
NISP: Pruning Networks using Neuron Importance Score Propagation

Ruichi Yu1 Ang Li3∗ Chun-Fu Chen2 Jui-Hsin Lai5† Vlad I. Morariu4∗

Xintong Han1 Mingfei Gao1 Ching-Yung Lin6† Larry S. Davis1

1University of Maryland, College Park 2IBM T. J. Watson Research
3DeepMind 4Adobe Research 5JD.com 6Graphen.ai

{richyu, xintong, mgao, lsd}@umiacs.umd.edu, anglili@google.com

chenrich@us.ibm.com, larry.lai@jd.com, morariu@adobe.com, cylin@graphen.ai

Abstract

To reduce the significant redundancy in deep Convo-

lutional Neural Networks (CNNs), most existing methods

prune neurons by only considering the statistics of an indi-

vidual layer or two consecutive layers (e.g., prune one layer

to minimize the reconstruction error of the next layer), ig-

noring the effect of error propagation in deep networks. In

contrast, we argue that for a pruned network to retain its

predictive power, it is essential to prune neurons in the en-

tire neuron network jointly based on a unified goal: min-

imizing the reconstruction error of important responses in

the “final response layer” (FRL), which is the second-to-

last layer before classification. Specifically, we apply fea-

ture ranking techniques to measure the importance of each

neuron in the FRL, formulate network pruning as a binary

integer optimization problem, and derive a closed-form so-

lution to it for pruning neurons in earlier layers. Based on

our theoretical analysis, we propose the Neuron Importance

Score Propagation (NISP) algorithm to propagate the im-

portance scores of final responses to every neuron in the

network. The CNN is pruned by removing neurons with least

importance, and it is then fine-tuned to recover its predictive

power. NISP is evaluated on several datasets with multiple

CNN models and demonstrated to achieve significant accel-

eration and compression with negligible accuracy loss.

1. Introduction

CNNs require a large number of parameters and high

computational cost in both training and testing phases. Re-

cent studies have investigated the significant redundancy

in deep networks [6] and reduced the number of neurons

and filters [3, 13, 22, 26] by pruning the unimportant ones.

∗This work was done while the author was at the University of Mary-

land.
†This work was done while the author was at IBM.

Top$ranked Neurons/Filters

Images

…

FRL

Feature

Selection

Neuron

Importance

…

Pre$trained Network

Pruned Network

Fi
n
e
tu
n
in
g

NISP

Pre$defined

Pruning ratios

…

Figure 1. We measure the importance of neurons in the final re-

sponse layer (FRL), and derive Neuron Importance Score Propa-

gation (NISP) to propagate the importance to the entire network.

Given a pre-defined pruning ratio per layer, we prune the neu-

rons/filters with lower importance score. We finally fine-tune the

pruned model to recover its predictive accuracy.

However, most current approaches that prune neurons and

filters consider only the statistics of one layer (e.g., prune

neurons with small magnitude of weights [22, 13]), or two

consecutive layers [26] to determine the “importance” of

a neuron. These methods prune the “least important” neu-

rons layer-by-layer either independently [13] or greedily

[22, 26], without considering all neurons in different layers

jointly.

One problem with such methods is that neurons deemed

unimportant in an early layer can, in fact, contribute signifi-

cantly to responses of important neurons in later layers. Our

experiments (see Sec.4.4) reveal that greedy layer-by-layer

pruning leads to significant reconstruction error propaga-

tion, especially in deep networks, which indicates the need

for a global measurement of neuron importance across dif-

ferent layers of a CNN.

To address this problem, we argue that it is essential

for a pruned model to retain the most important responses

9194



of the second-to-last layer before classification—final re-

sponse layer (FRL)—to retrain its predictive power, since

those responses are the direct inputs of the classification

task (which is also suggested by feature selection meth-

ods, e.g., [31]). We define the importance of neurons in

early layers based on a unified goal: minimizing the recon-

struction errors of the responses produced in the FRL. We

first measure the importance of responses in the FRL by

treating them as features and applying some feature rank-

ing techniques (e.g., [31]), then we propagate the impor-

tance of neurons backwards from the FRL to earlier lay-

ers. We prune only nodes which have low propagated im-

portance (i.e., those whose removal does not result in large

propagated error). From a theoretical perspective, we for-

mulate the network pruning problem as a binary integer

programming objective that minimizes the weighted ℓ1 dis-

tance (proportional to the importance scores) between the

original final response and the one produced by a pruned

network. We obtain a closed-form solution to a relaxed ver-

sion of this objective to infer the importance score of ev-

ery neuron in the network. Based on this solution, we de-

rive the Neuron Importance Score Propagation (NISP) al-

gorithm, which computes all importance scores recursively,

using only one feature ranking of the final response layer

and one backward pass through the network, as illustrated

in Fig. 1.

The network is then pruned based on the inferred neuron

importance scores and fine-tuned to recover the predictive

capability lost as a result of pruning. We treat the pruning

ratio per layer as a pre-defined hyper-parameter, which can

be determined based on different needs of specific applica-

tions (e.g., FLOPs, memory and accuracy constraints). The

pruning algorithm is generic, since feature ranking can be

applied to any layer of interest and the importance scores

can still be propagated. In addition, NISP is not hardware

specific. Given a pretrained model, NISP outputs a smaller

network of the same type, which can be deployed on the

hardware devices designed for the original model.

