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Abstract

The problem of graph matching under node and pair-

wise constraints is fundamental in areas as diverse as com-

binatorial optimization, machine learning or computer vi-

sion, where representing both the relations between nodes

and their neighborhood structure is essential. We present an

end-to-end model that makes it possible to learn all param-

eters of the graph matching process, including the unary

and pairwise node neighborhoods, represented as deep fea-

ture extraction hierarchies. The challenge is in the formula-

tion of the different matrix computation layers of the model

in a way that enables the consistent, efficient propagation

of gradients in the complete pipeline from the loss func-

tion, through the combinatorial optimization layer solving

the matching problem, and the feature extraction hierar-

chy. Our computer vision experiments and ablation studies

on challenging datasets like PASCAL VOC keypoints, Sin-

tel and CUB show that matching models refined end-to-end

are superior to counterparts based on feature hierarchies

trained for other problems.

1. Introduction and Related Work

The problem of graph matching – establishing corre-

spondences between two graphs represented in terms of

both local node structure and pair-wise relationships, be

them visual, geometric or topological – is important in ar-

eas like combinatorial optimization, machine learning, im-

age analysis or computer vision, and has applications in

structure-from-motion, object tracking, 2d and 3d shape

matching, image classification, social network analysis, au-

tonomous driving, and more. Our emphasis in this paper

is on matching graph-based image representations but the

methodology applies broadly, to any graph matching prob-

lem where the unary and pairwise structures can be repre-

sented as deep feature hierarchies with trainable parameters.

Unlike other methods such as RANSAC [12] or itera-

tive closest point [4], which are limited to rigid displace-

ments, graph matching naturally encodes structural infor-

mation that can be used to model complex relationships

and more diverse transformations. Graph matching oper-

ates with affinity matrices that encode similarities between

unary and pairwise sets of nodes (points) in the two graphs.

Typically it is formulated mathematically as a quadratic in-

teger program [25, 3], subject to one-to-one mapping con-

straints, i.e. each point in the first set must have an unique

correspondence in the second set. This is known to be NP-

hard so methods often solve it approximately by relaxing

the constraints and finding local optima [19, 38].

Learning the parameters of the graph affinity matrix has

been investigated by [7, 20] or, in the context of the more

general hyper-graph matching model [10], by [21]. In those

cases, the number of parameters is low, often controlling ge-

ometric affinities between pairs of points rather than the im-

age structure in the neighborhood of those points. Recently

there has been a growing interest in using deep features for

both geometric and semantic visual matching tasks, either

by training the network to directly optimize a matching ob-

jective [8, 27, 16, 36] or by using pre-trained, deep features

[23, 14] within established matching architectures, all with

considerable success.

Our objective in this paper is to marry the (shallow)

graph matching to the deep learning formulations. We pro-

pose to build models where the graphs are defined over

unary node neighborhoods and pair-wise structures com-

puted based on learned feature hierarchies. We formulate a

complete model to learn the feature hierarchies so that graph

matching works best: the feature learning and the graph

matching model are refined in a single deep architecture

that is optimized jointly for consistent results. Methodolog-

ically, our contributions are associated to the construction of

the different matrix layers of the computation graph, obtain-

ing analytic derivatives all the way from the loss function

down to the feature layers in the framework of matrix back-

propagation, the emphasis on computational efficiency for

backward passes, as well as a voting based loss function.

The proposed model applies generally, not just for match-

ing different images of a category, taken in different scenes

(its primary design), but also to different images of the same
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scene, or from a video.

2. Problem Formulation

Input. We are given two input graphs G1 = (V1, E1) and

G2 = (V2, E2), with |V1| = n and |V2| = m. Our goal

is to establish an assignment between the nodes of the two

graphs, so that a criterion over the corresponding nodes and

edges is optimized (see below).

