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Abstract

The known rotation problem refers to a special case

of structure-from-motion where the absolute orientations

of the cameras are known. When formulated as a mini-

max (ℓ∞) problem on reprojection errors, the problem is

an instance of pseudo-convex programming. Though theo-

retically tractable, solving the known rotation problem on

large-scale data (1,000’s of views, 10,000’s scene points)

using existing methods can be very time-consuming. In this

paper, we devise a fast algorithm for the known rotation

problem. Our approach alternates between pose estimation

and triangulation (i.e., resection-intersection) to break the

problem into multiple simpler instances of pseudo-convex

programming. The key to the vastly superior performance

of our method lies in using a novel minimum enclosing

ball (MEB) technique for the calculation of updating steps,

which obviates the need for convex optimisation routines

and greatly reduces memory footprint. We demonstrate

the practicality of our method on large-scale problem in-

stances which easily overwhelm current state-of-the-art al-

gorithms1.

1. Introduction

Given a number of scene points that were viewed in a

number of images, the goal of structure-from-motion (SfM)

is to estimate the 3D coordinates of the scene points based

on their measured 2D coordinates in the images. The im-

plicit geometric constraints underpinning the imaging sce-

nario also requires the pose of the cameras (each defined

by a rotation and translation) that captured the images to be

recovered jointly with the 3D scene points.

Many current SfM pipelines employ bundle adjustment

(BA) [35] as a core routine. BA refers to the task of jointly

refining the scene points and camera poses, and it is usually

formulated as a non-linear least squares problem. Most BA

implementations are based on the Levenberg-Marquardt al-

gorithm, which enables convergence up to local optimality.

In practice, it is vital for the target variables to be initialised

1See the supplementary material for demo program.

well to avoid convergence to bad local optima.

An alternative SfM pipeline [14, 31, 36, 18, 23, 16, 13]

that has begun to receive attention is as follows: first,

estimate rotations by a rotation averaging method, then,

keeping the rotations fixed, estimate the scene points and

translations; the latter problem is called the known rota-

tion problem (KRot). The strength of this approach is two-

fold: first, multiple-rotation averaging can often be solved

much more easily (in certain cases, up to global optimal-

ity [27, 29, 12]); second, when formulated as a minimax

(ℓ∞) problem, KRot becomes an instance of pseudo-convex

programming, which is also amenable to exact global solu-

tions [20].

In this paper, we focus on KRot. Although the problem

is tractable, as we will demonstrate later, most existing al-

gorithms [19, 21, 30, 28, 4] are not practical on large-scale

inputs involving 1,000’s of views and 10,000’s scene points,

in contrast to modern BA packages, e.g., [33, 22], which

have been applied successfully on such sizes. The ineffi-

ciency of the previous KRot algorithms stems from their

dependence on convex optimisation to drive the iterative up-

dates (see Sec. 2.2 for details). Although convex solvers are

theoretically efficient, in practice, they incur much compu-

tational and memory overheads. Arguably this has also hin-

dered the usability of the alternative SfM pipeline.

Contributions We propose a fast algorithm for KRot.

The overall structure of our method interleaves the calcu-

lation of scene points and translations [25]—akin to the

resection-intersection approach for BA [35].

The primary feature of our algorithm that enables its su-

perior performance over previous techniques lies in a novel

method for solving each pseudo-convex sub-problem. In-

stead of relying on convex routines to compute the update,

our method calculates descent directions in closed-form

based on a novel minimum enclosing ball (MEB) technique.

This leads to a fast and self-contained algorithm (does not

require external convex solvers). The resection-intersection

structure also makes it inherently parallelisable. As we will

show in Sec. 4, our algorithm can scale up to input sizes that

are beyond the reach of existing methods.
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2. Known rotation problem

We assume calibrated cameras. Let M be the number

of scene points and L be the number of cameras. Let sk
be the 3D coordinates of the k-th scene point, and uj,k be

the 2D observation of sk in the j-th image. The pose of

the j-th camera is defined by the rotation and translation

(Rj , tj). Given the 2D observations {uj,k} and rotations

{Rj}, under the minimax formulation [20], we solve

min
{tj},{sk}

max
j,k

∥

∥

∥

∥

∥

uj,k −
R1:2

j sk + t1:2j

R3

jsk + t3j

∥

∥

∥

∥

∥

p

s.t. R3

jsk + t3j > 0 ∀j, k,

(KRot)

to estimate the scene points {sk} and the camera positions

{tj}. Here, R1:2

j and R3

j are respectively the first two rows

and the third row of Rj (similarly for t1:2j and t3j ). Intu-

itively, KRot aims to minimise the maximum reprojection

error over all 2D observations, and the constraints of the

problem ensure that the estimated {sk} lie in front of all the

cameras. As established in [28], KRot is pseudo-convex.