We evaluate our approach on MNIST [21], CIFAR10

[19] and ImageNet [5] using multiple standard CNN ar-

chitectures such as LeNet [21], AlexNet [20], GoogLeNet

[34] and ResNet [14]. Our experiments show that CNNs

pruned by our approach outperform those with the same

structures but which are either trained from scratch or ran-

domly pruned. We demonstrate that our approach outper-

forms magnitude-based and layer-by-layer pruning. A com-

parison of the theoretical reduction of FLOPs and number

of parameters of different methods shows that our method

achieves faster full-network acceleration and compression

with lower accuracy loss, e.g., our approach loses 1.43%

accuracy on Alexnet and reduces FLOPs by 67.85% while

Figurnov et al. [11] loses more (2%) and reduces FLOPs

less (50%). With almost zero accuracy loss on ResNet-56,

we achieve a 43.61% FLOP reduction, significantly higher

than the 27.60% reduction by Li et al. [22].

1.1. Contribution

We introduce a generic network pruning algorithm, for-

mulating the pruning problem as a binary integer optimiza-

tion and deriving a closed-form solution based on final re-

sponse importance. We present NISP to efficiently propa-

gate the importance scores from final responses to all other

neurons. Experiments demonstrate that NISP leads to full-

network acceleration and compression for all types of layers

in a CNN with small accuracy loss.

2. Related Work

There has been recent interest in reducing the redun-

dancy of deep CNNs to achieve acceleration and compres-

sion. In [6] the redundancy in the parameterization of deep

learning models has been studied and demonstrated. Cheng

et al. [2] exploited properties of structured matrices and

used circulant matrices to represent FC layers, reducing

storage cost. Han et al. [13] studied weight sparsity and

compressed CNNs by combining pruning, quantization, and

Huffman coding. Sparsity regularization terms have been

use to learn sparse CNN structure in [23, 35, 33]. Miao et

al. [27] studied network compression based on float data

quantization for the purpose of massive model storage.

To accelerate inference in convolution layers, Jaderberg

et al. [16] constructed a low rank basis of filters that are

rank-1 in the spatial domain by exploiting cross-channel or

filter redundancy. Liu et al. [25] imposed a scaling factor in

the training process and facilitated one channel-level prun-

ing. Figurnov et al. [11] speeded up the convolutional lay-

ers by skipping operations in some spatial positions, which

is based on loop perforation from source code optimization.

In [7, 39, 18], low-rank approximation methods have been

utilized to speed up convolutional layers by decomposing

the weight matrix into low-rank matrices. Molchanov et al.

[28] prune CNNs based on Taylor expansion.

Focusing on compressing the fully connected (FC) lay-

ers, Srinivas et al. [32] pruned neurons that are similar to

each other. Yang et al. [37] applied the “Fastfood” trans-

form to reparameterize the matrix-vector multiplication of

FC layers. Ciresan et al. [3] reduced the parameters by ran-

domly pruning neurons. Chen et al. [1] used a low-cost

hash function to randomly group connection weights into

hash buckets and then fine-tuned the network with back-

propagation. Other studies focused on fixed point computa-

tion rather than exploiting the CNN redundancy [4, 29]. An-

other work studied the fundamental idea about knowledge

distillation [15]. Wu et al. [36] proposed to skip layers for

speeding up inference. Besides the above work which fo-

cuses on network compression, other methods speedup deep

network inference by refining the pipelines of certain tasks

9195



[30, 12, 38, 24]. Our method prunes a pre-trained network

and requires a fast-converging fine-tuning process, rather

than re-training a network from scratch. The exact impor-

tance of neurons in a CNN is very hard to obtain given

the complexity introduced by nonlinearities. Some previ-

ous works [8, 9, 10] approximate it using 2nd-order Taylor

expansion. Our work is a different approximation, based on

the Lipschitz continuity of a neural network.

Most similar to our approach, Li et al. [22] pruned filters

by their weight magnitude. Luo et al. [26] utilized statistics

information computed from the next layer to guide a greedy

layer-by-layer pruning. In contrast, we measure neuron im-

portance based not only on a neuron’s individual weight but

also the properties of the input data and other neurons in

the network. Meanwhile, instead of pruning layer-by-layer

in greedy fashion under the assumption that one layer can

only affect its next layer, which may cause error propaga-

tion, we measure the importance across the entire network

by propagating the importance from the final response layer.

3. Our Approach

An overview of NISP, our proposed algorithm, is illus-

trated in Fig. 1. Given a trained CNN, we first apply a fea-

ture ranking algorithm on the final response layer and ob-

tain the importance score of each neuron. Then, NISP prop-

agates importance scores throughout the network. Finally,

the network is pruned based on the importance scores of

neurons and fine-tuned to recover its accuracy.

3.1. Feature Ranking on the Final Response Layer

Our intuition is that the final responses of a neural net-

work should play key roles in full network pruning since

they are the direct inputs of the classification task. So, in the

first step, we apply feature ranking on the final responses.

It is worth noting that our method can work with any

feature selection technique that scores features w.r.t. their

classification power. We employ the recently introduced fil-

tering method Inf-FS [31] because of its efficiency and ef-

fectiveness on CNN feature selection. Inf-FS utilizes prop-

erties of the power series of matrices to efficiently compute

the importance of a feature with respect to all the other fea-

tures, i.e., it is able to integrate the importance of a feature

over all paths in the affinity graph1.

3.2. Neuron Importance Score Propagation (NISP)

Our goal is to decide which intermediate neurons to

delete, given the importance scores of final responses, so

that the predictive power of the network is maximally re-

tained. We formulate this problem as a binary integer pro-

1Details of the method are introduced in [31] and its codes taken from

https://www.mathworks.com/matlabcentral/fileexchange/

54763-infinite-feature-selection-2016.

