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Abstract

Large-scale 3D point clouds (LS3DPCs) captured by ter-

restrial LiDAR scanners often exhibit reflection artifacts by

glasses, which degrade the performance of related com-

puter vision techniques. In this paper, we propose an ef-

ficient reflection removal algorithm for LS3DPCs. We first

partition the unit sphere into local surface patches which

are then classified into the ordinary patches and the glass

patches according to the number of echo pulses from emit-

ted laser pulses. Then we estimate the glass region of dom-

inant reflection artifacts by measuring the reliability. We

also detect and remove the virtual points using the condi-

tions of the reflection symmetry and the geometric similar-

ity. We test the performance of the proposed algorithm on

LS3DPCs capturing real-world outdoor scenes, and show

that the proposed algorithm estimates valid glass regions

faithfully and removes the virtual points caused by reflec-

tion artifacts successfully.

1. Introduction

We often take glass images, for example, taking photos

of goods through show windows and taking photos of build-

ings with glass curtain walls. In such cases, resulting glass

images include transmitted scenes captured through the

glass as well as undesired scenes reflected on the glass, such

as sky, buildings and trees as shown in Figure 1(a). Reflec-

tion removal has been studied which automatically decom-

poses glass images into transmission scenes and reflected

scenes. A single glass image based technique exploits the

characteristics of reflection images such as gradient spar-

sity [18], relative smoothness [20], ghosting cue [25] and

Laplacian fidelity [3]. Reflection removal techniques based

on multiple glass images employ polarization [17, 24] or

flash [1] to extract different characteristics from multiple

images. Moreover, multiple glass images taken from differ-

ent capturing positions are also used for reflection removal,

where the gradient sparsity [19], motion fields [27] and low-

rank matrix representation are investigated [13].

(a) (b)

(c)

Figure 1: Reflection by glass. (a) Reflection artifact on 2D

image. (b) The principle of reflection in a LiDAR laser

scanner. The black building and tree are real-world objects,

while the gray building denotes a virtual object generated

by reflection. (c) A LS3DPC model where the virtual points

are shown in red and the glass plane is shown in yellow, re-

spectively.

With the advent of high-performance Light Detection

And Ranging (LiDAR) scanners, lots of effort has been

made to develop efficient techniques for processing 3D

point clouds. A real-time LiDAR scanner and stereo cam-

eras were used to generate a test dataset [12] for the applica-

tions of autonomous vehicles, which is used to study object

detection [8, 7] and road detection [6, 7]. Moreover, high-

resolution terrestrial LiDAR scanners provide Large-Scale

3D Point Clouds (LS3DPCs) capturing 360◦ environment
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of 3D real world scene, which are recently used for the re-

search issues of data compression [2] and saliency detec-

tion [26, 28].

LS3DPCs captured by using terrestrial LiDAR scanners

also suffer from the reflection artifacts since many out-

door real-world structures include glasses, e.g., vehicles

and buildings. A LiDAR scanner measures the distances

of target scene by emitting laser pulses and receiving their

echo pulses. Figure 1(b) shows the principle of reflection

caused by LiDAR scanners. It calculates the distance from

the scanner to an object by measuring the time it takes to

emit a laser pulse and receive the echo pulse. A single laser

pulse emitted from the scanner first hits the glass and its

echo pulse is come back to the scanner creating a 3D point

p1 on the glass. Also, penetration and reflection of light

occur simultaneously on the glass. The penetrated laser

pulse hits the tree, a real-world object behind the glass,

and its echo pulse is received at the scanner creating an-

other 3D point p2. On the other hand, the reflected laser

pulse hits the building, a real-world object in front of the

glass, and the scanner receives its echo pulse to create a

virtual 3D point qvirtual at the opposite side of the glass

plane. Consequently, from a single emitted pulse, multiple

echo pulses are generated which generate three different 3D

points. Among the points, p1 and p2 are valid points sam-

pled on real-world objects, but qvirtual locates on a wrong

position in 3D space, i.e., gray building. Such reflection

artifacts occur since the scanner regards a received pulse

is reflected on a real-world object only once. Therefore,

the resulting LS3DPC includes virtual scene which may de-

grade the performance of the related processing techniques

of LS3DPCs. Figure 1(c) shows the obtained LS3DPC cap-

turing a real-world outdoor scene including the scene in Fig-

ure 1(a), where the virtual points of building and tree are

shown in red and the plane of glass is depicted in yellow,

respectively.

