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Abstract

We propose an automatic person-to-person appearance

transfer model based on explicit parametric 3d human rep-

resentations and learned, constrained deep translation net-

work architectures for photographic image synthesis. Given

a single source image and a single target image, each

corresponding to different human subjects, wearing differ-

ent clothing and in different poses, our goal is to photo-

realistically transfer the appearance from the source im-

age onto the target image while preserving the target shape

and clothing segmentation layout. Our solution to this new

problem is formulated in terms of a computational pipeline

that combines (1) 3d human pose and body shape estimation

from monocular images, (2) identifying 3d surface colors el-

ements (mesh triangles) visible in both images, that can be

transferred directly using barycentric procedures, and (3)

predicting surface appearance missing in the first image but

visible in the second one using deep learning-based image

synthesis techniques. Our model achieves promising results

as supported by a perceptual user study where the partici-

pants rated around 65% of our results as good, very good

or perfect, as well in automated tests (Inception scores and

a Faster-RCNN human detector responding very similarly

to real and model generated images). We further show how

the proposed architecture can be profiled to automatically

generate images of a person dressed with different cloth-

ing transferred from a person in another image, opening

paths for applications in entertainment and photo-editing

(e.g. embodying and posing as friends or famous actors),

the fashion industry, or affordable online shopping of cloth-

ing.

1. Introduction

People are of central interest in images and video, so un-

derstanding and capturing their pose and appearance from

visual data is critically important. While problems like de-

∗Authors contributed equally

Figure 1. Bidirectional transfer automatically produced by our

method. We transfer from one image (first column) to the second

(second column) and vice-versa, with automatically generated im-

ages shown on the third and fourth columns.

tection or 2d pose estimation have received considerable at-

tention and witnessed significant progress recently, appear-

ance modeling has been less explored comparatively, espe-

cially for bodies and clothing, in contrast to faces. One set-

back is that people are extremely sensitive to invalid human

appearance variations and immediately spot them. This is to

a large extent true for faces, as people are sharply tuned to

fine social signals expressed as subtle facial expressions, but

also stands true for human body poses, shapes and clothing.

This makes it difficult to capture and possibly re-synthesize

human appearance in ways that pass the high bar of human

perception. While the realistic 3d human shape and appear-

ance generation, including clothing, has been a long stand-

ing goal in computer graphics, with impressive studio re-

sults that occasionally pass the Turing test, these usually re-

quire complex models with sophisticated layering, manual

interaction, and many cameras, which makes them difficult

to use at large scale. For this purpose, flexible methods, that

can be learned from data and can synthesize realistic human

appearance are of obvious value. Arguably, even more im-
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portant would be methods that can be controlled by image

evidence in some way. For instance one may not just aim

to generate plausible human shape and appearance in isola-

tion – hard as this may be – but also condition on specific

elements of pose and appearance in a given image in order

to synthesize new ones based on it.

In this paper we formulate a new problem called human

appearance transfer. Given a single source and a single tar-

get image of a person, each with different appearance, pos-

sibly different body shape and pose, the goal is to transfer

the appearance of the person in the first image into the one

of the person of the target image while preserving the target

clothing and body layout. The problem is challenging as

people are in different poses and may have different body

shapes. A purely image warping or image to image trans-

lation approach would not easily generalize due to the large

number of degrees of freedom involved in the transforma-

tion, e.g. the effect of articulation, depth and body shape on

appearance. We provide a first solution that relies on fitting

state-of-the-art 3d human pose and body models to both the

source and the target images, transferring appearance us-

ing barycentric methods for commonly visible vertices, and

learning to color the remaining ones using deep image syn-

thesis techniques with appropriately structured 2d and 3d

inputs. Example images, perceptual user studies, Inception

scores [26], and the response of a state-of-the-art person de-

tector confirm that the generated images of humans are per-

ceptually plausible.

2. Related Work

Our work relies on 2d human detection and body part

labeling [2, 24, 9], 3d pose estimation [24, 1, 29], para-

metric 3d human shape modeling [5, 30, 20, 18], proce-

dures devoted to the semantic segmentation of clothing

[28, 6, 17, 8], as well as image translation and synthesis

methods [11, 3, 21, 14, 34, 3, 31].