Missing data and outliers Not every scene point is visi-

ble to all images; simply drop (j, k) pairs that are irrelevant

can handle missing data. Also, like most core SfM routines

(including standard BA [35], KRot is not robust to outliers.

This does not reduce the value of KRot techniques, since

removing outliers is usually and effectively done earlier in

the pipeline, e.g., use RANSAC to estimate relative poses.

Choice of norm We leave the choice of the p-norm ‖ · ‖p
in (KRot) free since KRot is pseudo-convex for any p ≥ 1,

and our algorithm works for any p ≥ 1. In practice, typical

choices of the p-norm include ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ [4, 8].

2.1. Resection­intersection

Instead of solving KRot directly, one can alternate be-

tween solving for {tj} and {sk}. In fact, if {tj} are fixed,

the scene points can be optimised independently, viz.:

min
sk

max
j

∥

∥

∥

∥

∥

uj,k −
R1:2

j sk + t1:2j

R3

jsk + t3j

∥

∥

∥

∥

∥

p

s.t. R3

jsk + t3j > 0 ∀j.

(Intk)

Problem (Intk) is simply ℓ∞ triangulation [17], i.e., inter-

secting back-projected image points. Conversely, if {sk}
are fixed, the translations can also be optimised separately,

viz.:

min
tj

max
k

∥

∥

∥

∥

∥

uj,k −
R1:2

j sk + t1:2j

R3

jsk + t3j

∥

∥

∥

∥

∥

p

s.t. R3

jsk + t3j > 0 ∀k.

(Resj)

Algorithm 1 Resection-intersection method for KRot.

Require: Input data {Rj}
L
j=1

, {uj,k}
L, M
j=1,k=1

.

1: Initialise {tj}
L
j=1

and {sk}
M
k=1

.

2: repeat

3: For each k = 1, . . . ,M , update sk via (Intk).

4: For each j = 1, . . . , L, update tj via (Resj).

5: until convergence

6: return {tj}
L
j=1

and {sk}
M
k=1

.

Problem (Resj) is a special case of the ℓ∞ camera resec-

tioning problem [20]. The above properties motivate the

resection-intersection method summarised in Algorithm 1.

By performing what is effectively block-wise coordinate

descent, Algorithm 1 ensures convergence to the global op-

timum of KRot. While resection-intersection is eschewed

for BA due to its slower convergence [35], it is effective for

KRot since each sub-problem is pseudo-convex [28]. By

solving (Intk) and (Resj) exactly, the best “step size” is used

in each descent, which leads to fast overall convergence.

Another advantage of Algorithm 1 is that the sub-

problems within either (Intk) or (Resj) are mutually inde-

pendent given that either structure or camera positions are

fixed. Hence, parallel computation can easily be leveraged

for speed-ups; as we will demonstrate later.

2.2. Previous works

Many previous algorithms for KRot attempt to solve the

overall problem directly (e.g., [20, 28, 4, 6, 11]). This re-

quires to simultaneously update all the 3(L+M) variables

in each iteration, which is cumbersome for large-scale prob-

lems. The resection-intersection approach, first introduced

in [25], allows to partition KRot into small sub-problems

without affecting global optimality guarantees.

However, a more fundamental weakness of many previ-

ous methods [20, 21, 30, 28, 4] is that they need to execute

convex optimisation in each step, e.g., linear programming

(LP) or second-order cone programming (SOCP). Though

theoretically efficient, there are significant overheads in

calling these routines. Even though the methods can be re-

purposed to solve KRot via resection-intersection, for large

L and M the (sub-)overheads quickly add up.