To the best of our knowledge, no research has been con-

ducted to remove the reflection artifacts from LS3DPCs. In

this paper, we propose a first reflection removal algorithm

for LS3DPCs. We investigate the capturing mechanism of

terrestrial LiDAR scanner and estimate the glass regions by

modeling the distribution of the number of received echo

pulses. Then we detect a point as a virtual point when it has

a corresponding real point with similar geometric feature at

the opposite side about the glass plane. We perform the ex-

periments on LS3DPC models by capturing real-world out-

door scenes and show that the proposed algorithm removes

the reflection artifacts faithfully.

2. Overview of Proposed Algorithm

We use a 3D terrestrial laser scanner, RIEGL VZ-

400 [22], to acquire LS3DPCs for real-world outdoor scenes

including glasses. In general, glass is highly specular,

Figure 2: Partitioning of the unit sphere into local surface

patches.

and therefore valid 3D points are sampled over a relatively

small area on a glass plane where the directions of emitted

lasers are close to the normal direction of the glass plane.

However, many buildings have coated glass curtain walls

and windows which produce sampled points over relatively

larger areas than uncoated ones. Also, when capturing a

typical real-world scene by LiDAR scanners, while a single

glass plane is located close to the scanner associated with

dominant reflection artifact, the other glass regions yield

small numbers of points with negligible reflection artifacts.

Therefore, in this work, we first estimate a glass plane of

dominant reflection artifact in a captured scene. Then we

detect and remove the virtual points by comparing the fea-

tures between a pair of symmetric points about the glass

plane.

3. Glass Region Estimation

In the research of reflection removal for 2D images, we

usually consider glass images are captured such that the re-

flection occurs over the entire image area. However, LiDAR

scanners capture 360◦ environment of real-world scene, and

therefore, the virtual points associated with glasses are dis-

tributed at local regions in a single LS3DPC model. We

first estimate the glass plane where the dominant reflection

occurs using the characteristics of LiDAR scanning.

3.1. Patch Classification by Point Projection

In general, a single 3D point is created for each laser

pulse, since the light is reflected on a real-world object only

once in most cases. But, as shown in Figure 1(b), a laser

pulse hitting the glass plane may produce more than two

points: one from the penetrated laser pulse and the others

from the reflected pulses on the glass plane. Each laser

pulse is emitted periodically with predefined azimuthal and

polar angular resolutions, ωazimuthal and ωpolar, respec-

tively. By using the measured distance and the associated

azimuthal and polar angles of an emitted laser pulse, the

coordinates of 3D points are computed in the spherical co-

ordinate system. As shown in Figure 2, we consider the unit
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(a)

(b)

(c)

(d)

Figure 3: Glass region estimation. (a) The panorama image

for a target scene. (b) The number of projected points ni.

(c) The posterior probability of p1(ni) of belonging to glass

regions. (d) The reliability map of ρi where dominant glass

regions are highlighted.

sphere with the origin at the scanner location, and partition

the sphere surface into local patches where the blue rectan-

gular area becomes a primitive surface patch which covers

the angular range of ωazimuthal × ωpolar. Then we count a

number of points corresponding to each patch by project-

ing the 3D points onto the surface of the unit sphere, and

we classify the patches into the ordinary patches including

only a single 3D point and the glass patches where two or

more 3D points are projected.

However, a laser scanner acquires the points based on

whisk broom scanning which samples one point at a certain

time instance by mechanically rotating the sensor. Hence, to

reduce the sampling error of points, we employ a larger sur-

face patch covering a wider angular range of mωazimuthal×
mωpolar where m is a positive integer. We set m = 3 em-

pirically as depicted by the red rectangular area in Figure 2,

Figure 4: Histogram of ni’s for the patches with ni > 0 in

‘Engineering Building’ model.

since it is the smallest integer detecting the glass regions

of dominant reflection reliably. We see that each patch is

associated with approximately m2 laser pulses.

Let ni be the number of projected points to the i-th sur-

face patch Si. Figure 3(b) visualizes the distribution of ni’s

associated with the target scene shown in Figure 3(a). We

see that while the ordinary patches usually exhibit ni = m2,

the glass patches tend to have ni > m2 due to multiple echo

pulses by reflection. Also, Figure 4 shows the histogram

of ni’s counted over all the patches having valid projected

points, i.e., ni > 0 on a LS3DPC model in Figure 3. We ob-

serve that there are two strong peaks at ni = 9 and ni = 18.