Modeling the human appearance is a vast topic that has

been approached on several fronts. One is through mod-

ifications of real images [10, 22], although the results are

not entirely realistic. Computer graphics pipelines are also

used, either in a mixed reality setting - where a moderately

realistic graphics model is rendered in a real scene in a geo-

metrically correct manner [10] – or e.g. by fitting a SCAPE

model to real images [4]. In the former, the graphics char-

acter is still not photo-realistic; in the latter, clothing ge-

ometry is lacking. Detailed, accurate human shape estima-

tion from clothed 3d scan sequences [33] can produce very

good results but the acquisition setup is considerably more

involved. Models to realistically capture complex human

appearance including clothing in a laboratory setup, based

on multiple cameras and relatively simple backgrounds ap-

pear in [15]. Procedures directed to the realistic acquisition

of clothing exist [23, 33], but rely on an existing set of 3d

models of garments and a 3d scanning device.

The methodology reviewed in the previous paragraph

achieves excellent results under the application constraints

it was designed for. However, some requires manual in-

teraction, multiple cameras, simple backgrounds, special-

ized scanners, or complex modeling setups. In contrast, we

aim at automatic appearance modeling in situations where

one has no control on the acquisition setup and is given

a minimal number of images (one or two). The idea is

to exploit precise, but inherently limited in coverage, ge-

ometric estimation methods for the human pose and shape,

and complement them with learning techniques, in order to

achieve photo-realistic appearance transfer for specific im-

ages. There is relatively little research focusing on human

appearance generation based on a combination of geometric

and learning methods. One notable exception is the recent

work by [13] which is able to generate realistic images of

people given their silhouette, pose and clothing segmenta-

tion. The method relies on a variational auto-encoder [12]

and a GAN [7, 11] for realistic image generation. However,

it is not obvious how this model would perform inference

for the appearance given an image, or how can it condition

on a particular appearance and photo-realistically transfer

it to a new pose. The human appearance transfer between

two monocular images falls out of the domain of applicabil-

ity of models like [13], and is the new problem defined and

confronted in this research.

3. Human Appearance Transfer

Given a pair of RGB images – source and target, denoted

by Is and It, each containing a person –, the main objective

of our work is to transfer the appearance of the person from

Is into the body configuration of the person from It, result-

ing in a new image Is⇒t.
1 Our proposed pipeline is shown

in fig. 2 and details are given in the next sections.

3.1. 3D Human Pose and Body Shape Fitting

Human Detection & Body Parts Segmentation. To de-

tect each person and infer critical semantic and geometric

information, each image is fed through the Deep Multi-

task Human Sensing (DMHS) network [24], a state-of-the-

art predictor for body part labeling (semantic segmentation)

and 3d pose estimation. DMHS is a multi-stage architec-

ture, in which each stage refines the output from the previ-

ous stage, producing a tuple (J,B,R), where J ∈ R
18×2

is the set of 2d body joint configurations, B ∈ R
w×h×24 is

the body part labeling map, and R ∈ R
17×3 is the 3d body

joint configuration of the person detected in an image.

3d Body Shape Fitting. We use the prediction of DMHS

with the fitting method of [32] in order to estimate the hu-

1The procedure is symmetric, as we can transfer in both directions.
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Figure 2. Human appearance transfer pipeline. Given only a single source and a single target image, each containing a person, with

different appearance and clothing, and in different poses, our goal is to photo-realistically transfer the appearance from the source image

onto the target image while preserving the target shape and clothing segmentation layout. The problem is formulated in terms of a

computational pipeline that combines (i) 3d human pose and body shape fitting from monocular images shown in fig. 3, together with

(ii) identifying 3d surface colors corresponding to mesh triangles visible in both images, that can be transferred directly using barycentric

procedures, (iii) predicting surface appearance missing in the target image but visible in the source one using deep learning image synthesis

techniques – these will be combined using the Body Color Completion Module detailed in fig. 5. The last step, (iv), takes the previous

output together with the clothing layout of the source image warped on the target image (Clothing Layout Warping) and synthesizes the

final output. If the clothing source layout is similar to the target, we bypass the warping step and use the target clothing layout instead.