Graph Matching. Let v ∈ {0, 1}nm×1 be an indica-

tor vector such that via = 1 if i ∈ V1 is matched to

a ∈ V2 and 0 otherwise, while respecting one-to-one map-

ping constraints. We build a square symmetric positive ma-

trix M ∈ R
nm×nm such that Mia;jb measures how well

every pair (i, j) ∈ E1 matches with (a, b) ∈ E2. For pairs

that do not form edges, their corresponding entries in the

matrix are set to 0. The diagonal entries contain node-to-

node scores, whereas the off-diagonal entries contain edge-

to-edge scores. The optimal assignment v∗ can be formu-

lated as

v∗ = argmax
v

v⊤Mv, s.t. Cv = 1,v ∈ {0, 1}nm×1 (1)

The binary matrix C ∈ R
nm×nm encodes one-to-one map-

ping constraints: ∀a
∑

i via = 1 and ∀i
∑

a via = 1. This

is known to be NP-hard, so we relax the problem by drop-

ping both the binary and the mapping constraints, and solve

v∗ = argmax
v

v⊤Mv, s.t. ‖v‖2 = 1 (2)

The optimal v∗ is then given by the leading eigenvector of

the matrix M. Since M has non-negative elements, by us-

ing Perron-Frobenius arguments, the elements of v∗ are in

the interval [0, 1], and we interpret v∗

ia as the confidence

that i matches a.

Learning. We estimate the matrix M parameterized in

terms of unary and pair-wise point features computed over

input images and represented as deep feature hierarchies.

We learn the feature hierarchies end-to-end in a loss func-

tion that also integrates the matching layer. Specifically,

given a training set of correspondences between pairs of

images, we adapt the parameters so that the matching min-

imizes the error, measured as a sum of distances between

predicted and ground truth correspondences. In our exper-

iments, we work with graphs constructed over points that

correspond to the 2d image projections of the 3d structure

of the same physical object in motion (in the context of

videos), or over point configurations that correspond to the

same semantic category (matching instances of visual cat-

egories, e.g. different birds). The main challenge is the

propagation of derivatives of the loss function through a fac-

torization of the affinity matrix M, followed by matching

(in our formulation, this is an optimization problem, solved

using eigen-decomposition) and finally the full feature ex-

traction hierarchy used to compute the unary and pair-wise

point representations.

2.1. Derivation Preliminaries

In practice, we build an end-to-end deep network that

integrates a feature extracting component that outputs the

required descriptors F for building the matrix M. We solve

the assignment problem (2) and compute a matching loss

L(v∗) between the solution v∗ and the ground-truth. The

network must be able to pass gradients w.r.t the loss function

from the last to the first layer. The key gradients to compute

– which we cover in §3 – are ∂L/∂M and ∂L/∂F. This

computation could be difficult in the absence of an appro-

priate factorization, as the computational and memory costs

become prohibitive. Moreover, as some of our layers im-

plement complex matrix functions, a matrix generalization

of back-propagation is necessary [15] for systematic deriva-

tions and computational efficiency. In the sequel we cover

its main intuition and refer to [15] for details.

Matrix backpropagation. We denote A : B =
Tr(A⊤B) = vec(A)vec(B)⊤. For matrix derivatives, if

we denote by f a function that outputs f(X) = Y and by

L the network loss, the basis for the derivation starts from

the Taylor expansion of the matrix functions [26] at the two

layers. By deriving the functional L expresssing the total

variation dY in terms of dX,

dY = L(dX) (3)

and then using that

∂L ◦ f
∂X

: dX =
∂L

∂Y
: L(dX) = L∗(

∂L

∂Y
) : dX (4)

we obtain the equality ∂(L◦f)/∂X = L∗(∂L/∂Y), where

L∗ is the adjoint operator of L. This recipe for finding the

partial derivatives is used across all of our network layers.

The derivations of L and L∗ are layer-specific and are given

in the following sections.

2.2. Affinity Matrix Factorization

Zhou and De la Torre [38] introduced a novel factoriza-

tion of the matrix M that is generally applicable to all state-

of-the-art graph matching methods. It explicitly exposes the

graph structure of the set of points and the unary and pair-

wise scores between nodes and edges, respectively,

M = [vec(Mp)] + (G2 ⊗G1)[vec(Me)](H2 ⊗H1)
⊤

(5)

where [x] represents the diagonal matrix with x on the

main diagonal, and ⊗ is the Kronecker product. The matrix
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Mp ∈ R
n×m represents the unary term, measuring node-

to-node similarities, whereas Me ∈ R
p×q measures edge-

to-edge similarity; p, q are the numbers of edges in each

graph, respectively. The two matrices encode the first-order

and second-order potentials. To describe the structure of

each graph, we define, as in [38], the node-edge incidence

matrices as G,H ∈ {0, 1}n×p, where gic = hjc = 1 if

the cth edge starts from the ith node and ends at the jth

node. We have two pairs, {G1,H1} ∈ {0, 1}n×p and

{G2,H2} ∈ {0, 1}m×q , one for each image graph.

