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Abstract

View-based methods have achieved considerable success

in 3D object recognition tasks. Different from existing view-

based methods pooling the view-wise features, we tackle

this problem from the perspective of patches-to-patches sim-

ilarity measurement. By exploiting the relationship between

polynomial kernel and bilinear pooling, we obtain an ef-

fective 3D object representation by aggregating local con-

volutional features through bilinear pooling. Meanwhile,

we harmonize different components inherited in the bilin-

ear feature to obtain a more discriminative representation.

To achieve an end-to-end trainable framework, we incorpo-

rate the harmonized bilinear pooling as a layer of a net-

work, constituting the proposed Multi-view Harmonized Bi-

linear Network (MHBN). Systematic experiments conducted

on two public benchmark datasets demonstrate the efficacy

of the proposed methods in 3D object recognition.

1. Introduction

Inspired by the success of deep learning in 2D images,

the community has also attempted to exploit the convolu-

tional neural networks for 3D object recognition [34, 29,

22, 24, 15, 1, 18, 27, 23, 25, 16]. These approaches can

be coarsely classfied into three categories according to their

input: 1) view-based methods [29, 1, 15, 32], 2) volume-

based methods [34, 22, 24, 18, 2, 27] and 3) pointset-based

methods [23, 16, 25]. View-based methods project 3D ob-

jects into multiple 2D views, then the classification is con-

ducted using the features from 2D CNNs. Volume-based

approaches apply 3D convolutional neural network directly

on voxelized shapes while pointset-based methods directly

take unordered point sets as input. Among the three cat-

egories, the view-based methods generally outperform the

other two. Even though one volume-based work, VRN En-

semble [2] outperforms existing view-based methods, its

excellent performance is mainly attributed to the model en-

semble and a more advanced base model.

In spite of that the view-base methods [29, 1, 15, 32]

Figure 1. The architecture of the proposed Multi-view Harmonized

Bilinear Network (MHBN).

have already achieved good performance in 3D object

recognition, there are still some drawbacks existing in cur-

rent methods. Multi-view CNN (MVCNN) [29] max-pools

the view-wise feature into a global feature as the represen-

tation of the 3D object. But for each neural node, the max-

pooling operation only retains the maximal activation from

one specific view whereas the non-maximal elements are

ignored, causing the loss of visual information. To enable

each view to contribute to the final representation, an alter-

native solution is to replace max-pooling by sum-pooling.

However, the experiments in [29] shows that the perfor-

mance of sum-pooling is even worse than max-pooling and

there is no explanation about the worse performance of

sum-pooling. Below we investigate the reason.

We defineA as a 3D object and {Ai}ni=1 as features of n
projected views. In the same manner, we define another 3D

object B and {Bj}nj=1. Through sum-pooling, descriptors

of two objects are obtained by A =
∑n

i=1 Ai and B =
∑n

j=1 Bj . We evaluate the discriminative power of sum-

pooled features through similarity measurement:

sim(A,B) = 〈A,B〉 =
n
∑

i=1

n
∑

j=1

〈Ai,Bj〉, (1)

where 〈·, ·〉 denotes the inner-product operation of two vec-

tors. It is easy to observe from above equation that, the

similarity between two sum-pooled global features will be

equal to the summation of similarities of every matching

pair (Ai,Bj). Nevertheless, as shown in Figure 2 (a), only
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the similarities between two corresponding views (green

solid arrows) can reliably capture the relevance between two

3D objects whereas the similarities from non-corresponding

views (red dash arrows) are low due to view-point varia-

tions. Nevertheless, given two 3D objects represented by n
views each, there are only n pairs of corresponding views

whereas the other n2−n pairs consist of non-corresponding

views. Thus the pairs of corresponding views can be easily

contaminated by overnumbered non-corresponding pairs.