Figure 3. 3d human pose and body shape fitting module. Given

an image of a person, 2d joint locations, semantic body part seg-

mentation and 3d pose are obtained using a multitask deep neu-

ral network model (DMHS). 3d estimates are then refined by

non-linear optimization, in order to align an articulated human

body mesh (SMPL) with the semantic segmentation layout from

DMHS. The model produces image fits which tightly cover the

body layout and are essential for good quality appearance transfer.

man 3d body shape and pose from an image. The repre-

sentation is based on the 3d SMPL body model [18]. A

commonly used pipeline for fitting the model [1] relies on

minimizing a sparse cost error over detected 2d human joint

locations. However, the method of [32] utilizes all informa-

tion available in the tuple (J,B,R) and the image. The 3d

pose is initialized using R and refined so that each body part

of the model aligns with the corresponding semantic seg-

mentation labels in the image, based on DMHS estimates

J and B (fig. 3). Please notice the difference between our

body shape fitting procedure and the one of [1], illustrated

in fig. 4. The head and arm orientations of our estimate are

closer to the perceived one, due to a superior DMHS ini-

tialization (as opposed to a canonical T-pose) and the use of

dense body parts semantic image segmentation labels dur-

ing fitting.

The estimated 3d body model consists of a fixed number

of Nv = 6890 vertices and a set of Nf = 13776 faces, F ∈
N

Nf×3, that forms the triangle mesh. We define the fitted

3d body shape model as a tuple S = (C,D,M), where

C ∈ R
Nv×3 encodes the RGB color at each vertex position,

D ∈ R
w×h encodes the disparity map of the fitted 3d mesh

with respect to the image and M ∈ {0, 1}Nv encodes the

visibility of each vertex. Given the source and target images

Is and It, we obtain human pose and shape estimates as

mesh structures Ss and St, respectively.
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Figure 4. Comparison of 3d human pose and shape estimation

results of our employed method (green), that combines the 2d and

3d predictions of a deep multitask neural network with pose re-

finement, with [1] (red). As our model, illustrated in fig. 3, is

initialized using an image-sensitive 3d pose predictor (as opposed

to fixed initialization) and is fitted to the full semantic person lay-

out (the complete semantic segmentation of the person into body

parts, as opposed to only a sparse set of human body joints), it

tends to better cope with the angle and the orientation of the head

and arms, as well as the body proportions.

3.2. Body Color Completion

We are first interested in estimating the pixel colors for

the projected visible surface of St, denoted as Is→t, using

the pixel colors on the projected visible surface of Ss.

Barycentric transfer. We begin by defining the common

set of visible vertices Λs∧t = {i|Ms(i) = 1 ∧ Mt(i) =
1, 1 ≤ i ≤ Nv} and select the corresponding mesh faces

F (Λs∧t). For each face f ∈ F (Λs∧t), we project it on Is
and Is→t. For each pixel location in the projection of f on

Is, we find its corresponding pixel location in the projection

on Is→t using barycentric triangle coordinates. Finally, we

copy the color information from one location to another.

Vertex Color Completion Network. The remaining set

of visible vertices in St, Λt\s = {i|Mt(i) = 1 ∧ Ms(i) =
0, 1 ≤ i ≤ Nv} needs to be colored. We rely on learning

the implicit correlations among various body parts in order

to propagate appearance information from the already

colored vertex set Cs to Λt\s. Such correlations, effectively

forms of pattern completion, are learned automatically

from training data using a neural network.