… …

…

…

FRL

… …

Input

Backward

0.18 0.98

0.75

0.23

0.62

0.87

0.56

0.71

0.12

0.56

0.91

0.81 0.20

0.11

0.07

0.88

0.71

0.92

0.61

0.79

Figure 2. We propagate the neuron importance from the final re-

sponse layer (FRL) to previous layers, and prune bottom-ranked

neurons (with low importance scores shown in each node) given

a pre-defined pruning ratio per layer in a single pass. The impor-

tance of pruned neurons (with backslash) is not propagated.

gramming (optimization) and provide a closed-form ap-

proximate solution. Based on our theoretical analysis, we

develop the Neuron Importance Score Propagation algo-

rithm to efficiently compute the neuron importance for the

whole network.

3.2.1 Problem Definition

The goal of pruning is to remove neurons while minimiz-

ing accuracy loss. Since model accuracy is dependent on

the final responses, we define our objective as minimizing

the weighted distance between the original final responses

and the final responses after neurons are pruned of a spe-

cific layer. We use bold symbols to represent vectors and

matrices.

Most neural networks can be represented as a nested

function. Thus, we define a network with depth n as a func-

tion F (n) = f (n) ◦ f (n−1) ◦ · · · ◦ f (1). The l-th layer f (l) is

represented using the following general form,

f (l)(x) = σ(l)(w(l)x+ b(l)), (1)

where σ(l) is an activation function and w(l),b(l) are weight

and bias, and f(n) represents the ”final response layer”. Net-

works with branch connections such as the skip connec-

tion in ResNet can be transformed to this representation by

padding weights and merging layers.

We define the neuron importance score as a non-negative

value w.r.t. a neuron, and use sl to represent the vector of

neuron importance scores in the l-th layer. Suppose Nl neu-

rons are to be kept in the l-th layer after pruning; we define

the neuron prune indicator of the l-th layer as a binary vec-

tor s∗l , computed based on neuron importance scores sl such

that s∗l,i = 1 if and only if sl,i is among top Nl values in sl.

3.2.2 Objective Function

The motivation of our objective is that the difference be-

tween the responses produced by the original network and

9196

https://www.mathworks.com/matlabcentral/fileexchange/54763-infinite-feature-selection-2016
https://www.mathworks.com/matlabcentral/fileexchange/54763-infinite-feature-selection-2016


the one produced by the pruned network should be mini-

mized w.r.t. important neurons. Let F (n) be a neural net-

work with n layers. Suppose we have a dataset of M sam-

ples, and each is represented using x
(m)
0 . For the m-th sam-

ple, we use x
(m)
l to represent the response of the l-th layer

(which is the input to the (l + 1)-th layer). The final output

of the network is x
(m)
n and its corresponding non-negative

neuron importance is sn. We define

G(i,j) = f (j) ◦ f (j−1) ◦ · · · ◦ f (i) (2)

as a sub-network of F (n) starting from the i-th layer to the

j-th layer. Our goal is to compute for the l-th layer the neu-

ron prune indicator s∗l so that the influence of pruning the

l-th layer on the important neurons of the final response is

minimized. To accomplish this, we define an optimization

objective w.r.t. the l-th layer neuron prune indicator, i.e.,

argmin
s
∗

l

M∑

m=1

F(s∗l |x
(m)
l , sn;G

(l+1,n)) , (3)

which is accumulated over all samples in the dataset. The

objective function for a single sample is defined as

F(s∗l |x, sn;F ) = 〈 sn, |F (x)− F (s∗l ⊙ x)| 〉 , (4)

where 〈·, ·〉 is dot product, ⊙ is element-wise product and

| · | is element-wise absolute value. The solution to Eq. 3

indicates which neurons should be pruned in an arbitrary

layer.

3.2.3 Solution

The network pruning problem can be formulated as a binary

integer program, finding the optimal neuron prune indicator

in Eq. 3. However, it is hard to obtain efficient analytical so-

lutions by directly optimizing Eq. 3. So, we derive an upper

bound on this objective, and show that a sub-optimal solu-

tion can be obtained by minimizing the upper bound. Inter-

estingly, we find a feasible and efficient formulation for the

importance scores of all neurons based on this sub-optimal

solution.

Recall that the k-th layer is defined as f (k)(x) =
σ(k)(w(k)x+b(k)). We assume the activation function σ(k)

is Lipschitz continuous since it is generally true for most

of the commonly used activations in neural networks such

as Identity, ReLU, sigmoid, tanh, PReLU, etc. Then we

know for any x,y, there exists a constant C
(k)
σ such that

|σ(k)(x)− σ(k)(y)| ≤ C
(k)
σ |x− y|. Then it is easy to see

|f (k)(x)− f (k)(y)| ≤ C(k)
σ |w(k)| · |x− y| , (5)

where | · | is the element-wise absolute value. From Eq. 2,

we see that G(i,j) = f (j) ◦G(i,j−1). Therefore, we have,

|G(i,j)(x)−G(i,j)(y)|

≤ C(j)
σ |w(j)||G(i,j−1)(x)−G(i,j−1)(y)| . (6)

Applying Eq. 5 and Eq. 6 repeatedly, we have, ∀i ≤ j ≤ n,

|G(i,n)(x)−G(i,n)(y)| ≤ C
(i,n)
Σ W(i,n)|x− y|, (7)

where W(i,j) = |w(j)||w(j−1)| · · · |w(i)|, and C
(i,j)
Σ =∏j

k=i C
(k)
σ . Substituting x = x

(m)
l ,y = s∗l ⊙x

(m)
l , i = l+1

into Eq. 7, we have

|G(l+1,n)(x
(m)
l )−G(l+1,n)(s∗l ⊙ x

(m)
l )|

≤ C
(l+1,n)
Σ W(l+1,n)|x

(m)
l − s∗l ⊙ x

(m)
l | . (8)

