
Joint Cuts and Matching of Partitions in One Graph

Tianshu Yu1, Junchi Yan23(�), Jieyi Zhao4, Baoxin Li1

1Arizona State Univ. 2Shanghai Jiao Tong University 3IBM Research 4Univ. of Texas at Houston

{tianshuy,baoxin.li}@asu.edu, yanjunchi@sjtu.edu.cn (correspondence), jieyi.zhao@uth.tmc.edu

Abstract

As two fundamental problems, graph cuts and graph

matching have been intensively investigated over the

decades, resulting in vast literature in these two topics re-

spectively. However the way of jointly applying and solving

graph cuts and matching receives few attention. In this pa-

per, we first formalize the problem of simultaneously cutting

a graph into two partitions i.e. graph cuts and establish-

ing their correspondence i.e. graph matching. Then we

develop an optimization algorithm by updating matching

and cutting alternatively, provided with theoretical analy-

sis. The efficacy of our algorithm is verified on both syn-

thetic dataset and real-world images containing similar re-

gions or structures.

1. Introduction

Over the past few decades, exploration on graphs has

brought remarkable advances for computer vision. Images

often have strong structural correlation and are modeled as

connected graphs with nodes and edges. While nodes cor-

respond to specific feature points, edges reveal the spatial

relation or interaction between neighboring nodes. In this

sense, graph is capable of encoding the local and global

structural information, and is a natural representation of vi-

sual input. We consider two important tasks associated with

graph structure: graph cuts (GC) and graph matching

(GM). Applications of these tasks can be found in stereo

[25], video synthesis [17], image segmentation [22] (for

graph cut/partition) and object categorization [9], action

recognition [34], and feature matching [26], etc.

Graph cuts. As the name suggests, is a task to cut one

graph into two or more partitions, so as to aggregate the

nodes with higher similarities and separate the ones without.

Conventionally, the edges is associated with flow weights

measuring the transportation capacity between end nodes.

Thus cutting the graph can be casted as finding a collection

of edges, whose end nodes form a bipartite separation such

that the overall transportation on these edges is minimized.

For computer vision, pixels and their neighboring relation

are often regarded as nodes and edges, respectively. In this

fashion, graph cuts is equivalent to grouping the pixels into

two clusters taking into account their appearance and adja-

cency properties. With different weights or transportation

measurements, various objectives are proposed.

Graph matching. It aims to find correspondence among

(sub-)graphs. Both unary and second-order (or higher-

order) affinity are considered. Since graph matching typ-

ically involves structural information beyond unary/point-

wise similarity, it is in general robust against noise and lo-

cal ambiguities. However, compared with linear assignment

with polynomial-time global optimum solvers such as the

Hungarian method [20], graph matching in general involves

quadratic assignment which is the known NP-hard.

This paper is motivated primarily by the interest of ex-

ploring how the above two key tasks on graphs may be

jointly considered so as to attain certain optimality not pos-

sible with each task considered independently. In particu-

lar, there are real applications of image segmentation where

graph cut alone would have difficulty, while graph matching

seems to be a natural part of the problem, and hence a joint

approach is called for.

Fig. 1 illustrates the key potential benefits of such a joint

approach (more explanations in the caption): (balanced)

graph cuts [1] fails to produce correct partition for the im-

age containing two swans, even though the size balance be-

tween the partition is considered. This can be explained

by the fact that GC encourages the clustered points (also

called local connectivity in this paper) to be assigned to the

same partition1. On the other hand, if we enforce exist-

ing graph matching solvers such as reweighed random walk

(RRWM) [6] or our proposed IBGP (a side product of our

main method, see more details in Sect. 4) with a brute-force

modification to make its input compatible with only one in-

put graph, the result would be completely meaningless.