Learning for Mesh Color Completion. We are given

as inputs the color set Cs, the visibility mask Ms ∈
{0, 1}Nv×Nv , and a binary mask that encodes the vertices

we wish to color MΛt\s
∈ {0, 1}Nv×Nv , i.e. visibility val-

ues are replicated along columns. The output is represented

by the predicted colors C⋆
Λt\s

∈ R
3×Nv . We define two

weight matrices W1 ∈ R
Nv×Nv and W2 ∈ R

Nv×Nv . Our

network optimizes over these two matrices with the loss L

defined as the Euclidean distance between the prediction

C⋆
Λt\s

and the ground-truth colors CΛt\s
:

W ⋆
1 = softmax(W1 ⊙Ms) (1)

W ⋆
2 = softmax(W2 ⊙ (Ms ∨MΛt\s

)) (2)

C⋆
Λt\s

= (CT
s ×W ⋆

1 )×W ⋆
2 (3)

L(W1,W2) = ‖CΛt\s
− C⋆

Λt\s
‖ (4)

where the softmax function is applied column-wise. Intu-

itively, any visible target vertex, without color, will have it

assigned to the weighted mean (softmax function) of all the

available colored vertex set, with weights encoded in matri-

ces W1 and W2. We interpolate the predicted vertex colors

C⋆
Λt\s

from the learned model over the corresponding mesh

faces F (Λt\s), project the faces, and obtain the missing re-

gions in Is→t.

Generating Training Samples. The training data con-

sists of inputs, each being a subset of colored vertices from

a mesh, and outputs that represent different subsets of ver-

tices from the same mesh. In practice, given any monocular

image, once we fit the 3d model, we can generate any pos-

sible input-output split over the visible vertices. However,

our inputs tend to be structured, consisting of subsets of

vertices seen in the source and target mesh as well as their

difference set. To ensure a similar distribution, we take the

inputs and outputs to be sets of visible vertices in the inter-

section of the source and target mesh (we assume intersec-

tion is non-trivial), and choose outputs in their difference

sets, respectively. Two training examples can thus be gen-

erated, symmetrically, for every pair of images of people,

with different appearance and in a different pose.

The drawback of this procedure is that, at training time,

the network has to predict colors from a smaller intersection

set of colored vertices (i.e. Λs∧t), whereas at test time, it can

use the fully colored set of vertices from the source mesh Cs

.

3.3. Clothing Layout Warping

We use the model of [6] to estimate the clothing layout

for target and source images, Lt and Ls, defined over a set

of 20 clothing labels. Given the clothing layout source Ls,

we want to transform it into the pose of the target image,

Ls⇒t. We start by collecting clothing label information

for each visible vertex in the source mesh Ss. We prop-

agate the labeling on the entire mesh by using a geodesic

nearest-neighbor approach. For labels not on the source
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Figure 5. Body Color Completion Module. Given a Source (S) and a Target (T) image, with 3d human pose and shape fitted automatically

and represented using 3d meshes, we compute two sets of mesh vertices: ones that are visible in both images (T ∩ S), and ones that are

only visible in the target T\S. We propagate (copy) the color of the intersection set using barycentric transfer and predict the difference set

using a vertex color completion network. The network is trained to predict a subset of vertex colors from other subsets of vertex colors.

Training data for this network can be readily available by sampling any ‘cut’ through the set of visible vertices obtained by fitting a 3d

model to a single image. However, in practice we make training more typical by using targets that come from S\T in pairs of images.

Figure 6. Clothing layout warping. From left to right: source

image clothing layout Ls, target image clothing layout Lt, input

of the clothing layout synthesis network Ls→t, final output of the

warping network Ls⇒t

Figure 7. Human appearance transfer with clothing layout

warping. From left to right: source image, target image, cloth-

ing warped Ls⇒t and RGB data, Is⇒t, generated using the human

appearance synthesis module

mesh, we collect the nearest-neighbour source vertex pro-

jections, vote on a displacement and translate the labeling

accordingly. Thus, we obtain a rough estimate of Ls⇒t,

which will denote by Ls→t. We gather additional image

data from the web, consisting of source-target image pairs

depicting the same person wearing the same clothes, but in

different poses. On this dataset of ∼ 1, 500 training pairs,

we train an image to image translation network which out-

puts Ls⇒t given Ls→t and the disparity map Dt.