To mitigate the negative influence from pairs of non-

corresponding views, GIFT [1] utilizes a robust version of

Hausdorff distance defined as

sim(A,B) =
N
∑

i=1

max
j
〈Ai,Bj〉. (2)

As shown in Figure 2 (b), it only counts the best-matched

views and mitigate the negative effect from similarities be-

tween non-corresponding views. Nevertheless, even if two

views from two 3D objects differ significantly in global

appearance due to view-point variations, there might ex-

ist some relevant patches between these two views locally.

Greedily selecting the best-matched view can remove re-

move the distraction from pairs of non-corresponding views

but it also discards the useful information.

In light of the limitations of max-pool MVCNN, sum-

pool MVCNN and GIFT, we propose to utilize patch-level

features rather than view-level features to obtain a more rea-

sonable similarity measure between two 3D objects. As

shown in Figure 2 (c), it has following advantages: 1) it can

exploit the useful pairs consisting of relevant patches from

two non-corresponding views; 2) even in two corresponding

views, it only counts the pairs consisting of relevant patches

and decouple the pairs of irrelevant patches. Meanwhile,

recent studies [6, 21] show the local convolutional feature

from convolutional neural network is a natural and effec-

tive representation for the local patch, making it feasible to

integrate the patch-based method in the network.

To achieve a reasonable patches-to-patches similarity

score, we propose to use polynomial set-to-set similarity,

which adaptively assign higher weights to good matching

pairs and lower weights to bad ones. However, directly

computing polynomial similarity requires comparing each

local patch from one object with all local patches from an-

other object, which is costly given the huge number of local

patches of each object. By exploiting the connection be-

tween bilinear pooling methods and polynomial kernel, we

show the same functionality of polynomial set-to-set simi-

larity can be achieved by bilinear pooling in a more efficient

manner. To be specific, the set-to-set similarity computing

complexity is reduced from O(N2d) to O(d2) (where N is

number of patches for each 3D object and d is the dimension

of local feature) thanks to global bilinear-pooled representa-

tion. To further improve the representation’s discriminative

Object A Object B

(a) sum-pool MVCNN

Object A Object B

(b) GIFT

Object A Object B

(c) patch-based method

Figure 2. sum-pool MVCNN, GIFT and patch-based method.

power, we learn an element-wise Box-Cox [26] transforma-

tion for each singular value from the data. In summary, our

method has following contributions:

• Unlike existing view-based methods pooling view-

wise global features, we tackle the 3D object recog-

nition from the perspective of patches-to-patches sim-

ilarity measurement. Through bilinear pooling local

convolutional features, we efficiently achieve the func-

tionality of polynomial set-to-set similarity.

• We harmonize singular values of the pooled bilinear

features by learning an element-wise Box-Cox trans-

formation on each singular value and obtain a more

discriminative representation for the 3D object.

• We integrate our harmonized bilinear pooling into a

layer of a network to construct our multi-view harmo-

nized bilinear network (Figure 1). It can be trained in

an end-to-end manner for 3D object recognition.

2. Related Work

View-based methods. MVCNN [29] projects a 3D ob-

ject into multiple views, extracts view-wise CNN features

and max-pools them into a global representation of the 3D

object. GIFT [1] also extracts view-wise features but do not

pool them. Instead, it obtains the similarity between two

3D objects by view-wise matching. More recently, Wang et

al. [32] recurrently cluster the views into multiple sets, pool

the features in each set and achieve better performance than

the original MVCNN.

Volume-based methods. Some works [34, 22, 24] ap-

ply 3D convolutional neural networks directly on voxelized

shapes. These methods are constrained by their resolution

owing to data sparsity and costly computation of 3D con-

volution. Generally speaking, the performance of volume-

based methods is not as good as view-based methods. Nev-

ertheless, one of volume-based methods, VRN-Ensemble

[2], achieves better performance than all existing view-

based methods on two public datasets. However, its ex-

cellent performance is attributed to model ensemble and

a more advanced base model architecture. It ensembles 5
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ResNet [8] models and one Inception model whereas most

existing view-based methods are based on a single VGG-M

model. As shown in [2], using a single ResNet model, its

performance is not as good as the view-based methods.

Pointset-based methods. PointNet proposed by Qi et al.