There exist approaches that do not depend on convex

optimisation. Based on a primal-dual interior-point frame-

work, Dai et al. [6] perform a Newton-like descent and step

size-search in each iteration. Although they outperformed

previous methods, the need to calculate Hessians for all the

measurements is a significant per-iteration cost. In contrast,

our method only requires the computation of MEB on at

most four 3D points per iteration (see Sec. 3.1.2).

A proximal splitting approach for KRot was proposed

by Eriksson and Isaksson [11]. In a nutshell, their method
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performs a one-step bundle adjustment (i.e., non-linear least

squares) followed by 1D bisection to evaluate the proximal

operator. The speed of convergence depends on the rate

of increase of a penalty parameter, which needs to be con-

trolled properly to avoid divergence. In practice, we found

that often a conservative rate is required for correct results.

Donne et al. [8] proposed a so-called polyhedron col-

lapse method for ℓ∞ triangulation (Intk). Specialising for

the case of p = ∞, they leverage the linearity of the con-

straints to calculate descent directions in closed-form. Our

proposed algorithms for the sub-problems can compute de-

scent directions in closed-form without restricting p.

3. Fast descent method

One major contribution is a fast algorithm for the sub-

problems in Algorithm 1. With simple manipulations,

both (Intk) and (Resj) can be expressed in the common form

min
x∈R3

max
i

ri(x)

s.t. cTi x+ di > 0 ∀i,
(1)

where x are the variables of interest (3D coordinates or

camera position—both 3D quantities in each sub-problem);

ri(x) =
‖Aix+ bi‖p
cTi x+ di

(2)

is the i-th pseudo-convex residual function, and

Ai =

[

aTi,1
aTi,2

]

∈ R
2×3, bi =

[

bi,1
bi,2

]

∈ R
2, (3)

ci ∈ R
3 and di ∈ R are constants derived from the data (see

the supp. material for details of converting (Intk) and (Resj)

into (1)). Since (2) is pseudo-convex [1], their point-wise

maximum is pseudo-convex. Hence, (1) can be solved glob-

ally using iterative minimisation techniques.

Our algorithm, called fast descent method (FDM), is

summarised in Algorithm 2. The structure is simple—given

an initial feasible estimate x̂, find a direction λ and step

size α to adjust x̂ such that the cost (point-wise maximum

residual) decreases; stop when a valid λ cannot be found.

As mentioned in Sec. 1, the key feature of FDM that en-

ables its superior performance lies in a closed-form method

to compute λ. Details of FDM are in the rest of this section.

3.1. Efficient computation of descent direction

Algorithm 3 describes our routine for finding a descent

direction for a current estimate x̂. Let r̂ be the value of the

objective function at x̂, i.e.,

r̂ = max
i

ri(x̂). (4)

Algorithm 2 Fast Descent Method (FDM) for (1).

Require: Input data {Ai,bi, ci, di}
N
i=1

, initial soln. x̂.

1: λ← Find descent direction using data and x̂ (Alg. 3).

2: while λ is not null do

3: α← Find step size using data, x̂ and λ (Alg. 4).

4: x̂← x̂+ αλ.

5: λ← Find descent direction using data and x̂.

6: end while

7: return x̂.

Algorithm 3 Find descent direction.

Require: Input data {Ai,bi, ci, di}
N
i=1

, current estimate

x̂, threshold ǫ0.

1: G ← Norm. negative active gradient vectors at x̂ (6).

2: m∗ ← Centre of MEB of G.

3: if ‖m∗‖
2
≤ ǫ0 then

4: λ← null.

5: else

6: λ←m∗/ ‖m∗‖
2
.

7: end if

8: return λ.

The routine begins by finding the set of active residuals A,

i.e., the set of residuals that have the value r̂ at x̂, i.e.,

A ← {ℓ ∈ {1, . . . , N} | rℓ(x̂) = r̂}. (5)

Then, we compute the normalised negative gradient vectors

G corresponding to the active residuals

G =

{

g ∈ R
3

∣

∣

∣

∣

g = −
∇rℓ(x̂)

‖∇rℓ(x̂)‖2
, ∀ℓ ∈ A

}

(6)

(see the supp. material on deriving the gradient ∇ri(x) for

all p ≥ 1).