3.4. Human Appearance Synthesis

The previously described prediction Is→t captures the

appearance transfer only as covered by our 3d body mod-

els. Hence, clothing layers (e.g. skirt, jacket) or hair which

fall outside the coverage of the human body model are not

transferred during the process. To achieve a higher per-

ceptual quality for the generated image, we further refine

our prediction using a Human Appearance Synthesis (HAS)

network adapted based on ideas in [3]. This method per-

forms multi-resolution refinement and was originally used

in synthesizing photographic images conditioned on seman-

tic segmentation layouts. Instead, we train the network to

predict an image It given three types of inputs: a predicted

semantic layout of clothing Lt or Ls⇒t, the disparity map

Dt, and Is→t. The output of this HAS network, Is⇒t, rep-

resents our final, refined result.

4. Experiments

For all of our experiments we use the Chictopia10k

dataset [16]. The images in this dataset depict different peo-

ple, under both full and partial viewing, captured frontally.

The high variability in color, clothing, illumination and

pose makes this dataset suitable for our task. There are

17, 706 images available together with additional ground

truth clothing segmentations. We do not use the clothing la-

bels provided, but only the figure-ground segmentation such

that we can generate training images cropped on the human

silhouette.

We split the data in two subsets: 15, 404 images for train-
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Figure 8. Sample appearance transfer results from Is to It, where we preserved the identity of the person from It. From left to right:

source image, Is, target image, It, generated image with person from It using the clothing of person from Is.

ing and 2, 302 images for testing. We additionally prune

some of the images based on the quality of body shape fit-

ting, This is done by applying a soft threshold on the in-

tersection over union (IoU) between the projection of the

fitted body model and the foreground mask of the person.

For each image in the dataset, we randomly select two other

images from its corresponding subset (i.e. train or test) to

construct image pairs. In the end, we use 28, 808 training

pairs and 4, 080 testing pairs.

Appearance Transfer. Results of our Body Color Com-

pletion module are shown in fig. 9. Sample results of our

Human Appearance Synthesis module are also given in fig.

10. Although we show transfer results in one direction, our

method is symmetrical, so we obtain results of similar qual-

ity both ways, as shown in fig. 1.

Impact of Components and Failure Modes. Our Human

Appearance Synthesis network receives as inputs Is→t, the

depth map and the clothing segmentation of the target im-

age. To evaluate the contribution of each of these inputs

in the visual quality of the output, we train two additional

Human Appearance Synthesis networks under similar con-

ditions, but with different input data: one without the depth

map, and the other without both the depth map and the

clothing segmentation. In fig. 11, we provide visual re-

sults for all three networks. We observe that the best quality

is obtained when using the complete network.

Errors occur in our pipeline when the clothing segmen-

Figure 9. Sample results for the body color completion module.

From left to right: source image, target image, appearance data

copied using visible mesh triangles on both meshes (source and

target), appearance data completed using vertex color completion.

tation fails or the 3d body shape fitting does not yield good

alignment with the person in the image. Examples are

shown in fig. 12.

4.1. Identity Preserving Appearance Transfer

We also implement a variation of our model in order to

preserve the identity of the target subject during appearance
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Figure 10. Sample results for the human appearance transfer pipeline. From left to right: source image with corresponding fitted 3d

body model, target image with its clothing layout and fitted 3d body model, RGB data generated using the Body Color Completion module

(i.e. Is→t), RGB data generated using the Human Appearance Synthesis module (i.e. Is⇒t).