[23] directly takes unordered point sets as inputs, addressing

the sparsity problem encountered in volume-based methods.

In parallel, Klokov et.al [16] proposed Kd-Networks for the

recognition of 3D object represented by 3D point cloud. Re-

cently, Qi et al. [25] improve PointNet by exploiting local

structures induced by the metric space.

Bilinear pooling is first proposed by Tenenbaum and

Freeman [31] to separate style and content. It was tradition-

ally used in pooling hand-crafted features [3]. Recently it is

used in pooling local convolutional features [20, 7, 5, 17] to

take the second-order statistics into consideration, achiev-

ing state-of-the-art performance in fine-grained image clas-

sification. Our work is closely related to bilinear pooling.

Nevetheless, different from works [20, 7, 5, 17] utilizing bi-

linear pooling to obtain the second-order statistics for fine-

grained classification, the bilinear pooling in our work is

to more efficiently achieve the functionality of polynomial

set-to-set similarity measurement. Moreover, we conduct

the harmonizing operation on the pooled bilinear feature to

obtain a more discriminative representation of 3D object.

3. From set-to-set similarity to bilinear pooling
In this section, we bridge the gap between set-to-set sim-

ilarity with bilinear pooling. We define XA = {x1, ...,xN}
as the set of local convolutional features from all the views

of 3D objectA. Each local convolutional feature represents

a local patch from one view of the object A. We define

XB = {y1, ...,yN} as the local convolutional features from

another object B. Straightforwardly, we define two simple

set similarity measurement: sum set-to-set similarity (SSS)

and maximum set-to-set similarity (MSS). SSS(XA,XB)
measures the sum of similarities between each point in XA

and each point in XB :

SSS(XA,XB) =
∑

x∈XA

∑

y∈XB

〈x,y〉. (3)

The SSS is robust to the noise since it takes sum of simi-

larities into consideration. Nevertheless, the good matching

pairs could be easily swamped by the bad ones. In contrast,

MSS(XA,XB) measures the maximum similarity between

points in XA and points in XB :

MSS(XA,XB) = max
x∈XA

max
y∈XB

〈x,y〉. (4)

The MSS only takes the best matching pair into consider-

ation and can effectively suppress the bad influence from

the bad matching pairs. Nevertheless, taking only the best

matching pair makes it throw away much useful information

and sensitive to noise.

Figure 3. By adaptively assigning different weights, good match-

ing pairs are highlighted whereas the bad ones are suppressed.

To keep the essence and goes the dregs, we propose a

more general similarity measurement termed polynomial

set-to-set similarity (PSSp):

PSSp(XA,XB) =
(

∑

x∈XA

∑

y∈XB

〈x,y〉p
)

1

p . (5)

It is not difficult to observe that both SSS and MSS are spe-

cial cases of PSSp. To be specific, SSS corresponds to the

condition when p = 1 whereas MSS corresponds to the

case when p → +∞. By choosing a not too large value

p ∈ (1,+∞), the similarity measurement can simultane-

ously suppress the bad matchings and meanwhile be robust

to the noise. Let us consider a a special case by setting

p = 2 and remove the 1
p

entry in the original PSSp since it

does not change the order of the similarities:

PSS2(XA,XB) =
∑

x∈XA

∑

y∈XB

〈x,y〉2 (6)

By rewriting 〈x,y〉2 = w(x,y)〈x,y〉, it is not difficult to

find that higher weights w(x,y) are assigned to the good

matchings with higher value of 〈x,y〉 whereas the lower

weights are assigned to the bad ones as illustrated in Figure

3. It can be regarded as a soft and robust version of MSS.

In fact, 〈x,y〉2 is a special case of polynomial kernel

K(x,y) = (x⊤y+ c)d when c = 0 and d = 2. It possesses

explicit feature map 〈x,y〉2 = 〈vec(xx⊤), vec(yy⊤)〉
[28]. Thus we can rewrite Eq. (6) by