One simple way to build Me and Mp is

Me = XΛY⊤,Mp = U1U2⊤ (6)

where X ∈ R
p×2d and Y ∈ R

q×2d are the per-edge feature

matrices, constructed such that for any cth edge that starts

from the ith node and ends at the jth node, we set the edge

descriptor as the concatenation of the descriptors extracted

at the two nodes

Xc = [F1
i |F1

j ],Yc = [F2
i |F2

j ] (7)

The matrices F1,U1 ∈ R
n×d and F2,U2 ∈ R

m×d contain

per-node feature vectors of dimension d, extracted at possi-

bly different levels in the network, and Λ is a 2d×2d block-

symmetric parameter matrix. Superscripts 1, 2 indicate over

which input image (source or target) are the features com-

puted.

3. Deep Network Optimization for Graph

Matching

In this section we describe how to integrate and learn

the graph matching model end-to-end, by implementing the

required components in an efficient way. This allows us to

back-propagate gradients all the way from the loss function

down to the feature layers. The main components of our

approach are shown in Fig. 1.

3.1. Affinity Matrix Layer

If we define the node-to-node adjacency matrices A1 ∈
{0, 1}n×n,A2 ∈ {0, 1}m×m, with aij = 1 if there is an

edge from the ith node to the jth node, then

A1 = G1H
⊤

1 ,A2 = G2H
⊤

2 (8)

The Affinity Matrix layer receives as input the required hi-

erarchy of features, and the adjacency matrices A1 and A2

used to reconstruct the optimal G1,H1,G2,H2 matrices,

which verify the equations (8). It is easier to describe the

connectivity of the graphs by adjacency matrices than by

node-edge incidence matrices, but we still need the latter for

efficient backward passes at higher layers of the network.

Next, we describe the forward and the backward passes of

this layer, as parts of the trainable deep network.

Forward pass.

1. Given A1, A2, recover the matrices G1, H1, G2, H2,

such that A1 = G1H
⊤
1 ,A2 = G2H

⊤
2

2. Given F1,F2, build X,Y according to (7)

3. Build Me = XΛY⊤

4. Given U1,U2, build Mp = U1U2⊤

5. Build M according to (5) and make G1,H1,G2,H2

available for the upper layers

Backward pass. Assuming the network provides

∂L/∂Me and ∂L/∂Mp, this layer must return ∂L/∂F1,

∂L/∂F2, ∂L/∂U1 and ∂L/∂U2; it must also compute

∂L/∂Λ in order to update the matrix Λ. We assume

∂L/∂Me and ∂L/∂Mp as input, and not ∂L/∂M,

because the subsequent layer can take advantage of this

special factorization for efficient computation. We note that

matrix Λ must have the following form in order for M to

be symmetric with positive elements

Λ =

(

Λ1 Λ2

Λ2 Λ1

)

,Λij > 0, ∀i, j (9)

Writing the variation of the loss layer in terms of the varia-

tion of edge matrix and using the recipe (4),

dL =
∂L

∂Me

: dMe =
∂L

∂Me

: d(XΛY⊤)

=
∂L

∂Me

: (dXΛY⊤ +XdΛY⊤ +XΛdY⊤)

=
∂L

∂Me

YΛ⊤ : dX+X⊤
∂L

∂Me

Y : dΛ+

+
∂L

∂Me

⊤

XΛ : dY (10)

We identify the terms

∂L

∂X
=

∂L

∂Me

YΛ⊤

∂L

∂Λ
= X⊤

∂L

∂Me

Y

∂L

∂Y
=

∂L

∂Me

XΛ (11)

To compute the partial derivatives ∂L/∂F1 and ∂L/∂F2,

we identify and sum up the corresponding 1× d sub-blocks

in the matrices ∂L/∂X and ∂L/∂Y. The partial derivative

∂L/∂Λ is used to compute the derivatives ∂L/∂Λ1 and

∂L/∂Λ2. Note that in implementing the positivity condi-

tion from (9), one can use a ReLU unit.
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Deep Feature Extractor

In: I1, I2
Out: features matrices F1,F2 and

U
1,U2 as computed by any CNN,

at certain levels of the hierarchy,

e.g. VGG-16 [29]

→

Affinity Matrix

In: F1,F2,U1,U2

Build graph structure:

G1,G2,H1,H2

Computations: build Me and Mp

Out: M as given by eq. (5)