We draw important observation from the above exam-

ple: In many scenarios, separating identical/similar objects

in an image requires a new mechanism to assign two cor-

respondence nodes (e.g., those similar in appearance and

1We follow a traditional setting by using the point distance as the cut

cost whereby the goal is to minimize the overall cut cost.
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Ground-truth partitions and matchings Initial graph cut result Matching with RRWM Matching with IBGP Matching and cut with CutMatch

Figure 1. Comparison of the proposed CutMatch v.s. graph cut and graph matching on image with two swans: a) ground truth matching

and partition; b) graph cuts which aims to minimize the overall cut loss (here defined as node distance) tends to group nearby nodes into

the same partition (two heads are close to each other); c) (modified) graph matching focuses on find similar nodes based the appearance

and local structural similarity while gets completely wrong matchings when the partition is unknown; d) CutMatch combines the best of

the two by considering both local closeness and overall correspondences and thus produce the best results for similar object partition from

a single image; e) Green (red) dashed lines refer to the matchings that agree (disagree) with the ground-truth. Zoom in for better view.

local structure) into two different partitions. This conflicts

with the general assumption of graph cut whereby similar

nodes should be grouped into the same partition. Impor-

tantly, we posit that such a misalignment can be to some

extent alleviated by adopting graph matching as it encour-

ages similar nodes to be assigned into separate partitions by

finding their correspondence. In general, by combining cut

and matching, one task may be facilitated through the extra

information/constraint provided by the other (e.g., nearby

nodes shall be with the same group while two nodes with

similar local structure should be with different partitions),

and thus algorithms may be developed to achieve cut and

matching alternately in reaching a balanced optima. This

inspires us to take a joint approach to achieve the best of the

two worlds. To our best knowledge, this is a new problem

that has not been addressed.

Contribution This paper makes two-fold contributions:

1) a novel model for jointly incorporating and solving graph

cuts and graph matching in a unified framework; 2) a novel

approach for the joint cut and matching problem whose key

component is an effective optimization algorithm named It-

erative Bregman Gradient Projection (IBGP). IBGP is the-

oretically ensured to find a stationary solution. One side-

product of IBGP is its simplified version that can be adapted

as a new approach for standard two-graph matching.

2. Related Work

Graph partitions and cuts Graph partition and cuts

have been a long-standing research topic. The general idea

is to obtain high similarity among nodes within partition and

low across partitions. The minimum weight k-cut problem

aims to divide the graph into k disjoint non-empty parti-

tions such that the cut metric is minimized, with no balance

constraint enforced. As shown in [12], this problem can

be solved optimally in O(nk2

) when k is given. Without

knowing k, the problem becomes NP-complete. When the

(roughly) equal size constraint is involved, early work have

proved it is NP-complete. Extended theoretical study is pre-

sented in [1]. To limit the scope, we focus in this paper on

two-cut partition and forgo a more generalized treatment of

(relaxed) k-cut problem for future study.

Apart from the above general theoretical studies, more

efficient algorithms are devised in practice. To the computer

vision community, graph cut based approaches are popular

due to their empirically observed promising performance as

well as solid theoretical foundations [16].

Graph matching Graph matching is mostly considered

in the two-graph setting. As the problem can in general be

formulated by quadratic assignment which is NP-hard, ap-

proximate solvers [11, 19, 6, 24] are devised with empirical

success. A line of work [21, 32, 31, 4, 23] moves from the

two-graph setting to a collection of graphs. While all these

work assume each graph is known and focus on finding the

node correspondences among graphs. There are also end-

to-end approaches [7, 8] on joint node detection (in their

respective candidate sets) and matching in an iterative fash-

ion. However, none of these work involves graph partition

as they still assume the two graphs are separate in advance.

Another orthogonal area is graph structure learning [3, 5]

whereby the edge weights on each separate graph is learned

to improve the matching accuracy. Readers are referred to

[33] for a comprehensive survey.

Though there have been a large amount of literature on

graph cuts and graph matching, we are unable to identify

any prior work for combing the both lines of research.

3. Problem Formulation

Notations Lower-case bold x and upper-case bold X

represent a vector and a matrix, respectively. Lower-case

letter such as n corresponds to scalar. Specifically xi and

Xij returns the scalar values of i-th element of x and el-

ement (i, j) of X, respectively. Calligraphic letters G and

E represent set of nodes and edges. R and S
+ denote the

real-number domain and n-th order non-negative symmet-

ric matrices. Function K = diag(x) spans a vector into a

matrix such that Kij = xi if i = j, and Kij = 0 otherwise.

Denote I and O (0) the identity matrix and all-zeros matrix

(vector), respectively. [·]+ is the element-wise ramp func-

tion, which keeps the input if it is positive, and 0 otherwise.