PSS2(XA,XB) = 〈vec(
∑

x∈XA

xx⊤), vec(
∑

y∈XB

yy⊤)〉,

(7)

where
∑

x∈XA
xx⊤ and

∑

y∈XB
yy⊤ are bilinear-pooled

features of object A and B, respectively. That it, the

PSS2 between two sets of local features are equal to the

inner-product similarity between two bilinear pooled fea-

tures. By exploiting this connection, when computing

PPS2(XA,XB), we avoid exhaustive |XA||XB | times com-

parisons between every pair of d-dimension local features

and just need conduct one time inner product between two

d2-dimension global features. It considerably boosts the

efficiency in both computation and memory. Meanwhile,
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the bilinear-pooled global feature of the 3D object can be

used as the input of any classifier such as SVM and softmax

whereas the GIFT [1] can only rely on nearest-neighbor

classifier due to its dependency to Hausdorff distance.

4. Harmonized bilinear pooling

In the previous section, we have analyzed that bilinear

pooling can effectively suppress the bad matching pairs and

highlight the good ones. Nevertheless, it ignores the prob-

lem caused by components unbalance. The components

unbalance problem has been discussed in burstiness phe-

nomenon [14] where repetitive patterns frequently appear-

ing in the image will dominate the image representation.

Below we investigate the components unbalance problem

inherited in bilinear-pooled features.

Following the previous definition, we obtain the bilinear-

pooled feature of A and B by FA =
∑

x∈XA
xx⊤ and

FB =
∑

y∈XB
yjyj

⊤. Since FA and FB are symmetric,

their left-singular vectors are also the right-singular vectors.

By singular value decomposition (SVD), we obtain

FA = UAΣAU
⊤
A =

d
∑

s=1

σs
Au

s
Au

s
A
⊤

FB = UBΣBU
⊤
B =

d
∑

t=1

σt
Bu

t
Bu

t
B

⊤

(8)

where {us
A}ds=1 are singular vectors and {σt

A}dt=1 are sin-

gular values. The similarity between A and B is

sim(A,B) = 〈vec(FA), vec(FB)〉

=
d

∑

s=1

d
∑

t=1

σs
Aσ

t
B〈us

A,u
t
B〉2.

(9)

For the convenience of illustration, we term a singular vec-

tor as a component. From Eq. (9), we observe that the

similarity between A and B is equal to the weighted sum-

mation of squares of similarities of all pairs of components

(us
A,u

t
B). The weight corresponds to the product of the cor-

responding singular values σs
Aσ

t
B . Nevertheless, the scales

of singular values vary significantly. As illustrated in Fig-

ure 4(a), the largest singular value is above 102 whereas

the smallest singular value is below 10−4. Therefore, the

weight σs
Aσ

t
B from two large singular values will be much

larger than that from two small singular values, leading

to vanishing of contributions from singular vectors corre-

sponding to small singular values. This problem motivates

us to conduct equalization on different singular values to

make every component contribute to the final scores be-

tween two 3D objects in a more democratic manner.
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Figure 4. After Box-Cox transformation, the scales of components

are more balanced.

The Box-Cox transformation [26] is a data stabilization

technique widely used in statistics and economics. Inspired

by its success in stabilizing variance, we utilize it to nor-

malize the singular values to mitigate the problem caused

by burstiness. The Box-Cox transformation is defined as

σ(λ) =

{

σλ
−1
λ

, λ 6= 0

ln(σ), λ = 0
(10)

The condition when λ = 0 is based on the fact that

limλ→0
σλ

−1
λ

= ln(σ). Note that the singular value σ is

non-negative since the bilinear matrix is semi-definite. We

visualize the values of singular values before and after Box-

Cox transformation in Figure 4, in which we set λ = 0.1.

As we can see, after the Box-Cox transformation, the sin-

gular values will be transformed to be at comparable scales.