→

Power Iteration

In: M

Computations: v0 ← 1,

vk+1 = Mvk/ |Mvk|
Out: v∗

→

→

Bi-Stochastic

In: v∗

Computations: reshape v
∗ to a

matrix and apply eqs. (19)

Out: double-stochastic

confidence matrix S

→

Voting

In: S ∈ R
n×m

Computations: softmax(αS)
Parameters: scale α

Out: displacement vector d as

given by eq. (22)

→

Loss

In: d,dgt

Out: L(d) =
∑

i
φ(di − d

gt
i )

Figure 1: Computational pipeline of our fully trainable graph matching model. In training, gradients w.r.t. the loss function

are passed through a deep feature extraction hierarchy controlling the unary and pair-wise terms associated to the nodes and

edges of the two graphs, the factorization of the resulting affinity matrix, the eigen-decomposition solution of the matching

problem, and the voting-based assignment layer. For each module we show the inputs, outputs and the key variables involved.

Detailed derivations for the associated computations are given in the corresponding paper sections.

3.2. Power Iteration Layer

Computing the leading eigenvector v∗ of the affinity ma-

trix M can be done using power iterations

vk+1 =
Mvk

‖Mvk‖
(12)

We initialize v0 = 1. We use ‖·‖ as the ℓ2 norm, ‖·‖2.

Forward pass. We run the assignment from (12) for N
iterations, and output the vector v∗ = vN . Recall that

M ∈ R
nm×nm, where n,m are the number of nodes in

each graph and p, q respectively the number of edges, the

time complexity of the forward pass, per power iteration,

is O(n2m2), when the matrix M is dense. If we exploit

the sparsity of M the cost drops to O(nnz) where nnz rep-

resents the number of non-zero elements of the matrix M,

being equal to pq + nm.

Backward pass. To compute gradients, we express the

variation of the loss and identify the required partial deriva-

tives

dL =
∂L

∂vk+1

: dvk+1 =
∂L

∂vk+1

: d
Mvk

‖Mvk‖

d
Mvk

‖Mvk‖
=

(I− vk+1v
⊤

k+1)

‖Mvk‖
d(Mvk) =

=
(I− vk+1v

⊤

k+1)

‖Mvk‖
(dMvk +Mdvk) (13)

Knowing that y : Ax = yx⊤ : A = A⊤y : x, and using

the symmetry of M, we derive

dL =
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

v⊤

k : dM+

+M
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

: dvk

(14)

Noticing that dvk is still a function of dM, the gradients

∂L/∂M and ∂L/∂vk are iteratively built:

∂L

∂M
=

∑

k

(I− vk+1v
⊤

k+1)

‖Mvk‖
∂L

∂vk+1

v⊤

k (15)

∂L

∂vk

= M
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

where we receive ∂L/∂v∗ from the upper network lay-

ers. The computational cost of (15) is O(m2n2) – regard-

less of the sparsity of M – and the memory complexity is

Θ(m2n2). Such costs are prohibitive in practice. By em-

ploying techniques of matrix back-propagation [15], we

can exploit the special factorization (5) of matrix M, to

make operations both memory and time efficient. In fact, set

aside efficiency, it would not be obvious how a classic ap-

proach would be used in propagating derivatives through a

complex factorization like (5). Exploiting (5) and the recipe

from (4), and omitting for clarity the term Mp, we obtain

(16) as detailed in Fig. 2.

Note that
(

·
)

n×m
is the operator that reshapes an nm×1

vector into an n × m matrix. For derivations we use the

property that, for any compatible matrices A,B and V,

(A ⊗ B)⊤vec(V) = vec(B⊤VA). Consequently, by also

considering the unary term Mp, it follows that
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(I− vk+1v
⊤

k+1)

‖Mvk‖
∂L

∂vk+1

v⊤

k : dM =
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

v⊤

k : (G2 ⊗G1)[vec(dMe)](H2 ⊗H1)
⊤

= diag

(

(G2 ⊗G1)
⊤
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

v⊤

k (H2 ⊗H1)

)

: dMe

= (G2 ⊗G1)
⊤
(I− vk+1v

⊤

k+1)

‖Mvk‖
∂L

∂vk+1

⊙ (H2 ⊗H1)
⊤vk : dMe

= G⊤

1

(

(I− vk+1v
⊤

k+1)

‖Mvk‖
∂L

∂vk+1

)

n×m

G2 ⊙H⊤

1

(

vk

)

n×m

H2 : dMe (16)