Since sn is a non-negative vector,

F(s∗l |x
(m)
l , sn;G

(l+1,n))

= 〈sn, |G
(l+1,n)(x

(m)
l )−G(l+1,n)(s∗l ⊙ x

(m)
l )|〉 (9)

≤ 〈sn, C
(l+1,n)
Σ W(l+1,n)|x

(m)
l − s∗l ⊙ x

(m)
l |〉 (10)

= C
(l+1,n)
Σ 〈W(l+1,n)⊺sn, (1− s∗l )⊙ |x

(m)
l |〉 . (11)

Let us define rl = W(l+1,n)⊺sn; then

∑M

m=1 F(s∗l |x
(m)
l , sn;G

(l+1,n))

≤ C
(l+1,n)
Σ

∑M

m=1〈rl, (1− s∗l )⊙ |x
(m)
l |〉 (12)

≤ C
(l+1,n)
Σ

∑M

m=1

∑
i rl,i(1− s∗l,i)|x

(m)
l,i | (13)

= C
(l+1,n)
Σ

∑
i rl,i(1− s∗l,i)

∑M

m=1 |x
(m)
l,i | . (14)

Since |x
(m)
l,i | is bounded, there must exist a constant Cx such

that
∑M

m=1 |x
(m)
l,i | ≤ Cx, ∀i. Thus, we have

M∑

m=1

F(s∗l |x
(m)
l , sn;F

(l+1)) ≤ C
∑

i

rl,i(1− s∗l,i), (15)

where C = C
(l+1,n)
Σ Cx is a constant factor.

Eq. 15 reveals an upper-bound of our objective in Eq. 3.

Thus, we minimize this upper-bound, i.e.,

argmin
s
∗

l

∑

i

rl,i(1− s∗l,i) ⇔ argmax
s
∗

l

∑

i

s∗l,irl,i . (16)

The optimal solution to Eq.16 is sub-optimal with respect

to the original objective in Eq. 3, however it still captures

the importance of neurons. It is easy to see that if we keep

Nx neurons in the l-th layer after pruning, then the solution

to Eq. 16 is that s∗l,i = 1 if and only if rl,i is among the

highest Nx values in rl. According to the definition of neu-

ron prune indicator in Sec. 3.2.1, rl = W(l+1,n)⊺sn is a

feasible solution to the importance scores of the l-th layer

response. This conclusion can be applied to every layer in

the network. Based on this result, we define the neuron im-

portance of a network as follows.

9197



Definition 1 (Neuron importance score). Given a neural

network F (n) containing n layers and the importance score

s(n) of the last layer response, the importance score of the

k-th layer response can be computed as

sk = |w(k+1)|⊺|w(k+2)|⊺ · · · |w(n)|⊺sn, (17)

where w(i) is the weight matrix of the i-th layer.

An important property of neuron importance is that it can

be computed recursively (or propagated) along the network.

Proposition 2 (Neuron importance score propagation). The

importance score of the kth layer response can be propa-

gated from the importance score of the (k + 1)th layer by

sk = |w(k+1)|⊺sk+1, (18)

where w(k+1) is the weight matrix of the (k + 1)th layer.

3.2.4 Algorithm

We propose the Neuron Importance Score Propagation

(NISP) algorithm (shown in Fig. 2) based on Proposition 2.

Initially, we have the importance score of every neuron in

the final response layer of the network. Definition 1 shows

that the importance score of every other layer in the network

is directly correlated with the importance of the final re-

sponse. However, instead of computing the importance ex-

pensively using Definition 1, we see from Eq. 18 that the

importance score of a lower layer can be propagated di-

rectly from the adjacent layer above it. An equivalent form

of Eq. 18 is

sk,j =
∑

i |w
(k+1)
i,j |sk+1,i, (19)

where sk,j is the importance score of the j-th neuron in the

k-th layer response.

We conclude from Eq. 19 that the importance of a neu-

ron is a weighted sum of all the subsequent neurons that are

directly connected to it. This conclusion also applies to nor-

malization, pooling and branch connections in the network

(i.e., a layer is directly connected with multiple layers)2.

The NISP algorithm starts with the importance in FRL and

repeats the propagation (Eq. 19) to obtain the importance

of all neurons in the network with a single backward pass

(Fig. 1).

3.3. Pruning Networks Using NISP

Given target pruning ratios for each layer, we propagate

the importance scores, compute the prune indicator of neu-

rons based on their importance scores and remove neurons

with prune indicator value 0. The importance propagation

and layer pruning happens jointly in a single backward pass,

2See supplementary material for more details and proofs.

and the importance of a pruned neuron is not propagated to

any further low-level layers. For fully connected layers, we

prune each individual neuron. For convolution layers, we

prune a whole channel of neurons together. The importance

score of a channel is computed as the summation of the im-

portance scores of all neurons within this channel2.

4. Experiments

We evaluate our approach on standard datasets with pop-

ular CNN networks. We first compare to random prun-

ing and training-from-scratch baselines to demonstrate the

effectiveness of our method. We then compare to two

other baselines, magnitude-based pruning and layer-by-

layer pruning to highlight the contributions of feature rank-

ing and neuron importance score propagation, respectively.

Finally, we benchmark the pruning results and compare to

existing methods such as [11, 18, 33, 22].