Nevertheless, how to choose λ is a nontrivial problem and

there is no evidence showing that we should assign the same

λ to different singular values {σk}dk=1. Therefore, we pro-

pose to learn a λk for each σk from the data. To be specific,

we incorporate {λk}dk=1 as the weights of one layer of the

neural network, which can be trained in an end-to-end man-

ner. The readers can refer to next section for details. Below

we summarize the pipeline of the harmonized bilinear pool-

ing in the forward path:

1.
∑N

i=1 x
ixi⊤ → F

2. F→
∑d

k=1 σku
kuk⊤

3.
∑d

k=1
σ
λk
k

−1

λk
ukuk⊤ → H

Relation to existing work There are some existing

works [12, 11] utilizing the matrix-logarithm operation to

map the covariance matrix from Symmetric Postive Definite

(SPD) manifold to the tangent Euclidean space. Interest-

ingly, the matrix-logarithm operation is equivalent to Box-

Cox transformation conducted on the singular values when

λ = 0. But Meanwhile, Lin et al. [19] recently propose
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the improved bilinear pooling which normalizes the singu-

lar values by element-wise signed square-root normaliza-

tion given by sign(σk)
√

|σk|. It is not difficult to observe

that the square root normalization used in [19] corresponds

to the Box-Cox transformation when λ = 1/2. Different

from matrix-logarithm [12, 11] and improved bilinear pool-

ing [19], we adaptively learn the {λk}dk=1 from the data,

possessing higher flexibility and modelling ability.

5. Multi-view harmonized bilinear network

In this section, we will introduce how to incorporate har-

monized bilinear-pooling as a layer of the proposed multi-

view harmonized bilinear network and derive the back-

propagation equations for training the network. As shown

in Figure 5, the proposed harmonized bilinear-pooling layer

is concatenated after the last convolutional layer. All views

share the weights of the convolutional layers. For each view

Vj , the output of the last convolutional layer is a three-

dimension tensor Xj ∈ R
W×H×D. We define a local con-

volutional feature x ∈ R
D as a super-column of tensor gen-

erated from a specific view. Therefore, given a 3D object

represented by M views, we will obtain N = MWH lo-

cal features. We define X = {xi}Ni=1 as the set of all local

features of all views. The proposed harmonized bilinear-

pooling layers consists of 6 sub-layers:

• Early sqrt sub-layer simply normalizes each local

feature by root normalization:

x̄i = sign(xi)⊙
√

|xi|, (11)

where ⊙ represents the element-wise multiplication.√· and | · | represents the element-wise square root

and absolute. We can compute ∂L
∂xi

through back-

propagation by

∂L

∂xi

=
1

2
√

|xi|
⊙ ∂L

∂x̄i

. (12)

• Conv sub-layer is a convolutional layer with 1 × 1 ×
d × D kernel size. It reduces the dimension of local

convolutional features from D to d (d < D) by

x̂i = Wx̄i + b, (13)

where W and b are initialized by PCA. The dimension

reduction serves two purposes: 1) improving the effi-

ciency in training and testing; 2) reducing the number

of parameters to mitigate over-fitting.

• Bilinear pooling sub-layer. X̂ = [x̂1, ..., x̂n] ∈
R

d×N are defined as all the compact local convolu-

tional features after conv sub-layer. The output of the

bilinear pooling sub-layer is computed by

F = X̂X̂⊤. (14)

We can compute ∂L

∂X̂
through back-propagation by

∂L

∂X̂
= (

∂L

∂F
+

∂L

∂F

⊤

)X̂. (15)

• Harmonizing sub-layer first decomposes the bilinear

pooled matrix F by SVD:

F→ UΣU⊤. (16)

The the output of harmonizing layer H is obtained by

H← Uh(Σ)U⊤. (17)

h(Σ) is the matrix containing the harmonized singular

values defined by

h(Σ)(i, j) =

{

σ
λi
i −1

λi
, i = j

0, i 6= j
(18)

where {σk}dk=1 are the singular values of input

bilinear-pooled matrix F. The singular values are har-

monized by coefficients {λk}dk=1, which are the pa-

rameters of the harmonizing layer to be trained. In the

back-propagation phase, ∂L
∂λk

and ∂L
∂F

are computed by

∂L

∂λk

=
λkσ

λk

k ln(σk)− σλk

k + 1

λ2
k

uk
⊤ ∂L

∂H
uk, (19)