Preliminaries on graph cuts Consider graph G associ-

ated with weight matrix W ∈ R
n×n, where n is the number

of nodes in the graph and Wij corresponds to the weight
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(similarity) assigned to edge (i, j) ∈ E . Graph cuts amounts

to finding binary partition {Pi}i∈{1,2} with P1 ∪ P2 = N
and P1 ∩ P2 = ∅, such that the energy

∑
i∈P1,j∈P2

Wij is

minimized. By introducing variable y ∈ {−1, 1}n as indi-

cation vector, such that yi = −1 if i ∈ P1 and yi = 1
for i ∈ P2, this problem can be casted as minimizing∑

i,j Wij(yi − yj)
2 [22]. This energy function encour-

ages the node pair (i, j) belonging to the same partition if

the corresponding edge weight is large.

Optimizing this energy is NP-hard. Hence continuous re-
laxation is often adopted by letting y ∈ [−1, 1]n. A popular
reformulation of this problem in the context of spectral the-
ory is yTLgy =

∑
i,j Wij(yi−yj)

2, where Lg = D−W

and D = diag(
∑

i Wi) [22]. Here Lg is conventionally
called graph Laplacian in terms of weight W. This refor-
mulation yields the following problem:

min
y

yTLgy

yTy
(1)

where the imposed normalization ‖y‖22 = 1 is encoded into

the objective by dividing the denominator yTy. Graph cuts

based methods such as Ratio Cut [30] and NCut (normal-

ized cut) [22] are popular solvers to this problem, which are

devised based on the Rayleigh-Ritz theorem [27].

Adapting standard graph matching to one input
graph setting Standard, namely conventional graph match-
ing (GM) usually involves two given graphs for establish-
ing their node correspondence. In this paper, we consider a
more challenging case aiming to find matching between two
implicit partitions with equal size m from a whole graph
of size n = 2m2. Consider a graph G = 〈N , E〉 with
n = 2m nodes, where N and E are the nodes and edges, re-
spectively. We establish the node-to-node correspondences
within this graph using a matrix X ∈ {0, 1}n×n, where
Xij = 1 implies there is a matching between node i and
j, and Xij = 0 otherwise. We set Xii = 0 by eliminating
the matching feasibility between a node i and itself. Given

matrix A ∈ R
n2×n2

encoding the first (on diagonal) and
second order (off diagonal) affinity, graph matching can be
formulated as finding binary solution to maximize the over-
all score vec(X)TAvec(X) [33], where vec(X) is the vec-
torized replica of X. This problem, however, is notoriously
NP-hard with combinatorial complexity. In line with stan-
dard graph matching methods, we relax X into the continu-
ous interval [0, 1] and derive the following model:

max
X

vec (X)T Avec (X)

s.t.
∑

i

Xij = 1,
∑

j

Xij = 1
T
,Xii = 0,X ∈ S

+ (2)

where 1 is a vector with all 1 values. The first two con-

straints, ensuring X to be doubly stochastic, indicate one-

2We use the term ‘implicit’ to denote the partitions are unknown before

matching, and leave the more ill-posed and challenging case of unequal

sizes of partitions and matching for future work.

to-one matching in line with the widely used (relaxed) for-

mulation for two-graph matching [6].

In fact, matching two partitions from one input graph

is more challenging compared with standard two-graph

matching: i) there are additional constraints i.e. Xii = 0,

X ∈ S
+ as the model seeks the matching between two parti-

tions from a single input graph; ii) the involved variables in

Eq. 2 for single graph’s partition matching are of larger size.

In fact, when the two partitions are given for standard two-

graph matching, the affinity matrix and matching matrix be-

come Astandard
gm ∈ R

m2×m2

and Xstandard
gm ∈ {0, 1}m×m

for n = 2m. Hence the new problem cannot be addressed

by existing graph matching solvers e.g. [11, 6, 19].