A descent direction λ ∈ R
3 is computed as the centre of

the minimum enclosing ball (MEB) of G. Specifically, the

centre of the MEB of G is the point m∗ ∈ R
3 where

m∗ = argmin
m∈R3

max
g∈G
‖g −m‖2. (7)

In the following, we prove the validity of this approach be-

fore proposing an algorithm to calculate MEB.

3.1.1 Validity of descent direction

First, we define some notations: a bolded lower case letter

may refer to a vector or a point, depending on the context.

For any x and y, |xy| is the distance between the pair, i.e.,

|xy| := ‖x− y‖
2
. (8)
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△xyz is the triangle formed by three points x, y and z, and

∠xyz is the angle between vectors (x−y) and (z−y), i.e.,

∠xyz := arccos

(

(x− y)T (z− y)

‖x− y‖ · ‖z− y‖

)

. (9)

The following are basic results from optimisation. Inter-

ested readers can refer to [26] and the supp. material.

Lemma 1. A direction λ is a descent direction of a function

f(x) at x̂ iff 〈λ,−∇f(x̂)〉 = −∇f(x̂)Tλ > 0.

Lemma 2. Given a descent direction λ for a function f(x)
at x̂, the larger 〈λ,−∇f(x̂)〉 is, the faster f(x) is reduced

locally along the direction x̂+ αλ for α > 0.

Our main theorem is as follows.

Theorem 1. If the centre m∗ of the MEB of G is not equal

to the origin, then m∗ is a descent direction for (1) at x̂.

Proof. Let o be the origin. If m∗ 6= o, then by the defini-

tion of MEB (7), for all g ∈ G

|m∗g| < |og|, (10)

which, by the Law of Sines [2], implies

∠m∗og < ∠om∗g (11)

Since the inner angles of a triangle sum to 180◦,

∠m∗og + ∠om∗g < 180◦. (12)

Combining (11) and (12), ∠m∗og < 90◦ is established,

and thus

〈m∗,g〉 = |og||om∗| cos(∠m∗og) > 0. (13)

By Lemma 1, m∗ is a descent direction for all active resid-

uals at x̂, and thus m∗ is also a descent direction for (1) at

x̂ since it reduces the value of the maximum residuals.

o

g

w

'

'

g
*m

Figure 1. Diagram to support the proof of Theorem 2.

How good a descent direction is the centre of the MEB

of G? The following theorem shows that it is the optimal

descent direction, in the sense of Lemma 2.

Theorem 2. The centre m∗ of the MEB of G is the descent

direction that maximises the rate of decrease of (1) at x̂.

Proof. Following Lemma 2, we aim to show that

m∗ = argmin
m∈R3

max
g∈G

∠gom. (14)

We first construct the following geometric objects to lay the

foundation of the proof (refer to Fig. 1 for intuition):

1. Let H0 be the plane passing through m∗ and orthogonal

to the line segment om∗:

om∗ ⊥ H0 (15)

2. Let ω an arbitrary direction from o intersectingH0 at w′.

3. Let H1 be the plane passing through m∗ and orthogonal

to m∗w′, andH1 intersectsH0 at line L; therefore

L ⊥m∗w′. (16)

4. By [5], there must exist a point g on the boundary of the

MEB of G that satisfies

|w′g| ≥
√

|m∗w′|2 + |m∗g|2; (17)

and let g′ be the intersection of line og andH0.

5. Define the angles

µ = ∠w′og′ and θ = ∠m∗og′. (18)

The geometric interpretation of (17) is that g and w′ are

in different half-spheres of the MEB of G divided by H1,

which yields, that on the plane H0, g′ and w′ are on the

different side of L. Therefore, given (16), we get

∠g′m∗w′ ≥ 90◦, (19)

and the Law of Cosines [3] translates (19) into

|w′g′|2 ≥ |m∗g′|2 + |m∗w′|2. (20)

(15) yields

∠om∗g′ = ∠om∗w′ = 90◦, (21)

which, by Pythagorean theorem, implies

|og′|2 = |om∗|2 + |m∗g′|2

and |ow′|2 = |om∗|2 + |m∗w′|2.
(22)

In△w′og′, as in the Law of Cosines,

cos(µ) =
|ow′|2 + |og′|2 − |w′g′|2

2|ow′||og′|
. (23)
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Substituting (22) into (23) yields

cos(µ) =
|om∗|2 + |m∗g′|2 + |om∗|2 + |m∗w′|2 − |w′g′|2

2|ow′||og′|
.