∂L

∂F
= U

{(

K⊙
(

U⊤ ∂L

∂U

))

+
( ∂L

∂Σ

)

diag

}

U⊤,

(20)

where uk is the k-th singular vector and the matrix K

is defined as

K(i, j) =

{

1
σj−σi

, i 6= j

0, i = j
(21)

∂L
∂Σ

and ∂L
∂U

are computed by

∂L

∂U
=

{ ∂L

∂H
+

( ∂L

∂H

)⊤}

Uh(Σ),

∂L

∂Σ
= h′(Σ)U⊤ ∂L

∂H
U.

(22)

h(Σ) is defined in Eq. (18) and h′(Σ) is given by

h′(Σ)(i, j) =

{

σλi−1
i , i = j

0, i 6= j
(23)
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Figure 5. The architecture of the proposed Multi-view Harmonized Bilinear Network (MHBN).

The readers can refer to [13] for detailed derivation of

Eq. (20) (21) (22). We derive Eq. (19) here. By plug-

ging Eq. (18) into Eq. (17), we obtain

H =

d
∑

k=1

σλk

k − 1

λk

uku
⊤
k . (24)

Therefore,

∂L

∂λk

= vec(
∂L

∂H
)⊤vec(

∂H

∂λk

)

=
λkσ

λk

k ln(λk)− σλk

k + 1

λ2
k

uk
⊤ ∂L

∂H
uk.

(25)

• Late sqrt sub-layer aims to further suppress the

burstiness and reshape the 2D matrix into a 1D vector:

v = sign(vec(H))⊙
√

vec(|H|). (26)

In back-propagation phase, we can compute ∂L
∂H

by

∂L

∂H
= mat

( 1

2
√

|vec(H)|
⊙ ∂L

∂v

)

, (27)

where mat(·) is the function reshaping the input 1D

vector into 2D matrix.

• ℓ2-norm sub-layer conducts the ℓ2-normalization:

v̂ = v/‖v‖2. (28)

In the back-propagation phase, ∂L
∂v

is computed by

∂L

∂v
=

1

‖v‖2

(∂L

∂v̂
− v̂

(

v̂⊤ ∂L

∂v̂

))

. (29)

6. Experiment

6.1. Implementation Details

We render the 3D mesh models by placing 6 centroid

pointing virtual cameras around the mesh every 60 degrees

with an elevation of 30 degrees from the ground plane. We

adopt VGG-M network [4] as our base model. Despite that

some more advanced networks are proposed such as ResNet

[8] and DenseNet [10], we use VGG-M to make a fair com-

parison with other existing methods which are mostly based

on VGG-M. We remove all the layers of original VGG-M

after conv5 layer and concatenate the proposed harmonized

bilinear pooling layer after conv5. We initialize the weights

of harmonizing sub-layer {λk}dk=1 by 0.5 and the weights

of 1 × 1 × d ×D conv sub-layer by PCA. A dropout layer

is added after harmonized bilinear-pooling layer and we set

the dropout ratio as 0.5. Like MVCNN [29] and RCPCNN

[32], after training, we replace the last layer of MHBN with

a linear SVM as the classifier in the testing phase.

6.2. Datasets and evaluation metrics

ModelNet40 [34] consists of 12311 3D models from 40
categories. The models are split into 9843 training sam-

ples and 2468 testing samples. ModelNet10 [34] consists

of 4899 3D models split into 3991 training samples and 908
testing samples from 10 categories. Following MVCNN-

MultiRes [24], we report both average instance accuracy

and average class accuracy. Average instance accuracy

counts the percentage of the correctly recognized testing

samples among all the testing samples whereas the average

class accuracy is the average accuracy cross all the classes.

6.3. Influence of the number of views

Method 3 vews 6 views 12 views

MVCNN [29] 91.33 92.01 91.49
RCPCNN [32] 92.10 92.22 92.18
MHBN(ours) 93.78 94.12 93.42

Table 1. Influence of the number of views.