The first peak at ni = 9 implies that m2 laser pulses pro-

duce the same number of points which is highly probable to

describe the ordinary patches. On the other hand, the sec-

ond peak at ni = 18 is associated with 2m2 pulses yielded

mainly by the glass regions where each pulse generates two

points on average, one from the penetrated laser pulse and

the other from the reflected laser pulse. We also see a weak

peak at ni = 27 associated with 3m2 pulses on average.

3.2. Reliability for Glass Patches

We classify the patches into two categories of ordinary

patches and glass patches by modeling the distribution of

ni using the mixture of K Gaussian distributions [5]. The

density of Gaussian mixture model is given by

f(ni) =

K−1
∑

k=0

λkN (ni|µk, σ
2
k), (1)

where N (ni|µk, σ
2
k) is the k-th Gaussian density with the

mean µk and the variance σ2
k, respectively, and λk is the

mixing coefficient. We set the number of Gaussians to K =
2, one for the ordinary patches and the other for the glass

patches. We introduce a two dimensional binary random

vector z = [z0, z1]
T where zk ∈ {0, 1} and

∑K−1

k=0 zk = 1.

Without loss of generality, we assume that µ0 ≤ µ1, then
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z = [1, 0]T at ordinary patches and z = [0, 1]T at the glass

patches, respectively.

To estimate the parameters µk, σk and λk, we use the

Expectation Maximization (EM) algorithm [9]. For given

randomly initialized parameters µk, σk and λk, the EM al-

gorithm evaluates the posterior probability pk(ni) as

pk(ni) =
λkN (ni|µk, σ

2
k)

∑K−1

j=0 λjN (ni|µj , σ2
j )
. (2)

Then the parameters of µk, σk and λk are updated by us-

ing pk(ni). This process is iteratively applied to yield op-

timal parameters. Figure 3(c) shows the resulting proba-

bility distribution of p1(ni), where we see that the patches

corresponding to the glass regions are assigned relatively

high probabilities. However, the patches corresponding to

the complex scene structures such as trees as shown in far

background also have high probabilities as well, since a

laser pulse may produce multiple echo pulses due to arbi-

trary diffuse reflection. In addition, some small glass re-

gions located far from the scanner are also assigned high

probabilities, but their reflection artifacts are negligible.

Therefore, in order to select only the region on a glass

plane yielding dominant reflection artifact, we compute a

reliability for each patch. Let us define a set of points

C = {ci}, where ci is the closest point to the scanner

among all the projected points to Si. Then, we define the

set Ccandidates ⊆ C as

Ccandidates = {ci|p1(ni) > p0(ni), ci ∈ C}. (3)

Since the points sampled on the dominant glass plane

should have smaller distances from the scanner than

that of the transmission and virtual points, we assume

that Ccandidates consists of the points belonging to the

glass patches and some complex objects. By applying

RANSAC [10] to fit a plane to Ccandidates, we estimate the

glass plane Π. Then we define a reliability ρi for each patch

Si by weighting the probability p1(ni) as

ρi = e−dip1(ni), (4)

where di is the Euclidean distance between Π and ci. If

ci is close to Π, we assign a high reliability to Si. In con-

trary, if ci deviates from Π too much, we assign a low re-

liability to Si. Figure 3(d) shows the resulting reliability

map, where only the dominant and closest glass plane is

highlighted while the high probabilities of p1(ni) associ-

ated with the far and small glass regions, trees and ground

are suppressed.

4. Virtual Point Detection

We detect and remove the virtual points associated with

the glass patches estimated in Section 3. Figure 5 illustrates

Figure 5: Symmetry relation of reflection between a pair of

real point and virtual point.

the situation when reflection occurs on a glass plane, where

the virtual points p and r correspond to the real points p̂ and

r̂. Note that the virtual points are always created at the op-

posite side to the corresponding real points with respect to

the glass plane, i.e., located behind the glass from the scan-

ner. We divide the space of a target scene into Ωfront and

Ωback by taking the glass plane Π as the boundary, where

Ωfront contains the scanner location. Then we detect the

virtual points only within the half space Ωback, since Ωfront

contains the real points only. A point p ∈ Ωback is highly

probable to be a virtual point when 1) it is projected to a

patch with a high reliability and 2) there is a correspond-

ing real point p̂ ∈ Ωfront which has symmetry relation to

p about the glass plane Π, and yields a similar geometric

feature to p.