Figure 11. Impact of the different model components in the ef-

fectiveness of human appearance transfer. In the third column we

show our complete method, in the fourth column we do not use the

depth map and in the fifth column we neither use the depth map

nor the clothing segmentation. For the first example (first row),

notice the difference in quality for the girl’s skirt (i.e. for the com-

plete network the skirt is fully defined, for the network without

depth the skirt becomes blurry and for the network without both

depth and clothing, the skirt is nearly in-existent and body detail

is blurred). For the second example (second row) notice the im-

proved quality of the generated hair.

transfer. To do so, we redefine the sets of vertices used in

the Body Color Completion module. We start by identifying

the skin and clothing image pixels of the target and source

images by using the set of labels provided by the clothing

segmentation model. We place the set of labels defined by

hair, face, arms and legs in the skin category and the remain-

ing ones in the clothing category. Then we assign a category

(i.e. skin/cloth) for each vertex in the body models by in-

specting the clothing labeling under their projections in the

image. We fix the colors for the pixels/vertices categorized

as skin in the target, and perform barycentric transfer only

for the intersection of source and target vertices categorized

as clothing. The colors for the remaining vertices are pre-

dicted as before by our Vertex Color Completion network.

Sample results are shown in fig. 8.

4.2. Perceptual User Study and Automated Tests

We perform a perceptual study by asking 20 human sub-

jects to evaluate our results. We present each one with 100
results in the form of source image (Is), target image (It)

and our automatically generated appearance transfer image

Is⇒t. We ask subjects to evaluate the appearance transfer

quality of Is⇒t, by assigning it one of the following scores:

very poor (1), poor (2), good (3), very good (4), perfect

(5). Finally, we quantified their scores in the form of a nor-

malized histogram, shown in fig. 13 (bottom). The mean

score is 2.9, with standard deviation 0.96, suggesting that

our transfer is reasonable on average.

We compare our method against recent work [19, 27]

independently addressing the problem of pose conditioned
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Figure 12. Several failure modes of our method. From left to

right: source image Is with corresponding mesh, target image It

with corresponding mesh and the generated Is⇒t. In the first ex-

ample the body shape fitting in Is misses the model’s left hand,

causing the final output to contain 3 hands, one resulting from

barycentric transfer. In the second example, the model has prob-

lems dealing with the coat of the person from the source image.

In the third example, the issue is caused by the small number of

common vertices between the two body shape models, producing

appearance mixing and considerable transfer ambiguity.

human image generation. Such methods rely solely on in-

formation in the image without explicitly inferring 3d body

pose. Set aside significant methodological differences, we

are additionally able to perform identity-preserving transfer

(fig. 8). Our results are more visually pleasing and superior

in terms of Inception Scores [26], which are 3.09 [19], 3.35

[27] and 4.13 (Ours).

In order to understand possible difference in terms of

image statistics, we also perform an automated test using

a state-of-the-art human detector, Faster R-CNN [25]. We

compute the human detection scores on two sets contain-

ing 2, 000 generated and real images, respectively. In fig.

13 (top) we observe that the two distributions of detection

scores are similar, with a dominant mode around value 0.99.

5. Conclusions

Modeling and synthesizing human appearance is difficult

due to variability in human body proportions, shape, cloth-

ing and poses. However, models that can realistically syn-

thesize complete images of humans under a degree of con-

trol (conditioning) on an input image appearance or pose,

could be valuable for entertainment, photo-editing, or af-

fordable online shopping of clothing. In this context, we

define a new problem entitled human appearance transfer

where given two images, source and target, of different peo-

Figure 13. (Top) Distributions of person detection scores given by

running Faster R-CNN [25] over two sets of real and automatically

generated images, respectively. (Bottom) We conducted a qual-

ity survey for a set of 100 automatically generated images by our

method (randomly selected), where people were asked to assign a

score from 1 (very poor quality) to 5 (perfect quality).

ple with different poses and clothing, we learn to transfer

the appearance of the source person on the body layout of

the target person. Our solution relies on state-of-the-art 3d

human pose and shape estimation based on deep multitask

neural networks and parametric human shape modeling,

combined with deep photographic synthesis networks con-

trolled by appropriate 2d and 3d inputs. Our image results,

backed-up by a perceptual user study, Inception scores, and

the response of a state-of-the-art human person detector in-

dicate that the proposed model can automatically generate

images of humans of good perceptual quality, and with sim-

ilar statistics as real human images. We also show how

the model can be modified to realistically ‘dress’ a person

shown in one image with clothing captured from a person

in another image.
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