We evaluate the effect of the number of views on the av-

erage instance accuracy of our MHBN on the Modelnet40

dataset. Meanwhile, we compare it with that from MVCNN

[29] and recurrent clustering and pooling (RCPCNN) [32].

The accuracies of MVCNN and RCPCNN shown in Table

1 are taken from Table 3 of Wang et al. [32]. As shown
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Figure 6. Influence of local convolutional feature dimension d.

in Table 1, our MHBN consistently outperforms MVCNN

and RCPCNN with a large margin. Note that a perfor-

mance drop is observed when the number of views increases

from 6 to 12 in MVCNN, RCPCNN and ours. This perfor-

mance drop might be attributed to the fact that sampling too

densely will enlarge the joint area of two adjacent views,

making the representation dominated by the overlaps.

6.4. Influence of dimension of local features

The conv sub-layer aims to reduce the dimension of

original local convolutional features from D (512) to d.

We evaluate the influence of d on the performance of our

MHBN. As shown in Figure 6, on the ModelNet40 dataset,

the average instance/class accuracy generally improves as

the dimension of local features d increases. To balance the

efficiency and effectiveness, we set d = 128 on the Model-

Net40 dataset. In contrast, on the ModelNet10 dataset, the

accuracy drops when d > 64. This is owing to that the scale

of ModelNet10 is small and thus a larger d tends to cause

over-fitting. We set d = 64 on the ModelNet10 dataset.

6.5. Influence of early sqrt and late sqrt sublayers

Early sqrt ? X

Late sqrt ? X X

ModelNet40 class ac. 90.00 91.09 92.23

ModelNet40 instance ac. 93.24 93.63 94.12

ModelNet10 class ac. 93.03 93.75 94.91

ModelNet10 instance ac. 93.39 93.94 94.93

Table 2. Influence of early sqrt and late sqrt sublayers.

By removing these two sub-layers, MHBN achieves

93.24 average instance accuracy on ModelNet40 and 93.39
on ModelNet10. After we add on late sqrt sub-layer, it im-

proves average instance accuracy from 93.24 to 93.63 on

ModelNet40. If we add on early sqrt and late sqrt sub-

layers together, the average class/instance accuracy is im-

proved from 90.00/93.24 to 92.19/94.04 on ModelNet40

and from 93.03/93.39 to 94.93/94.93 on ModelNet10.
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Method
ModelNet10 ModelNet40

Class Inst. Class Inst.

Sum pooling 90.24 91.18 85.20 88.04
Max pooling 91.02 91.40 85.65 87.35
Bilinear pooling [20] 88.71 89.76 84.81 87.03
Improved BP [19] 93.11 93.17 91.21 93.23
Log-covariance [12] 93.43 93.50 90.57 93.03
Ours 94.91 94.93 92.23 94.12

Table 3. Comparison with other pooling methods.

6.6. Comparison with other pooling methods

In this section, we compare the performance of the pro-

posed harmonized bilinear-pooling with sum-pooling, max-

pooling, bilinear pooling [20], improved bilinear pooling

[19], log-covariance pooling [12]. Note that, bilinear pool-

ing corresponds to the special case of the proposed har-

monized bilinear pooling by fixing λ = 1, improved bi-

linear pooling is the special case when λ = 1/2 and log-

covariance pooling is the condition when λ = 0. To make

a fair comparison, we also add early sqrt and late sqrt lay-

ers in bilinear pooling, improved bilinear pooling and log-

covariance pooling. As shown in Table 3, ours consis-

tently outperforms all other pooling methods on both Mod-

elNet10 and ModelNet40 datasets. In Figure 7, we visualize

{λk}dk=1 as well as the scales of components before and af-

ter harmonization on the ModelNet10 dataset.