4.1. Experimental Setting

We conduct experiments on three datasets, MNIST [21],

CIFAR10 and ImageNet [5], for the image classification

task. We evaluate using five commonly used CNN archi-

tectures: LeNet [21], Cifar-net3, AlexNet [20], GoogLeNet

[34] and ResNet [14].

All experiments and time benchmarks are obtained us-

ing Caffe [17]. The hyper-parameter of Inf-FS is a loading

coefficient α ∈ [0, 1], which controls the influence of vari-

ance and correlation when measuring the importance. We

conduct PCA accumulated energy analysis (results shown

in the supplementary material) as suggested in [39] to guide

our choice of pruning ratios.

4.2. Comparison with Random Pruning and Train­
from­scratch Baselines

We compare to two baselines: (1) randomly pruning the

pre-trained CNN and then fine-tuning, and (2) training a

small CNN with the same number of neurons/filters per

layer as our pruned model from scratch. We use the same

experimental settings for our method and baselines except

for the initial learning rate. For training from scratch, we set

the initial learning rate to the original one, while for fine-

tuning tasks (both NISP and random pruning), the initial

learning rate is reduced by a factor of 10.

LeNet on MNIST: We prune half of the neurons in FC

layers and half of the filters in both convolution layers in

Fig. 3(a). Our method is denoted as NISPHalf, while the

baseline methods that prune randomly or train from scratch

are denoted as RandomHalf and ScratchHalf. Our method out-

performs the baselines in three aspects. First, for fine-tuning

(after pruning), unlike the baselines, our method has very

small accuracy loss at iteration 0; this implies that it retains

3https://code.google.com/p/cuda-convnet/.

9198

https://code.google.com/p/cuda-convnet/


0.0 0.2 0.4 0.6 0.8 1.0
Iteration 1e4

0.00

0.05

0.10

0.15

0.20

A
c
c
u
ra

c
y
 L

o
ss

NISPHalf

RandomHalf

ScratchHalf

(a) MNIST

0 1 2 3 4 5 6 7
Iteration 1e4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
 L

o
ss

NISPHalf

RandomHalf

ScratchHalf

(b) CIFAR10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Iteration 1e5

0.00

0.05

0.10

0.15

0.20

A
c
c
u
ra

c
y
 L

o
ss

NISPC

NISPCF

RandomC

RandomCF

ScratchC

ScratchCF

(c) ImageNet: AlexNet

0.0 0.5 1.0 1.5 2.0
Iteration 1e6

0.1

0.2

0.3

0.4

A
cc

u
ra

cy
 L

o
ss

NISPno1 ∗1
NISPHalf

Randomno1 ∗1
RandomHalf

Scratchno1 ∗1
ScratchHalf

(d) ImageNet: GoogeLeNet

Figure 3. Learning curves of random pruning and training from scratch baselines and NISP using different CNNs on different datasets. The

pruning ratio of neurons and filters is 50%. Networks pruned by NISP (orange curves) converge the fastest with the lowest accuracy loss.

the most important neurons, pruning only redundant or less

discriminative ones. Second, our method converges much

faster than the baselines. Third, our method has the smallest

accuracy loss after fine-tuning. For LeNet on MNIST, our

method only decreases 0.02% top-1 accuracy with a prun-

ing ratio of 50% as compared to the pre-pruned network.

Cifar-net on CIFAR10: The learning curves are shown

in Fig. 3(b). Similar to the observations from the experiment

for LeNet on MNIST, our method outperforms the baselines

in the same three aspects: the lowest initial loss of accuracy,

the highest convergence speed and the lowest accuracy loss

after fine-tuning. Our method has less than 1% top-1 accu-

racy loss with 50% pruning ratio for each layer.

AlexNet on ImageNet: To demonstrate that our method

works on large and deep CNNs, we replicate experiments on

AlexNet with a pruning ratio of 50% for all convolution lay-

ers and FC layers (denoted as NISPCF when we prune both

conv and FC layers). Considering the importance of FC lay-

ers in AlexNet, we compare one more scenario in which our

approach only prunes half of the filters but without pruning

neurons in FC layers (denoted as NISPC). We reduce the ini-

tial learning rate by a factor of 10, then fine-tune 90 epochs

and report top-5 accuracy loss. Fig. 3(c) shows that for both

cases (pruning both convolution and FC layers and prun-

ing only convolution layers), the advantages we observed on

MNIST and CIFAR10 still hold. Layer-wise computational

reduction analysis that shows the full-network acceleration

can be found in supplementary materials.

GoogLeNet on ImageNet: We denote the reduction lay-

ers in an inception module as “Reduce”, and the 1×1 convo-

lution layer without reduction as “1×1”. We use the quick

solver from Caffe in training. We conduct experiments be-

tween our method and the baselines for 3 pruning strategies:

(Half ) pruning all convolution layers by half; (noReduce)

pruning every convolution layer except for the reduction

layers in inception modules by half; (no1x1 ) pruning every

convolution layer by half except the 1×1 layers in inception

modules. We show results for two of them in Fig. 3(d), and

observe similar patterns to the experiments on other CNN

networks4. For all GoogLeNet experiments, we train/fine-

tune for 60 epochs and report top-5 accuracy loss.

4.3. Feature Selection v.s. Magnitude of Weights

How to define neuron importance is an open problem.

Besides using feature ranking to measure neuron impor-

tance, other methods [22, 26, 13] measure neuron impor-

tance by magnitude of weights. To study the effects of dif-

ferent criteria to determine neuron importance, we conduct

experiments by fixing other parts of NISP and only compar-

ing the pruning results with different measurements of im-

portance: 1) using feature selection method in [31] (NISP-

FS) and 2) considering only magnitude of weights (NISP-

Mag). For Magnitude-based pruning, the importance of a

neuron in the final response layer equals the absolute sum

of all weights connecting the neuron with its previous layer.