4.1. Reflection Symmetry

For a given point p ∈ Ωback, we first evaluate a sym-

metry score γsymmetry(p) which measures how an actually

acquired point p̂ ∈ Ωfront is close to the symmetric position

of p ∈ Ωfront. We find the symmetric position of p about

the glass plane Π using the Householder matrix [15], which

describes a linear transformation of reflection about a plane.

The Householder matrix A for a given plane is defined as

A = I − 2nnT , where I is the identity matrix and n is the

unit vector of plane normal. Hence, with the plane equation

ax+ by + cz + d = 0, it is given by

A =









1− 2a2 −2ab −2ac −2ad
−2ab 1− 2b2 −2bc −2bd
−2ac −2bc 1− 2c2 −2cd
0 0 0 1









. (5)

Note that the Householder matrix is orthogonal.

ATA = (I− 2nnT )T (I− 2nnT )

= I− 4nnT + 4nnTnnT = I,
(6)

since nnT is a symmetric matrix and nTn = 1. Similarly,

AAT = I.
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Figure 6: Fast Point Feature Histogram which describes the

three angular variations (α, φ, θ) associated with the two

points pi and pj .

Then we have the relation p̂ = AΠp where AΠ is the

Householder matrix of glass plane Π. The homogeneous

coordinates are used to represent the translation of plane.

We use a k-d tree to find the closest point q ∈ Ωfront to p̂,

and compute

γsymmetry(p) = e−
‖p̂−q‖

β1 , (7)

where ‖p̂− q‖ is the Euclidean distance between p̂ and q.

4.2. Geometric Similarity

The symmetry score γsymmetry(p) may not be sufficient

to detect the virtual points faithfully. For example, as shown

in Figure 5, a real point t ∈ Ωback has a relatively high

score of γsymmetry(t), since we can find another real point

s ∈ Ωfront which yields a small distance d(t̂, s) where

t̂ = AΠt. Therefore, we also evaluate a geometric sim-

ilarity γsimilarity(p) between p and q using a 3D feature

descriptor. Note that the employed 3D feature descriptor

should be reflection invariant, since the two points p and q

are assumed to have the relation of reflection symmetry.

Among many 3D feature descriptors [16, 11, 21], we

use Fast Point Feature Histogram (FPFH) [23]. For a given

query point pi, FPFH computes the three angular variations

of (α, φ, θ) for all the 50 nearest neighboring points pj to

pi in terms of the Euclidean distance, as shown in Figure 6.

The FPFH vector Φ(p) at p is defined as the histogram of

the three angular variations. We prove the reflection invari-

ance of FPFH. Let p̂i = Api and p̂j = Apj be the re-

flected points of pi to pj , respectively. Then, the axes sat-

isfy v̂ = Av, ŵ = Aw, and û = Au. Let us denote the

normals of pi and pj as ni and nj , respectively, then we

also have n̂i = Ani and n̂j = Anj . The angular varia-

tion of α is given by α = 〈v,nj〉. The angular variation

α̂ associated with the two reflected points p̂i and p̂j can be

derived as

α̂ = 〈v̂, n̂j〉 = 〈Av,Anj〉

= (Av)TAnj = vTATAnj

= vTnj = 〈v,nj〉 = α,

(8)

(a)

(b)

Figure 7: Scores for virtual points. (a) An input LS3DPC

model. (b) The distribution of score γ(p) where the red and

blue colors depict high and low scores, respectively.

since ATA = I by (6). Similarly, the other angular vari-

ations are given by φ = 〈u, ((pi − pj)/||pi − pj ||)〉, and

θ = arctan(〈w,nj〉, 〈(u,nj〉), and we can prove φ̂ = φ

and θ̂ = θ similarly. Consequently, FPFH implies the re-

flection invariance.

We compute the similarity score γsimilarity(p) as

γsimilarity(p) = e−
H(Φ(p),Φ(q))

β2 , (9)

where Φ(p) is the FPFH vector at p. H (Φ(p),Φ(q)) is the

Hellinger distance[14] defined by

H(Φ(p),Φ(q)) =

√

√

√

√

∑

i

(

√

Φi(p)−
√

Φi(q)
)2

2
, (10)

where Φi(p) denotes the i-th element of Φ(p).