Joint cuts and partition matching in one graph Our
model aims to unify cut and matching, to cut a graph into
two components and establish their correspondence simul-
taneously. As discussed in Section 1 our method is based
on the observation that both closeness (for graph cuts) and
correspondence (for graph matching), no matter mea-
sured by appearance or local structure, shall be consid-
ered to find meaningful partitions in particular scenarios,
e.g. finding identical objects/structures from an input im-
age. Specifically we assume if Xij is large for matching,
then partition yi 	= yj is more likely to be true. Similar
to the graph cuts objective form, the above discussion can
be quantified by

∑
i,j Xij(yi − yj)

2. Moreover the doubly

stochastic property guarantees that
∑

i Xij = 1 is constant
during iterative optimization. Note while graph cuts seeks
a minimizer, this term is to be maximized. Hence we must
have the Laplacian of matching I−X, and the coupled en-
ergy measuring how much a matching and partition agree
with each other becomes:

y
T (I−X)y (3)

In summary, adding up Eq. (1), (2), (3) and letting x =
vec(X) for short, we have the joint objective:

max
X,y

x
T
Ax− λ1y

T
L

g
y + λ2y

T (I−X)y (4)

s.t.
∑

i

Xij = 1,
∑

j

Xij = 1
T
,Xii = 0,X ∈ S

+
, ‖y‖22 = 1

where λ1 and λ2 balance the cut energy and strength of cou-

pling, respectively. Denote X the set of variables satisfying

the four constraints in Eq. (4). Though Normalized Cut

[22] can produce more balanced partitions, it is not suitable

in our case. This is because Laplacian λ2(I−X)−λ1L
g is

not necessarily positive semidefinite. Thus the normaliza-

tion matrix may have negative diagonal elements.

4. Proposed Solver

We devise an optimization procedure which involves up-

dating graph cuts and matching alternatively.
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Initialization There are two variables for initialization:

Xinit and yinit. ii) For initial cut yinit, it is obtained by per-

forming Rayleigh Quotient over the graph Laplacian; ii) For

initial matching Xinit, firstly we employ on-the-shelf graph

matching solver e.g. Reweighted Random Walk Matching

(RRWM) [6] to obtain the raw matching Xraw ∈ {0, 1}n×n

with respect to the affinity matrix A ∈ R
n2×n2

, then the

symmetry constraint is fulfilled by averaging Xraw with its

transpose: Xraw = X
raw

+X
rawT

2
. As the obtained initial

matching may violate the constraint Xraw
ii = 0 which in-

dicates a convex set, we draw inspiration from the Bregma-

nian Bi-Stochastication algorithm [28] and devise a modi-

fied version to obtain Xinit satisfying Xii = 0. This ver-

sion involves projections onto doubly stochastic set and

Xraw
ii = 0 alternatively. The convexity of both constraint

sets assures the global optima. The modified projection al-

gorithm denoted by P(·) is depicted in Algorithm 1. The

projection is performed regarding with Euclidian distance.

We show how to update y, X alternatively until converge.
Update cuts y Given current matching Xcur, by peeling

off the terms involving y from Eq. (4), we have:

max
y

y
T {λ2(I−X

cur)− λ1(D−W)}y (5)

Optimizing this objective is straightforward. Firstly the

graph Laplacian, which is the second term within the curly

braces, is positive semidefinite by its definition. For the first

term in the curly braces, we notice that as Xcur is a doubly

stochastic matrix with the largest eigenvalue no larger than

1, then I − Xcur must also be positive semidefinite. Thus

solving y yields to calculate the eigenvector corresponding

to the largest non-zero algebraic eigenvalue.

Update matching X One natural idea on updating

matching X is to employ a multiplication-based graph

matching solver [6, 11, 15]. However, this is not suitable for

our case. This fact is caused by the difficulty to encode the

linear part coupling cut and matching yT (I−X)y into the

quadratic term. Instead we resort to gradient-based method

to obtain stationary solution. Different from existing algo-

rithms which update X then project it onto feasible set, our

method explores gradient within the feasible set directly.

The details are described in the following.
First, we compute the partial derivative of E w.r.t. X:

[∇E]ij =
[(

A+A
T
)

x
]

τ(i,j)
− λ2

[

yy
T
]

ij
(6)

where τ(i, j) is a mapping from matrix subscript (i, j) to

its corresponding vector index – elements in two terms on

the right hand side are from vector and matrix respectively.