6.7. Additional modality

Note that, all the experiments in the previous sections are

conducted using only RGB images. Analogous to [32, 15],

we evaluate the influence of additional depth modality as

well. For each 3D object, we obtain 6 depth views in addi-

tion to 6 RGB views. We train two MHBNs for RGB views

and depth views separately. We concatenate the output of

the harmonized bilinear-pooling layer of RGB-MHBN and

that of Depth-MHBN as the final feature of a 3D object, and

train a linear SVM as classifier. As shown in Table 5, in-

corporating the additional depth modality indeed improves

average instance/class accuracy.
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Method Views # Modality
ModelNet40 ModelNet10

Instance Class Instance Class

3DShapeNets [34] - Volume - 77.3 - 83.5
VoxNet [22] - Volume - 83.0 - 92.0
3DGAN [33] - Volume - 83.3 - 91.0
Subvolume [24] - Volume 89.2 86.0 - -

VRN [2] - Volume 91.3 - 93.6 -

VRN-Ensemble [2] - Volume 95.5 - 97.1 -

GIFT [1] 64 RGB - 83.1 - 92.4
MVCNN [29] 12 RGB 92.1 89.9 - -

MVCNN-MultiRes [24] 20 3-Resolution RGB 93.8 91.4 - -

Pairwise [15] 12 RGB - 90.7 - 92.8
Pairwise [15] 12 RGB + Dep - 91.1 - 93.2
FusionNet [9] 20 RGB + Volume - 90.8 - 93.1
RCPCNN [32] 12 RGB 92.2 - - -

RCPCNN [32] 12 RGB + Dep + Surf 93.8 - - -

PointNet [23] - Points 89.2 86.2 - -

Kd-Network [16] - Points 91.8 88.5 94.0 93.5
PointNet++ [25] - Points - 90.4 - -

PointNet++ [25] - Points + Normal - 91.7 - -

MHBN (Ours) 6 RGB 94.1 92.2 94.9 94.9

MHBN (Ours) 6 RGB + Dep 94.7 93.1 95.0 95.0

Table 4. Comparison with state-of-the-art methods.

RGB X X

Depth X X

ModelNet40 94.12/92.23 93.52/91.16 94.73/93.06
ModelNet10 94.93/94.91 94.27/93.93 95.04/95.03

Table 5. The influence of additional modality.

6.8. Comparison with stateoftheart methods

We first compare with the volume-based methods [33,

34, 22, 24]. As shown in Table 4, the volume-based meth-

ods are generally not as good as ours and other view-based

methods. One exception is VRN-Ensemble [2], which beats

all the view-based methods and ours. Nevertheless, the

excellent performance of VRN-Ensemble is owing to the

model ensembles and a more advanced base model. It en-

sembles 5 ResNet models and 1 Inception model [30]. Us-

ing a single ResNet model, VRN only achieves 91.3 ac-

curacy on the ModelNet40 dataset, which is worse than

MVCNN and ours using a single simpler VGG-M model.

As to view-based methods, MVCNN [29] achieves

92.1/89.9 average instance/class accuracy using 12 views.

MVCNN-MultiRes [24] improves MVCNN by exploiting 3
resolutions with 20 views in each resolution. It trains 3 net-

works for each resolution and achieves 93.8/91.4 average

instance/class accuracy. In contrast, our MHBN achieves

94.7/93.1 average instance/class accuracy using 6 RGB

views and 6 depth views using a single resolution and

two networks. Three recent works, RCPCNN [32] , Kd-

Network [16] and PointNet++ [25] are compared as well.

As shown in Table 4, our MHBN outperforms them in both

single-modality mode and multi-modality mode.

7. Conclusion

In this paper, we propose multi-view harmonized bilin-

ear network for 3D object recognition. By exploiting the re-

lation between bilinear pooling and the polynomial kernel,

we obtain a compact global representation through bilinear

pooling local convolutional features, which can emphasize

the pairs consisting of relevant patches. Meanwhile, we har-

monize the singular values of the pooled bilinear feature

to generate a more discriminative 3D object representation.

Moreover, we implement our balanced bilinear pooling as a

layer of a network, which is trainable in an end-to-end man-

ner. Systematic experiments conducted on public bench-

mark datasets demonstrate the effectiveness of our method.
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