4.3. Detection of Virtual Points

We combine the symmetry score and the similarity score

together to compute a final score γ(p) given by

γ(p) = γsymmetry(p)γsimilarty(p). (11)

Figure 7 shows the resulting scores, where we set γ(p) = 0
for p ∈ Ωfront. We see that a point p ∈ Ωback yields a high
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score γ(p) when it has a corresponding point q ∈ Ωfront

which yields a similar geometric feature to p and is close

to AΠp. We basically separate the virtual points from a

LS3DPC model using the resulting scores by assigning a

binary label li to each point pi such that li = 1 when pi is

virtual and li = 0 when pi is real.

However, as shown in Figure 5, a virtual point r can be

generated by reflection, but its corresponding real point r̂ is

not actually acquired by scanner due to the occlusion by the

cactus. In such a case, r may not be detected as a virtual

point due to a low score of γ(r). To overcome this issue,

we formulate an energy function given by

E(L) =
∑

i

Di + τ
∑

i

∑

pj∈Ni

Vij , (12)

where L = {li} is the set of all labels. The data cost Di is

defined by

Di =

{

−ρ(pi)γ(pi), li = 1

− (1− ρ(pi)γ(pi)) , li = 0
(13)

where ρ(pi) is the reliability of the patch where pi is pro-

jected. By multiplying the reliability, we effectively detect

the points associated with the glass patches of dominant re-

flection. Vij is the smoothness cost that forces the neighbor-

ing points to have same labels, and Ni is the set of neigh-

boring points to pi. We find 48 nearest neighboring points

using a k-d tree, but omit the points pj’s having Euclidean

distances d(pi,pj) larger than 0.1% of the bounding box’s

diagonal distance for a given LS3DPC model. We select

the parameters empirically by testing the performance with

variable numbers of neighboring points from 16 to 96 and

variable threshold values for d(pi,pj) from 0.01% to 1%,

respectively. Vij is computed by

Vij =

{

e−
d(pi,pj)

β1 e−
H(Φ(pi),Φ(pj)

β2 , li 6= lj

0, otherwise.
(14)

We use the Iterated Conditional Modes (ICM) [4] to obtain

an optimal solution of (12). Finally we remove the detected

virtual points from an input LS3DPC model.

5. Experimental Result

We acquire LS3DPCs by capturing real-world outdoor

scenes including glasses using a 3D terrestrial LiDAR

scanner, RIEGL VZ-400 [22] with the angular resolutions

ωazimuthal = 0.06◦ and ωpolar = 0.06◦. We evaluate

the performance of the proposed algorithm on six LS3DPC

models shown in Figure 8: ‘Architecture Building’, ‘En-

gineering Building’, ‘Natural Science Building’, ‘Botani-

cal Garden’, ‘Gymnasium’ and ‘Terrace’, where a single

LS3DPC model has approximately 5∼6 millions of points

in general. β1 and β2 in (7) and (9) are empirically chosen

as 0.5 and 0.5 for ‘Botanical Garden’ model and 1.5 and 1.5
for the other models. τ in (12) are set to 1.

We first show the estimated glass regions in Figure 8,

where we see that the glass patches on dominant glass

planes are detected successfully in most cases. Note that no

points are sampled over a large area of the dominant glass

plane in Figure 8(a), since the LiDAR scanner is located

too close to the glass. When outdoor scenes are captured,

the sky is often reflected on the glasses. In such cases, how-

ever, no valid real points are sampled on the sky due to the

limit of capturing distance, and therefore, no virtual points

are generated associated with the sky region.