Note ∇E is ascending gradient without considering con-

straint set X .
Given Xprev obtained in previous iteration, using gradi-

ent ∇E can not guarantee the updated Xcur lying in the fea-
sible convex set X . To address this issue, we develop an

Algorithm 1 Bregmanian Projection with Zero Constraint

Input: Xraw by a standard GM solver e.g. RRWM [6]

1: X = Xraw

2: repeat

3: X ←
[

X+ 11T
−X11T

−11TX

n
+ 11TX11T

n2

]

+

4: Xjj ← 0
5: until Converge

6: return Xinit ← X

Algorithm 2 Iterative Bregman Gradient Projection IBGP

Input: Xprev, yprev, A, ε

1: repeat

2: Compute partial derivative w.r.t. Xprev by Eq. (6)

3: V ← ∇E+∇E
T

2
// remove for standard GM

4: repeat

5: V ← V − 1
n
V11T − 1

n
11TV + 1

n2 11
TV11T

6: Vjj ← 0 // remove for standard GM

7: if solving CutMatch then

8: if Vjk < max{−
X

prev

jk

ε
,−

X
prev

kj

ε
} then

9: Vjk ← max{−
X

prev

jk

ε
,−

X
prev

kj

ε
}

10: end if

11: if Vjk > min{
1−X

prev

jk

ε
,
1−X

prev

kj

ε
} then

12: Vjk ← min{
1−X

prev
jk

ε
,
1−X

prev

kj

ε
}

13: end if

14: else if solving standard GM then

15: if Vjk < −
X

prev

jk

ε
then

16: Vjk ← −
X

prev

jk

ε

17: end if

18: if Vjk >
1−X

prev

jk

ε
then

19: Vjk ←
1−X

prev

jk

ε

20: end if

21: end if

22: until Converge

23: Xprev ← Xprev + εV

24: until Converge

25: return Xcur ← Xprev

objective to find an optimal updating direction:

min
∇X

‖∇X−∇E‖2F

s.t. ∇X1 = 0,∇X = ∇X
T
,∇Xii = 0

X
prev
ij + ε∇Xij ≥ 0,Xprev

ij + ε∇Xij ≤ 1

(7)

where ∇X is the optimal update direction starting from
Xprev, and ǫ > 0 is a pre-defined step length. The con-
vex objective min∇X‖∇X − ∇E‖2F is to find an optimal
ascending direction within the feasible set, which is de-
fined by the constraints in Eq. (7) claiming the updated
Xcur = Xprev + ǫ∇X still falling into X . The verification
of this claim is trivial. To obtain the solution to Eq. (7), we
perform Dykstra Algorithm [10], whereby we first split the
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Algorithm 3 CutMatch

Input: Xinit by Algorithm 1, yinit, A, D, W, λ1, λ2

1: Xcur ← Xinit, ycur ← yinit

2: E ← λ1D+ λ2I

3: // correlate starting point of matching:

4: Xcur
ij ← 0 if sign(yi) = sign(yj)

5: Xcur ← P(Xcur) using Algorithm 1

6: repeat

7: // update matching:

8: Xcur ← argmaxX E according to Algorithm 2

9: Lcur ← λ2 (I−Xcur)− λ1 (D−W)
10: // update cut:

11: y ← argminy
yTLcury

yT y

12: until Converge

13: return Xopt ← Xcur, yopt ← y

constraints into two convex sets C1 and C2:

C1 : ∇X1 = 0,∇X = ∇X
T

C2 : ∇Xii = 0,Xprev

ij + ε∇Xij ≥ 0,Xprev

ij + ε∇Xij ≤ 1

where C1 is a subspace and C2 is a bounded convex set.
By denoting V = ∇X and U = ∇E for short, we first
optimize the objective with constraints in C1:

min
V

‖V −U‖2F , s.t. V1 = 0,V = V
T

(8)

The Lagrangian function of this problem is:

L = Tr(VT
V − 2VT

U+U
T
U)− µ

T
V1− µ

T
V

T
1 (9)

where µ ∈ R
n is the corresponding Lagrangian multi-

plier. There is only one multiplier because V is symmetric.
Taking the partial derivative with respect to V and letting
∂L/∂V = 0, we have:

V = U+
1

2
µ1

T +
1

2
1µ

T
(10)

After right multiplying 1 on both sides and noticing the
constraint V1 = 0 in Eq. (8), we have:

0 = U1+
n

2
µ+

1

2
11

T
µ (11)

