in the top-5 results and red sentences are incorrect. For image retrieval, images with blue dashed box are the ground-truth.

could be an interesting future research topic.
4.5. Cross-dataset Evaluation

Following RFF-Net [23], we also evaluate the perfor-
mance of our models in terms of cross-dataset generaliza-
tion. As shown in Table 5, we employ the model trained on
Flickr30K or MS-COCO to evaluate the testing split of the
other dataset. The performance of the generation is simi-
lar to and positively correlated with the performance in Ta-
ble 1 and Table 2. However, the performance gap between
RRF-Net and CSE becomes smaller for models trained on
Flickr30K. On the contrary, the generability of CSE are
much larger than RRF-Net on the models trained on MS-
COCO, in particular on the image retrieval task. These re-
sults suggest that with sufficient training data, our model
shows better generability than RFF-Net.

5. Conclusions

In this work, we present an end-to-end convolutional
neural network architecture for visual and textual seman-

tic learning. Our work proposed model is inspired by the
multi-level feature representations of Convolutional Neural
Networks (CNNs). In particular, we design a CNN for text
encoding and a simple yet effective intermediate objective
function to assist the global semantic learning. The exper-
imental results indicate that the proposed textual CNN im-
proves the semantics for sentences and has better general-
izability than the state-of-the-art. Meanwhile, the results
on image retrieval suggest that it is effective on encoding
sentences to its matching images. However, there is still
room for improvement in sentence retrieval. More analy-
sis on both intermediate representations and the correlation
between visual CNN and textual CNN is necessary for de-
signing better models.
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