Figure 2: Derivations expressing the variation of the loss function w.r.t the variation of the edge affinity matrix Me, given the

variation of the loss function w.r.t the variation of the whole affinity matrix M, from eq. (14)

∂L

∂Me

=
∑

k

G⊤

1

(

(I− vk+1v
⊤

k+1)

‖Mvk‖
∂L

∂vk+1

)

n×m

G2⊙

⊙H⊤

1

(

vk

)

n×m
H2 (17)

∂L

∂Mp

=
∑

k

(I− vk+1v
⊤

k+1)

‖Mvk‖
∂L

∂vk+1

⊙ vk (18)

With careful ordering of operations, the complexities for

the backward pass are now O(max(m2q, n2p)) and Θ(pq).
Taking into account the sparsity of the node-edge incidence

matrices G,H, efficiency can be further improved.

3.3. Bi­Stochastic Layer

We make the result of the Power Iteration layer double-

stochastic by mapping the eigenvector v∗ on the L1 con-

straints of the matching problem (1): ∀a,∑i via = 1 and

∀i,
∑

a via = 1. This is suggested by multiple authors

[13, 37, 19], as it was observed to significantly improve per-

formance. We introduce a new Bi-Stochastic layer that takes

as input any correspondence vector v∗ ∈ R
nm×1
+ , reshaped

to a matrix of size n×m, and outputs the double-stochastic

variant, as described in [30]. Even though the original al-

gorithm assumes only square matrices, the process can be

generalized as shown in [9].

Forward pass. Given a starting matrix S0 =
(

v∗
)

n×m
,

we run the following assignments for a number of iterations

Sk+1 = Sk[1
⊤

nSk]
−1,Sk+2 = [Sk+11m]−1Sk+1 (19)

Backward pass. Given a starting gradient ∂L/∂S, we it-

eratively compute

∂L

∂Sk+1

= [Sk+21m]−1 ∂L

∂Sk+2

−

− diag

(

[Sk+21m]−2 ∂L

∂Sk+2

S⊤

k+2

)

1⊤

m (20)

∂L

∂Sk

=
∂L

∂Sk+1

[1⊤

nSk+1]
−1−

− 1ndiag

(

[1⊤

nSk+1]
−2S⊤

k+1

∂L

∂Sk+1

)⊤

(21)

3.4. Converting Confidence­maps to Displacements

We use a special layer, called Voting layer to convert

from the confidence map S ∈ R
n×m – passed on by the Bi-

Stochastic layer – to a displacement vector. The idea is to

normalize, for each assigned point i, its corresponding can-

didate scores given by the ith row of S, denoted S(i, 1...m).
We then use it to weight the matrix of positions P ∈ R

m×2

and subtract the position of match i.

di =
exp[αS(i, 1...m)]
∑

j exp[αS(i, j)]
P−Pi (22)

where [] is now just a bulkier bracket. In practice we set α
to large values (e.g. 200). By softly voting over the fixed

candidate locations, our solution can interpolate for more

precise localization. We also set confidences to 0 for can-

didates that are too far away from assigned points, or those

added through padding. Hence these do not contribute to

the loss, given by

L(d) =
∑

i

φ(di − d
gt
i ) (23)

where φ(x) =
√
x⊤x+ ǫ is a robust penalty term, and dgt

is the ground-truth displacement from the source point to
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the correct assignment. This layer is implemented in mul-

tiple, fully differentiable steps: a) first, scale the input by

α, b) use a spatial map for discarding candidate locations

that are further away than a certain threshold from the start-

ing location and use it to modify the confidence maps, c)

use a softmax layer to normalize the confidence maps, d)

compute the displacement map. The discard map sets the

confidences to 0 for points that are further away than a cer-

tain distance, or for points that were added through padding.

Such points do not contribute in the final loss, given by (23).

4. Experiments

In this section we describe the models used as well as de-

tailed experimental matching results, both quantitative (in-

cluding ablation studies) and qualitative, on three challeng-

ing datasets: MPI Sintel, CUB, and PASCAL keypoints.