To compare only the two metrics of importance, we rank

the importance of neurons in the final response layer based

on the magnitude of their weight values, and propagate their

importance to the lower layers. Finally, we prune and fine-

tune the model in the same way as the NISP method.

For the “NISP-Mag” baseline, we use both AlexNet and

Cifar-net architectures. The learning curves of those base-

lines are shown in Fig. 4. We observe that “NISP-FS” yields

much smaller accuracy loss with the same pruning ratio than

“NISP-Mag”, but “NISP-Mag” still outperforms the ran-

dom pruning and train-from-scratch baselines, which shows

the effectiveness of NISP with different measurement of im-

portance. We employ the feature ranking method proposed

in [31] in NISP.

4.4. NISP v.s. Layer­by­Layer Pruning

To demonstrate the advantage of the NISP’s importance

propagation, we compare with a pruning method that con-

ducts feature ranking on every layer to measure the neuron

importance and prune the unimportant neurons of each layer

independently. All other settings are the same as NISP. We

call this method “Layer-by-Layer” (LbL) pruning.

4See supplementary materials for the results of noReduce.

9199



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Iteration 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
c
c
u
ra

c
y
 L

o
s
s

NISP−FS
NISP−Mag

Random

Scratch

(a) AlexNet on ImageNet

0 1 2 3 4 5 6 7
Iteration 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
c
c
u
ra

c
y
 L

o
ss

NISP−FS
NISP−Mag

Random

Scratch

LbL

(b) Cifar-net on CIFAR10

Figure 4. Comparison with layer-by-layer (LbL) and magnitude

based (Mag) pruning baselines. We prune 50% of neurons and fil-

ters in all layers for both CNNs. NISP-FS outperforms NISP-Mag

and LbL in terms of prediction accuracy.

One challenge for the “LbL” baseline is that the compu-

tational cost of measuring neuron importance on each layer

is huge. So we choose a small CNN structure trained on the

CIFAR10 dataset. Fig. 4(b) shows that although the “LbL”

method outperforms the baselines, it performs much worse

than NISP in terms of the final accuracy loss with the same

pruning ratio, which shows the need for measuring the neu-

ron importance across the entire network using NISP.

To further study the advantage of NISP over layer-by-

layer pruning, we define the Weighted Average Reconstruc-

tion Error (WARE) to measure the change of the important

neurons’ responses on the final response layer after pruning

(without fine-tuning) as:

WARE =

∑M

m=1

∑N

i=1 si ·
|ŷi,m−yi,m|

|yi,m|

M ·N
, (20)

where M and N are the number of samples and number of

retained neurons in the final response layer; si is the im-

portance score; yi,m and ŷi,m is the response on the mth

sample of the ith neuron before/after pruning.

We design different Cifar-net-like CNNs with different

numbers of Conv layers, and apply NISP and LbL prun-

ing with different pruning ratios. We report the WARE on

the retained neurons in the final response layer (“ip1” layer

in Cifar-net-like CNNs) in Fig. 5. We observe that: 1) As

network depth increases, the WARE of the LbL-pruned net-

work dramatically increases, which indicates the error prop-

agation problem of layer-by-layer pruning, especially when

the network is deep, and suggests the need for a global prun-

ing method such as NISP; 2) The WARE of the LbL method

becomes much larger when the pruning ratio is large, but

is more stable when using NISP to prune a network; 3)

NISP methods always reduce WARE on the retained neu-

rons compared to LbL. The small reconstruction errors on

the important neurons in the final response layer obtained by

NISP provides a better initialization for fine-tuning, which

leads to much lower accuracy loss of the pruned network.

2 3 4 5 6 7
Number of Conv Layers

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n 

E
rr

or NISP-25%
LbL-25%
NISP-50%
LbL-50%

Figure 5. Weighted Average Reconstruction Error (WARE) on the

final responses without fine-tuning: we set pruning ratios as 25%

and 50% and evaluate the WARE on the final responses of models

with different depths pruned using NISP or LbL. It is clear that

networks pruned by NISP have the lowest reconstruction errors.

Model Accu.↓% FLOPs↓% Params.↓%

AlexNet NISP-A 1.43 67.85 33.77

on ImageNet Perforated [11] 2.00 50.00 -

NISP-B 0.97 62.69 1.96

Tucker [18] 1.70 62.55 -

NISP-C 0.54 53.70 2.91

Learning [33] 1.20 48.19 -

NISP-D 0.00 40.12 47.09

GoogLeNet NISP 0.21 58.34 33.76

on ImageNet Tucker [18] 0.24 51.50 31.88

ResNet NISP-56 0.03 43.61 42.60

on CIFAR10 56-A [22] -0.065 10.40 9.40

56-B [22] -0.02 27.60 13.70

NISP-110 0.18 43.78 43.25

110-A [22] 0.02 15.90 2.30

110-B [22] 0.23 38.60 32.40

ResNet NISP-34-A 0.28 27.32 27.14

on ImageNet NISP-34-B 0.92 43.76 43.68

Res34 [22] 1.06 24.20 -

NISP-50-A 0.21 27.31 27.12

NISP-50-B 0.89 44.01 43.82

Res50 [26] 0.84 36.79 33.67

Table 1. Compression Benchmark. [Accu.↓%] denotes the abso-

lute accuracy loss; [FLOPs↓%] denotes the reduction of computa-

tions; [Params.↓%] demotes the reduction of parameter numbers;

4.5. Comparison with Existing Methods

We compare our method with existing pruning methods

on AlexNet, GoogLeNet and ResNet, and show results in

Table 1.