Applying Woodbury formula [14] for the inverse, we can
derive a closed form of multiplier:

µ = −
2

n

(

I−
1

2n
11

T

)

U1 (12)

Substituting Eq. (12) back to Eq. (10) we obtain:

V = U−
1

n
U11

T −
1

n
11

T
U+

1

n2
11

T
U11

T
(13)

We then consider the partial objective involving C2:

min
V

‖V −U‖2F

s.t. Vii = 0,Xprev
ij + εVij ≥ 0,Xprev

ij + ε∇Xij ≤ 1
(14)

This problem can be readily solved by letting Vii = 0,
truncating Vij = −X

prev
ij /ǫ if Vij < −X

prev
ij /ǫ and Vij =

(1 − X
prev
ij )/ǫ if Vij > (1 − X

prev
ij )/ǫ. By alternating the

procedure between Eq. (8) and Eq. (14), the optimal di-
rection ∇X can be found. Hence the update rule over X is
(recall V = ∇X by definition):

X
cur = X

prev + ε∇X (15)

Fixing y and repeating the update rule until convergence,

one can reach the stationary X to Problem (4).

We call the above algorithm Iterative Bregman Gradi-

ent Projection (IBGP) as depicted in Algorithm 2. IBGP

can easily adapt to standard graph matching problem (with

or without linear part) by removing constraint ∇Xii = 0
and ∇X = ∇XT from Eq. (7) – fortunately the corre-

sponding update rule is still as Eq. 13. Also IBGP can be

integrated with non-convex optimization frameworks e.g.

convex-concave relaxation [35] and path following [29].

We leave this to our future work. The following proposi-

tion guarantees the convergence of the update strategy.

Proposition 1. The optimal solution ∇Xopt to Eq. (7) must

be a non-decreasing direction.

Proof. As objective 7 is convex, the global optima is reach-

able. First note that matrix O is in the feasible set of 7

as 0 ≤ X
prev
ij ≤ 1. Thus if an optimal solution V is with

Tr(VT∇E) < 0, we must have ‖V−∇E‖2F = Tr(V TV )−
2Tr(VT∇E) + Tr(∇E

T∇E) > 0 + 0 + Tr(∇E
T∇E) =

‖O−∇E‖2F . Then V cannot be optimal. This implies that

for any optimal ∇Xopt we have Tr(∇E
T∇Xopt) ≥ 0, thus

∇Xopt must be a non-decreasing direction. QED.

We summarize Initialization, Update cut and Update

matching in Algorithm 3 which is termed as CutMatch.

Discretization We apply Hungarian method [2] over X

to calculate the discrete solution to graph matching sub-

problem. To obtain the discrete solution to partition, we

simply refer to the sign of each element in y. Rather than

more complicated ways of discretization, we adopt this

easier strategy as we observe that the aforementioned dis-

cretization methods yield high performance in experiments.

Convergence By the four constraints in Eq. (4), X lies

in a closed convex set. Similarly, under the latter three con-

straints, y is in a closed ellipsoid with dimension at most

m − 1, which is also convex. Hence objective in Eq. (4)

should be the upper bounded. The updating rule in Algo-

rithm 3, on the other hand, ensures that the energy E is

non-decreasing at each iteration. Though it is possible that

optimal X and y oscillate, it is not empirically observed.
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Figure 2. Evaluation of the proposed IBGP and peer methods on synthetic data for standard two-graph matching problem.

5. Experiment and Discussion

5.1. Graph matching on synthetic data

Since we have devised a new graph matching solver –

IBGP along with CutMatch (see Algorithm 1), we first test

it on synthetic data by the protocol in [6]. Four popu-

lar graph matching solvers are compared, including grad-

uated assignment (GAGM) [11], integer projection fixed

point (IPFP) [19], reweighed random walk (RRWM) [6] and

spectral matching (SM) [18]. The four peer methods and

IBGP are all initialized with a uniform doubly stochastic

matrix. Various levels of deformation, outlier and density

change are randomly generated and casted to the affinity

matrix. Figure 2 demonstrates the experimental results. In

deformation test, we generate 30 pairs of graphs with 20
nodes, then varying noise from 0 to 0.4 with increment 0.05
is added to the affinity. In outlier test, up to 10 outlier points

by increments 2 are further generated to disturb the match-

ing. In density test, we test the matching performance by

varying density from 0.2 to 1 as well as noise 0.25 and 5 ex-

tra outlier points. IBGP performs competitively compared

to selected algorithms in most settings in deformation and

density tests. Though IBGP is relatively sensitive to outlier,

it has high stability in combinations of various disturbance.