Deep feature extraction network. We rely on the VGG-

16 architecture from [29], that is pretrained to perform clas-

sification in the ImageNet ILSVRC [28] but we can use

any other deep network architecture. We implement our

deep learning framework in MatConvNet [31]. As edge

features F we use the output of layer relu5_1 (and the

entire hierarchy under it), and for the node features U we

use the output of layer relu4_2 (with the parameters of

the associated hierarchy under it). Features are all normal-

ized to 1 through normalization layers, right before they are

used to compute the affinity matrix M. We conduct experi-

ments for geometric and semantic correspondences on MPI-

Sintel [6], Caltech-UCSD Birds-200-2011 [32] and PAS-

CAL VOC [11] with Berkeley annotations [5].

Matching networks. GMNwVGG is our proposed Graph

Matching Network based on a VGG feature extractor. The

suffix -U means that default (initial) weights are used; -T

means trained end-to-end; the GMNwVGG-T w/o V variant

does not use, at testing, the Voting layer in order to compute

the displacements, but directly assigns indices of maximum

value across the rows of the confidence map S, as corre-

spondences. NNwVGG gives nearest-neighbour matching

based on deep node descriptors U.

MPI-Sintel. Besides the main datasets CUB and PAS-

CAL, typically employed in validating matching methods,

we also use Sintel in order to demonstrate the generality

and flexibility of the formulation. The Sintel input images

are consecutive frames in a movie and exhibit large dis-

placements, large appearance changes, occlusion, non-rigid

movements and complex atmospheric effects (only included

in the final set of images). The Sintel training set consists of

23 video sequences (organized as folders) and 1064 frames.

In order to make sure that we are fairly training and eval-

uating, as images from the same video depict instances of

the same objects, we split the data into 18 folders (i.e. 796

image pairs) for training and 5 folders (i.e. 245 image pairs)

for testing. To be able to set a high number of correspon-

dences under the constraints of memory usage and avail-

able computational resolutions of our descriptors, we parti-

tion the input images in 4× 4 blocks padded for maximum

displacement, which we match one by one. Note that for

this particular experiment we do not use the Bi-Stochastic

layer, as the one-to-one mapping constraints do not apply

to the nature of this problem (the assignment can be many-

to-one e.g. in scaling). Notice that our model is designed

to establish correspondences between two images contain-

ing similar structures, generally from different scenes, not

tailored explicitly for optical flow, where additional smooth-

ness constraints can be exploited. A main point of our Sintel

experiments is to show the scalability of our method which

operates with affinity matrices of size 106 × 106. A com-

plete forward and backward pass runs in roughly 2 seconds

on a 3.2 Ghz Intel Xeon machine, with Titan X Pascal GPU.
1 We show quantitative results in table 1. We use the Per-

centage of Correct Keypoints metric to test our matching

performance, with a threshold of 10 pixels. We compare

against other state-of-the-art matching methods, following

the protocol in [8]. Notice that even untrained, our net-

Method PCK@10 pixels

SIFT flow [22] 89.0

DaisyFF [34] 87.3

DSP [17] 85.3

DM [33] 89.2

UCN [8] 91.5

NNwVGG-U 85.9

NNwVGG-T 87.01

GMNwVGG-U 88.03

GMNwVGG-T 92.6

Table 1: Comparative matching results for Sintel.

work remains competitive, as the graph structure acts as a

regularizer. After training, the network has significantly in-

creased accuracy. Visual examples are given in fig. 4.

CUB. This dataset contains 11,788 images of 200 bird

categories, with bounding box object localization and 15

annotated parts. We use the test set built by [16] which con-

sists of 5,000 image pairs that are within 3 nearest neighbors

apart on the pose graph of [18], so we can expect that birds

are in somewhat similar poses in each pair to be tested. But

across all images, there is a significant variation in pose, ar-

ticulation and appearance. To train our model, we sample

1One possible speed-up could be to not propagate gradients through

expensive layers like the relaxation during each power iteration, but do it

only once at convergence[1, 2]. In principle, this would not be the correct

gradient and in our tests this approach indeed did not converge.

2689



random pairs of images from the training set of CUB-200-

2011, which are not present in the test set. The number of

points in the two graphs are maximum n = 15 and m = 256
– as sampled from a 16×16 grid – with a Delaunay triangu-

lation on the first graph, and fully connected on the second.

In the Voting layer, we no longer discard candidate locations

that are too far away from the source points. A complete

forward and backward pass runs in 0.3 seconds.

Method EPE (in pixels) PCK@0.05

GMNwVGG-U 41.63 0.63

NNwVGG-U 59.05 0.46

GMNwVGG-T w/o V 18.22 0.83

GMNwVGG-T 17.02 0.86

Table 2: Our models (with ablations) on CUB.