(24)

Substituting (20) into (24) yields

cos(µ) ≤
2|om∗|2

2|ow′||og′|
=
|om∗|

|ow′|

|om∗|

|og′|
. (25)

By (21), |om∗|/|ow′| < 1, thus (25) yields

cos(µ) <
|om∗|

|og′|
= cos(θ) =⇒ µ > θ, (26)

therefore, we conclude that for any direction ω other than

m∗, there always exists a point g ∈ G satisfying

∠goω > ∠gom∗, (27)

thus (14) is validated.

3.1.2 Closed-form MEB algorithm

The effort to calculate the MEB of G naturally depends on

the size of (number of vectors in) G. Fortunately, the combi-

natorial dimension of a problem with the form (1) has been

established to be four [10, 32]. Thus the size of the active

set A, and hence the size of set G, is at most four. This

motivates a closed-form algorithm to calculate the MEB.

Let m∗ and f∗ respectively be the centre and radius of

the MEB of G. Due to the small upper bound on the size of

G, the possible solutions for m∗ and f∗ can be enumerated

as follows:

• Case 1: G = {g1} is of size 1.

Trivially, the centre m∗ = g1 and f∗ = 0.

• Case 2: G = {g1,g2} is of size 2.

The centre of the MEB must lie in the middle of the line

segment g1g2 (also a diameter of the MEB), i.e., m∗ =
(g1 − g2)/2, and f∗ is simply ‖m∗ − g1‖2.

• Case 3: G = {g1,g2,g3} is of size 3.

We need to check the following two possibilities to find

the correct MEB (see Fig. 2 for an illustration):

– Case 3.1: The MEB is formed by two of the three

points (as in Case 2 above) and the third point lies

within the MEB. We need to solve Case 2 on the three

possible pairings of the points and check.

– Case 3.2: The MEB is the ball that has g1, g2 and g3

on its surface (also on its great circle). The centre m∗

and radius f∗ of the great circle (also of the ball) can

be computed analytically [38, Chapter V].

• Case 4: G = {g1,g2,g3,g4} is of size 4.

Similar to Case 3, we need to check the following two

possibilities to find the correct MEB:

g21g

3g

*m

(a)

g2
1g

3g

*m

(b)

Figure 2. (a) Case 3.1 when two points determine the MEB and the

third point lies within the MEB. (b) Case 3.2 when three points lie

on the surface (also on a great circle) of the MEB.

– Case 4.1: The MEB is formed by three of the four

points (as in Case 3 above) and the fourth point lies

within the MEB. We need to solve Case 3 on the four

possible selections of triplets of the points and check.

– Case 4.2: The MEB is the ball that contains g1, g2, g3

and g4 on its surface. However, recall that the items

in G are unit vectors, hence the MEB on G must be

centred at the origin (m∗ = o) with radius f∗ = 1.

Degeneracies In the degenerate cases where the size of G
is greater than four, any existing MEB solver [37] can be

employed to solve the degeneracy. Empirically, degeneracy

did not affect Algorithm 3 since noisy data is rarely degen-

erate [24].

3.2. Optimising the step size

Once a descent direction λ is computed in Algorithm 2,

we need to search for a step size α along λ to update x̂. The

residual function parametrised by α is

ri(α) =
‖Ai(x̂+ αλ) + bi‖p
cTi (x̂+ αλ) + di

:=
‖uiα+ vi‖p
wiα+ zi

,

(28)

which remains pseudo-convex for α if wiα+zi > 0, hence-

fore the search for the step size that provides the biggest

reduction in the objective value can be formulated as the

following one-dimensional pseudo-convex problem

min
α∈R+

max
i

ri(α)

s.t. wiα+ zi > 0.
(29)

Any of the previous methods for pseudo-convex program-

ming (e.g., [28, 4, 20]) can be repurposed for (29), however,

to avoid cumbersome convex sub-problems, we exploit the

fact that (29) is a single variable problem and develop a

modified bisection method searching over α to solve (29).