5.2. Joint cut and matching on synthetic data

Dataset We construct the benchmark by randomly gen-

erating synthetic graphs with different types of disturbances

including noise, randomly displacement and feature permu-

tation. For each partition, there are 20 nodes from normal

distribution, thus 40 nodes in total for the final test graph.

Specifically we first generate partition P1 and translate it

to obtain partition P2, while the translation retains over-

lapping γ measuring the horizontal distance between the

most left point of P2 and the most right point of P1. We

further add level σ Gaussian noise to partition P2. Hav-

ing obtained the nodes, we perform Delaunay triangula-

tion [13] to obtain the edges. For an element (ia : jb)
in affinity matrix (for Graph Matching) A, we calculate

it as Aia:jb = exp(−(dij − dab)
2/δ1), where dij is the

Euclidean distance between node i and j. For each corre-

sponding node pair i and j in P1 and P2, respectively, we

assign a randomly generated 128-D feature fi = fj (to sim-

ulate SIFT feature) from normal distribution and further add

level μ of Gaussian noise to fj . ρ level of random permuta-

tion is also performed to disturb the order of the features in

the whole graph. For any node i ∈ P1 ∪ P2, we denote its

2-D location li. Thus similarity matrix (for Graph Cuts)

Wij = exp(−‖fi − fj‖
2
2/δ2) + exp(−‖li − lj‖

2
2/δ3) and

we set δ1 = 0.5, δ2 = 5, δ3 = 0.5 in all tests.

Evaluation metrics We calculate the average Accuracy
for both graph cut and graph matching. For graph cut,

Accuracy represents the portion of correctly clustered

nodes w.r.t. the sum of all nodes. As the final out-

put of cuts is a sign function, thus given a ground-truth

label vector C ∈ {−1, 1}2n and an output label vec-

tor Ccut ∈ {−1, 1}2n, we calculate as Accuracy =
max{number of C=Cout,number of C �=Ccut}

2n
. For graph matching,

Accuracy corresponds to the portion of correctly matched

nodes w.r.t. the sum of all nodes. The metric is also adopted

in real-image test in Section 5.3. Note in the graph cuts ex-

periments, the minimal Accuracy is 0.5.

Results We evaluate the performance of CutMatch by

varying γ, σ, μ and ρ. For each value of parameters, we ran-
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Figure 3. Evaluation of CutMatch and vanilla graph cuts and graph matching solvers on synthetic data for the joint cut and matching task.

domly generate 80 graphs and calculate the average cuts and

matching accuracy. Figure 3 shows the statistical results,

and the first and second columns correspond to the match-

ing and the cuts accuracy, respectively. We also present the

performance with three pairs of λ1 and λ2 values: (200, 50),
(150, 30) and (100, 20). Specifically, Fig. 1 shows an ex-

ample with combined disturbance, where γ = 0.2, σ = 0.1,

μ = 0.3 and ρ = 0.1. Figure 3 presents the raw ac-

curacy by vanilla matching: RRWM, IPFP and IBGP, to-

gether with the raw cuts accuracy with vanilla spectral graph

cuts [22]. One can observe that, with the joint objective,

CutMatch significantly outperforms vanilla cuts and match-

ing algorithms. As well as the performance enhancement,

CutMatch is also robust to all kinds of disturbances. We

also found that matching nodes (RRWM, IPFP and IBGP)

within one graph is extremely sensitive to the initial X. The

CutMatch approach, however, is capable of correlating the

starting points of cuts and matching alternatively in each it-

eration. In all the experiments, we observe that 5 iterations

are sufficient to yield satisfactory performance.