Figure 9 shows the results of reflection removal in

LS3DPCs. In ‘Architecture Building’ model, some trees

are not removed since they are reflected on the glass re-

gion where no sampled points are obtained as shown in Fig-

ure 8(a). However, most of the reflected building and trees

including a reflected person are detected and removed suc-

cessfully despite a massive absence of sampled points on

the glass plane. As shown in Figure 8(b), most of the re-

flection artifacts are well removed including building, trees

and ground. However, some part of the reflected building

shown in the second column still remains since the corre-

sponding glass patches are assigned relatively low reliabil-

ity values due to the lack of sampled points. In ‘Natural

Science Building’ model, a linear region of real trees that

intersect with the extended glass plane is also classified as

virtual points, since the trees have multiple echo pulses due

to complex scene structures and also yield short distances

to the glass plane. However, the removal of these points is

inconspicuous in the reconstructed 3D model. Also note

that some virtual points of reflected building are not re-

moved due to the lack of corresponding real points by occlu-

sion. ‘Botanical Garden’ model exhibits a relatively com-

plex scene that similar trees appear on both sides of the glass

plane. In this model, the building and trees reflected on the

glass are removed, while the real trees in the garden survive

successfully.

In addition, we measure the processing time of the pro-

posed algorithm on Intel i7-4790k Processor (4.38GHz),

and provide the results in Table 1. Note that the processing

times of glass region estimation and virtual point detection

are not linearly proportional to the number of points. The

descriptor computation to find normal and FPFH consumes

more than a half of the total processing time in most cases.

However, the pre-computed descriptors can be also used for

further processing of point clouds in various applications.

6. Conclusion

In this paper, we proposed a reflection removal algorithm

for LS3DPCs captured by a terrestrial LiDAR scanner. We

investigated the characteristics of received echo pulses asso-
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(a) Architecture Building (b) Engineering Building (c) Natural Science Building

(d) Botanical Garden (e) Gymnasium (f) Terrace

Figure 8: Estimation of glass regions associated with dominant reflection artifacts. In each subfigure, a color panorama image

and the resulting reliability distribution is shown in top and bottom, respectively.

Model
Number of

points

Processing time (sec.)

Glass region

estimation

Descriptor

comput.

Virtual point

detection
Total

(a) 5,562,972 15.9 43.0 34.9 93.7

(b) 9,720,671 10.7 72.5 51.6 134.8

(c) 4,913,710 12.8 37.2 4.7 54.7

(d) 6,140,383 10.7 49.8 11.8 72.3

(e) 5,609,449 10.0 43.3 16.6 69.9

(f) 5,000,902 9.5 38.2 24.7 72.4

Table 1: Processing time of the proposed algorithm. (a) Ar-

chitecture Building, (b) Engineering Building, (c) Natural

Science Building, (d) Botanical Garden, (e) Gymnasium,

and (f) Terrace.

ciated with glasses, and computed the reliability to estimate

valid glass regions of dominant reflection artifacts. Then

we measured a reflection symmetry score and a geomet-

ric similarity score for each point, and detected the virtual

points reliably which should be removed. Experimental re-

sults demonstrated that the proposed algorithm successfully

detected and removed the reflection artifacts in LS3DPCs.

7. Future Research Issues

In this work, we assume that only a single dominant glass

plane exists in each LS3DPC model. When there are mul-

tiple glass planes, the current algorithm selects one of them

as a glass plane and removes the virtual points associated

with the selected plane only. To overcome this limitation,

we are conducting follow-up research on the reflection re-

moval with multiple glass planes.

Quantitative performance evaluation of the proposed al-

gorithm is quite challenging since it is hard to obtain ground

truth 3D point clouds without reflection artifact. We plan

to generate reflection-free point clouds by simulating the

acquisition process of LiDAR on synthetic 3D point cloud

models, which are used to evaluate the quantitative perfor-

mance of reflection removal algorithms.

The proposed distance based weighting scheme for

glass region estimation successfully prevents the vegetation,

however some glass regions are also assigned low reliabil-

ity values. We may apply vegetation detection methods to

increase the accuracy of glass region estimation.

In this pioneering work, we intentionally use geomet-

ric information only without using the information of 2D

images to make the proposed algorithm more widely ap-

plicable to LiDAR based applications when no additional

devices are required to capture 2D images. As a future re-

search topic, we will investigate the glass region estimation

on 2D panoramic image domain, and exploit the geomet-

ric information and photometric information together to im-

prove the performance of reflection removal for large-scale

colored 3D point clouds.
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(a) Architecture Building (b) Engineering Building

(c) Natural Science Building (d) Botanical Garden

Figure 9: Results of reflection removal for LS3DPCs. In each subfigure, the top row shows an input LS3DPC model, the

middle row visualizes the estimated glass regions (yellow) and the detected virtual points (red), and the bottom row shows

the resulting LS3DPC model where the virtual points are removed.
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