We show quantitative results in table 2. The ”PCK@α”

metric [35] represents the percentage of predicted corre-

spondences that are closer than α
√
w2 + h2 from ground-

truth locations, where w, h are image dimensions. Qualita-

tive results are shown in fig. 5.

Our end-to-end fully trainable matching models signifi-

cantly outperform nearest neighbor approaches (EPE error

is halved) based on deep features or similar graph matching

formulations based on deep features not refined jointly

with the assignment model. Our model GMNwVGG-T w/o

V which does not use, at testing, the Voting layer in order

to compute the displacements is inferior to the soft-voting

mechanism of our compete method GMNwVGG-T. We

also achieve state-of-the-art results compared to UCN [8],

WarpNet [16], SIFT [24] and DSP [17], cf. fig. 3.

Figure 3: Our methods and other state-of-the-art techniques

on CUB.

PASCAL VOC keypoints. This dataset is an extension

of PASCAL VOC 2011 and contains annotations of body

parts for 20 semantic classes. There are 7,000 annotated

examples for training, and 1,700 for testing, but we can

form pairs between any two examples of the same class.

While the numbers of examples for each class are heav-

ily imbalanced, at training we draw random examples from

each class, according to its corresponding probability. At

train and test time we crop each example around its bound-

ing box, re-scale it to 256× 256 and pass it to the network.

We train one matching network for all classes, hence our

model is agnostic to the semantic category. This dataset is

considerably more challenging than CUB: bounding-boxes

can range from very large to extremely small (e.g. 30×30),

the training and testing pairs cover combinations of two im-

ages from each class (meaning that we cannot expect them

to contain objects in the same pose) and the appearance vari-

ation is more extreme. We rely on the same protocol for

evaluation and setting meta-parameters as in the CUB ex-

periment. Results are shown in Fig. 6, and comparisons in

table 3.

Method PCK@0.1 (Class average)

conv4 flow [23] 24.9

SIFT flow [22] 24.7

UCN [8] 38.9

NNwVGG-U 25.4

GMNwVGG-U 29.8

GMNwVGG-T 40.6

Table 3: Our models as well as other state-of-the art ap-

proaches on PASCAL VOC.

We test following the same protocol as for CUB-200-

2011 and obtain improvements over state-of-the-art. Notice

that results of UCN [8] differ from the paper, as we use

the straight average for the 20 semantic classes. Their pa-

per reports the weighted average based on class frequency

– under that metric UCN obtains PCK@0.1 = 44 and we

obtain 45.3, so the improvement is preserved compared to

the direct averaging case.

5. Conclusions

We have presented an end-to-end learning framework for

graph matching with general applicability to models con-

taining deep feature extraction hierarchies and combinato-

rial optimization layers. We formulate the problem as a

quadratic assignment under unary and pair-wise node rela-

tions represented using deep parametric feature hierarchies.

All model parameters are trainable and the graph matching

optimization is included within the learning formulation.

As such, the main challenges are the calculation of back-

propagated derivatives through complex matrix layers and

the implementation of the entire framework (factorization

of the affinity matrix, bi-stochastic layers) in a computation-

ally efficient manner. Our experiments and ablation stud-

ies on diverse datasets like PASCAL VOC keypoints, Sintel

and CUB show that fully learned graph matching models
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Figure 4: Four visual examples on the MPI-Sintel test partition, which exhibit large motions and occlusion areas. From top

to bottom: the source images with the initial grid of points overlaid and the target images with the corresponding matches

as found by our fully trained network. Colors are unique and they encode correspondences. Even for fast moving objects,

points tend to track the surface correctly, without sliding – see e.g. the dragon’s wing, claw, and the flying monster.

Figure 5: Four qualitative examples of our best performing network GMNwVGG-T, on the CUB-200-2011 test-set. Images

with a black contour represent the source, whereas images with a red contour represent targets. Color-coded correspondences

are found by our method. The green framed images show ground-truth correspondences. The colors of the drawn circular

markers uniquely identify 15 semantic keypoints.

Figure 6: Twelve qualitative examples of our best performing network GMNwVGG-T on the PASCAL VOC test-set. For

every pair of examples, the left shows the source image and the right the target. Colors identify the computed assignments

between points. The method finds matches even under extreme appearance and pose changes.

surpass nearest neighbor counterparts, or approaches that

use deep feature hierarchies that were not refined jointly

with (and constrained by) the quadratic assignment prob-

lem.
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