We show benchmarks of several pruning strategies in

Table 1, and provide additional results in the supplemen-

tary materials. In Table 1, for AlexNet, the pruning ratio

is 50%. NISP-A denotes pruning all Conv layers; NISP-B

5A negative value here indicates an improved model accuracy.

9200



denotes pruning all Conv layers except for Conv5; NISP-

C denotes pruning all Conv layers except for Conv5 and

Conv4; NISP-D means pruning Conv2, Conv3 and FC6 lay-

ers. For GoogLeNet, we use the similar the pruning ratios

of the 3×3 layers in [18], and we prune 20% of the reduce

layers. Our method is denoted as “NISP”.

To compare theoretical speedup, we report reduction in

the number of multiplication and the number of parameters

following [18] and [11], and denote them as [FLOPs↓%]

and [Params.↓%] in the table. Pruning a CNN is a trade-

off between efficiency and accuracy. We compare different

methods by fixing one metric and comparing the other.

On AlexNet, by achieving smaller accuracy loss (1.43%

ours vs. 2.00% [11]), our method NISP-A manages to re-

duce significantly more FLOPs (67.85%) than the one in

[11] (50%), denoted as “Perforate” in the table; compared

to the method in [33] (denoted as “Learning”), our method

NISP-C achieves much smaller accuracy loss (0.54% ours

vs. 1.20%) and prunes more FLOPs (53.70% ours vs.

48.19%). We manage to achieve 0 accuracy loss and re-

duce over 40% FLOPs and 47.09% parameters (NISP-D).

On GoogLeNet, Our method achieves similar accuracy loss

with larger FLOPs reduction (58.34% vs. 51.50%) Using

ResNet on Cifar10 dataset, with top-1 accuracy loss similar

to [22] (56-A, 56-B. 110-A and 110-B), our method reduces

more FLOPs and parameters.

We also conduct our ResNet experiments on ImageNet

[5]. We train a ResNet-34 and a ResNet-50 for 90 epochs.

For both ResNet models, we prune 15% and 25% of fil-

ters for each layer (denote as “NISP-X-A” and “NISP-X-

B” (“X” indicates the ResNet model) in Table 1), and ob-

tain 27-44% FLOPs and parameter reduction with tiny top-

1 accuracy loss, which shows superior performance when

compared with the state-of-the-art methods [22, 26].

4.6. Additional Analysis

Below, we provide case studies and ablation analysis to

help understand the proposed NISP pruning algorithm.

Similar Predictive Power of Networks Before/After

Pruning. To check whether the pruned network performs

similarly with the original network, we compare the final

classification results of the original AlexNet and the pruned

one with fine-tuning using the ILSVRC2012 validation set.

85.9% of the top 1 predictions of the two networks agree

with each other, and 95.1% top 1 predictions of the pruned

network can be found in the top 5 predictions of the origi-

nal network. The above experiments show that the network

pruned by NISP performs similarly with the original one.

Sensitivity to pruning ratios. The selection of per-layer

pruning ratios given a FLOPs budget is a challenging open

problem with a large search space. Due to time limitation,

we either choose a single pruning ratio for all layers or repli-

cate the pruning ratios of baseline methods (e.g., [18]), and

0.0 0.2 0.4 0.6 0.8 1.0
Iteration 1e4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
c
c
u
ra

c
y
 L

o
s
s

NISPQuarter

NISPTenth

RandomQuarter

RandomTenth

ScratchQuarter

ScratchTenth

(a) LeNet Prune 75% and 90%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Iteration 1e5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
c
c
u
ra

c
y
 L

o
s
s

NISPC

NISPFC

RandomC

RandomFC

ScratchC

ScratchFC

(b) AlexNet Prune 75%

Figure 6. Evaluations for different pruning ratios (a) LeNet: prun-

ing 75% and 90%, (b) AlexNet: pruning 75%. CNNs pruned by

NISP converge fastest with the lowest accuracy loss.

NISP achieves smaller accuracy loss, which shows the ef-

fectiveness of NISP. In practice, if time and GPU resources

permit, one can search the optimal hyper-parameters by try-

ing different pruning ratio combinations on a validation set.

We also evaluate NISP with very large pruning ratios.

We test on pruning ratios of 75% (denoted as Quarter in the

figures) and 90% using LeNet (Fig. 6(a)) (denoted as Tenth)

for both Conv and FC layers. For AlexNet (Fig. 6(b)), we

test on pruning ratios of 75% (Quarter) for both convolu-

tion and FC layers, and we test two pruning strategies: (1)

prune 75% of neurons in FC layers and filters in Conv lay-

ers, denoted as FC; and (2) only prune 75% of the convolu-

tion filters without pruning FC layers, denoted as C.

The above experiments show that NISP still outperforms

all baselines significantly with large pruning ratios, in terms

of both convergence speed and final accuracy.

5. Conclusion

We proposed a generic framework for network compres-

sion and acceleration based on identifying the importance

levels of neurons. Neuron importance scores in the layer

of interest (usually the last layer before classification) are

obtained by feature ranking. We formulated the network

pruning problem as a binary integer program and obtained a

closed-form solution to a relaxed version of the formulation.

We presented the Neuron Importance Score Propagation al-

gorithm that efficiently propagates the importance to every

neuron in the whole network. The network is pruned by re-

moving less important neurons and fine-tuned to retain its

predicative capability. Experiments demonstrated that our

method effectively reduces CNN redundancy and achieves

full-network acceleration and compression.