5.3. Joint cut and matching on real images

Dataset We collect 15 images from internet containing

two similar objects with the same category (see supplemen-

tal material for the dataset). For each image, we manually

select 10 to 20 landmark nodes and establish the ground-

truth correspondences. To obtain the connectivity, we first

apply Delaunay triangulation on each partition, and then all

the landmarks. The union of the edges in the three triangu-

lations is regarded as the baseline connectivity. We further

calculate the SIFT feature of each node. The same strategy

on generating affinity A and similarity W is applied. For

generating matrix W, we set λ2 = 2 × 105 and λ3 = 100,

which is to balance the un-normalized SIFT features. Be-

cause we observe that sometimes the deformation contained

in real images is so large and arbitrary that local connectiv-

ity obtained from triangulation changes drastically, we test

the performance under varying edge sampling rate η, where

η = 1 and η = 0 correspond to fully connected and base-

line graphs, respectively. As we believe that real images

already contain natural contaminations (e.g., noises, defor-

mation and outliers), we don’t add extra degradations in this

experiment as in section 5.2. This dataset will be published.

Results To this end, we randomly generate edges corre-

sponding to varying edge density from 0 to 0.2 with step

0.02. For each density value other than 0, 10 graphs are

generated to avoid the bias, and the average performance

is calculated regarding all the graphs. Fig. 4 demonstrates

the cuts and matching results. IBGP, RRWM and raw cuts

are selected one again for comparison. As CutMatch shows

its parametric stability in synthetic test, we fix parame-

ters λ1 = 200 and λ2 = 50. We also let δ1 = 150
and δ2 = 400, 000 to generate affinity and flow in proper

range. As can be seen from Fig. 4, though the task on

real images is challenging, CutMatch is superior to all the

selected counterparts in terms of cuts and matching accu-

racy. In general, matching partitions is relatively more dif-

ficult than cuts, thus needs more concentration in our future

work. Fig. 5 shows some results on real-world images. The

cuts performance is observed to be enhanced by using Cut-

Match. When the connectivity is stable, e.g. in the first

row (for rigid bike), the matching with CutMatch is reliable

and very close to the ground-truth. When objects contain

salient partial deformation, e.g. in the second and the third

row (for deformable human body), CutMatch reaches sig-

nificant matching performance compared to vanilla IBGP

for graph matching. However, when disturbance is severe

as in the last row (more large transformation), the match-

ing will mostly fail. In either case, the performance of raw

IBGP matching is extremely low.

711



(a) Ground-truth: 20/20

(b) Ground-truth: 25/25

(c) Ground-truth: 15/15

(d) Ground-truth: 18/18

(e) Standard cuts: 16/20

(f) Standard cuts: 21/25

(g) Standard cuts: 13/15

(h) Standard cuts: 15/18

(i) Match by IBGP: 3/20

(j) Match by IBGP: 5/25

(k) Match by IBGP: 1/15

(l) Match by IBGP: 0/18

(m) CutMatch-cuts: 19/20

(n) CutMatch-cuts: 25/25

(o) CutMatch-cuts: 15/15

(p) CutMatch-cuts: 15/18

(q) CutMatch-match: 20/20

(r) CutMatch-match: 16/25

(s) CutMatch-match: 7/15

(t) CutMatch-match: 4/18

Figure 5. Results on real-world image by joint CutMatch and vanilla graph cuts or graph matching alone.
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Figure 4. Joint cuts and matching results on real-world images.

Left: CutMatch with different parameter settings (λ1, λ2) =
{(200, 50), (150, 30), (100, 20)} vs. three vanilla graph matching

solver IBGP, RRWM [6], IPFP [19]. Right: CutMatch (λ1, λ2) =
{(200, 50), (150, 30), (100, 20)} vs. vanilla graph cuts [22].

6. Conclusion and Future Work

This paper formulates and presents a solver to the joint

graph cuts and matching problem on a single input graph, to

better account for both the closeness and correspondences

in the presence of two similar/identical objects appearing

in one image. Despite the illustrated potential of CutMatch,

there is space for future work: i) CutMatch can possibly trap

into a local optima. This issue can be possibly addressed

with annealing strategies; ii) the large amount of variables

and gradient-based update scheme involved in MatchCut

makes it currently not scalable for dealing with dense corre-

spondences. While we empirically observe that CutMatch

tends to deliver highly sparse solution X, hence we believe

MatchCut can be accelerated especially considering affinity

A is also sparse; iii) the generalized case: cut graph into k
partitions and establish their correspondence which requires

a nontrivial solver to explore.
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