Acknowledgement

The research was partially supported by the Office of

Naval Research under Grant N000141612713: Visual Com-

mon Sense Reasoning for Multi-agent Activity Prediction

and Recognition.

9201



References

[1] W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing neural networks with the hash-

ing trick”. In Proceedings of the 32nd International

Conference on Machine Learning (ICML-15), pages

2285–2294, 2015.

[2] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choud-

hary, and S. F. Chang. An exploration of parameter re-

dundancy in deep networks with circulant projections.

In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 2857–2865, Dec 2015.

[3] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella,

and J. Schmidhuber. Flexible, high performance con-

volutional neural networks for image classification. In

Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence, IJCAI’11, pages

1237–1242, 2011.

[4] M. Courbariaux, Y. Bengio, and J. David. Training

deep neural networks with low precision multiplica-

tions. In ICLR Workshop, 2015.

[5] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and

L. Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 248–

255, June 2009.

[6] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D.

Freitas. Predicting parameters in deep learning. In

Advances in Neural Information Processing Systems

26 (NIPS), pages 2148–2156. Curran Associates, Inc.,

2013.

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. Lecun, and

R. Fergus. Exploiting linear structure within convolu-

tional networks for efficient evaluation. In Advances

in Neural Information Processing Systems 27 (NIPS),

pages 1269–1277. 2014.

[8] B. H. et al. Second order derivatives for network prun-

ing: Optimal brain surgeon. In NIPS. 1993.

[9] P. M. et al. Pruning convolutional neural net-

works for resource efficient transfer learning. CoRR,

abs/1611.06440, 2016.

[10] Y. L. C. et al. Optimal brain damage. In NIPS, 1990.

[11] M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli.

Perforatedcnns: Acceleration through elimination of

redundant convolutions. In Advances in Neural Infor-

mation Processing Systems 29 (NIPS), pages 947–955.

2016.

[12] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis.

Dynamic zoom-in network for fast object detection in

large images. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[13] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. In In-

ternational Conference on Learning Representations

(ICLR), 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[15] J. D. G. Hinton and O. Vinyals. Distilling the knowl-

edge in a neural network. In NIPS 2014 Deep Learn-

ing Workshop, 2014.

[16] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speed-

ing up convolutional neural networks with low rank

expansions. In British Machine Vision Conference

(BMVC), 2014.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embed-

ding. In ACM International Conference on Multime-

dia, MM’14, pages 675–678, New York, NY, USA,

2014. ACM.

[18] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shi.

Compression of deep convolutional neural networks

for fast and low power mobile applications. In In-

ternational Conference on Learning Representations

(ICLR), 2016.

[19] A. Krizhevsky. Learning multiple layers of features

from tiny images. Technical report, 2009.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In Advances in Neural Information Pro-

cessing Systems 25 (NIPS), pages 1097–1105. Curran

Associates, Inc., 2012.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recogni-

tion. In Intelligent signal processing, pages 306–351.

IEEE Press, 2001.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf. Pruning filters for efficient convnets. In In-

ternational Conference on Learning Representations

(ICLR), 2017.

[23] B. Liu, M. Wang, H. Foroosh, M. Tappen, and

M. Penksy. Sparse convolutional neural networks. In

2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 806–814, June 2015.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,

C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox

detector. 2016. To appear.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through

9202



network slimming. In The IEEE International Con-

ference on Computer Vision (ICCV), Oct 2017.

[26] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level

pruning method for deep neural network compression.

In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[27] H. Miao, A. Li, L. S. Davis, and A. Deshpande. To-

wards unified data and lifecycle management for deep

learning. In 2017 IEEE 33rd International Conference

on Data Engineering (ICDE), pages 571–582, April

2017.

[28] P. Molchanov, S. Tyree, T. Karras, T. Aila, and

J. Kautz. Pruning convolutional neural networks for

resource efficient inference. International Conference

on Learning Representations (ICLR), 2017.

[29] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.

Xnor-net: Imagenet classification using binary convo-

lutional neural networks. In European Conference on

Computer Vision (ECCV), 2016.

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:

Towards real-time object detection with region pro-

posal networks. In C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, editors, Advances

in Neural Information Processing Systems 28, pages

91–99. Curran Associates, Inc., 2015.

[31] G. Roffo, S. Melzi, and M. Cristani. Infinite feature

selection. In 2015 IEEE International Conference on

Computer Vision (ICCV), pages 4202–4210, 2015.

[32] S. Srinivas and R. V. Babu. Data-free parameter prun-

ing for deep neural networks. In Proceedings of the

British Machine Vision Conference (BMVC), pages

31.1–31.12. BMVA Press, 2015.

[33] S. Srinivas and R. V. Babu. Learning the architecture

of deep neural networks. In Proceedings of the British

Machine Vision Conference (BMVC), pages 104.1–

104.11, September 2016.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. In IEEE

Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2015.

[35] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learn-

ing structured sparsity in deep neural networks. In Ad-

vances in Neural Information Processing Systems 29

(NIPS), pages 2074–2082. 2016.

[36] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S.

Davis, K. Grauman, and R. Feris. Blockdrop: Dy-

namic inference paths in residual networks. IEEE

Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018.

[37] Z. Yang, M. Moczulski, M. Denil, N. d. Freitas,

A. Smola, L. Song, and Z. Wang. Deep fried convnets.

In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 1476–1483, Dec 2015.

[38] R. Yu, H. Wang, and L. S. Davis. Remotenet: Effi-

cient relevant motion event detection for large-scale

home surveillance videos. IEEE Winter Conference

on Applications of Computer Vision (WACV), 2018.

[39] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Effi-

cient and accurate approximations of nonlinear convo-

lutional networks. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

9203