Algorithm 4 describes our approach; see also Fig. 3 for

an illustration. The lower bound for α is initialised to 0,

while the initial upper bound is obtained as the supremum
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f(   )

2 2 2 2

Figure 3. Illustration of Algorithm 4. If the current setting of

[lb, ub] yields α1 = (lb+ ub)/2, then by f(α1
− ǫ2) < f(α1) <

f(α1 + ǫ2), α
1 is known to be on the monotonously increasing

part of f(α), thus the optimal α∗ is smaller than α1 and ub should

be reduced; similarly, lb need to be increased at α2 = (lb+ub)/2.

of α such that wiα + zi > 0 is true for all i (this can be

done in linear time by incrementally intersecting the half-

lines wiα + zi > 0). The algorithm leverages the pseudo-

convexity property of (29), namely, the objective function

is strictly either increasing or decreasing on each side of the

global minimum, to progressively refine the bound [lb, ub]
on α. Two convergence thresholds ǫ1 and ǫ2 (set to respec-

tively 10−6 and 10−8 in our experiments) that enable a ter-

mination up to any desired precision threshold2.

Algorithm 4 Modified bisection to find step size (29).

Require: Input data {ui,vi, wi, zi}
N
i=1

, convergence

thresholds ǫ1 and ǫ2.

1: [lb, ub]← lower and upper bound of α (see Sec. 3.2).

2: Define f(α) = maxi ri(α).
3: while ub− lb > ǫ1 do

4: α̂ = (ub+ lb)/2.

5: rl ← f(α̂− ǫ2).
6: r ← f(α̂).
7: rr ← f(α̂+ ǫ2).
8: if rl > r > rr then

9: /* α̂ is on the decreasing part of f(α).*/

10: lb← α.

11: else if rl < r < rr then

12: /* α̂ is on the increasing part of f(α).*/

13: ub← α.

14: else

15: /* α̂ is at a stationary point up to precision ǫ2.*/

16: Break.

17: end if

18: end while

19: return α = (ub+ lb)/2.

3.3. Convergence of FDM

FDM (Algorithm 2) terminates when the centre of the

MEB of G is at the origin. Here, we show that this is the

2Note that most globally optimal numerical schemes, including algo-

rithms for KRot, guarantee optimality only up to a pre-defined threshold.

correct stopping criterion. First, we state another basic re-

sult before proving the main theorem.

Lemma 3. Given two vectors a and b, if 〈a,b〉 > 0, then

there exist a positive value ǫ that ‖ǫb− a‖
2
< ‖a‖

2
.

Theorem 3. x̂ is a stationary point of (1) iff the centre m∗

of the MEB of G coincides with the origin o.

Proof. If x̂ is not a stationary point, then the values of the

active residuals can be decreased simultaneously. This, by

Lemma 1, implies the existence of a λ at x̂ that satisfies

〈λ,g〉 > 0 ∀g ∈ G. (30)

Therefore, by Lemma 3, there exists a non-zero ǫ such that

‖ǫλ− g‖
2
< ‖g‖

2
= 1 ∀g ∈ G, (31)

thus the origin o cannot coincide with m∗.

If m∗ does not coincide with o, then by Theorem 1, m∗

is a descent direction at x̂; x̂ is thus not a stationary point.

Due to finite precision, a threshold ǫ0 (ǫ0 = 10−8 in our

experiments) is used in Algorithm 3 to test if m∗ is numer-

ically equal to o. Finally, combining Theorem 3 and that

a pseudo-convex function has only one stationary point, it

is guaranteed that FDM will reach the global minimum in

finite steps.

4. Experiments

There are two parts in our experiments: one is dedi-

cated to benchmark the performance of FDM on triangu-

lation sub-problem (Intk), and the other is to benchmark the

resection-intersection (henceforth, Res-Int) algorithm (1)

with FDM solver on KRot. Experiments were done on a

PC with a 3.7GHz Intel 4-core CPU and 16GB RAM.

Choice of p-norm Though our method is applicable to

any p ≥ 1 in (2), most of the previous works focussed on

p = 2. Thus, we fixed p = 2 in our experiments. This

however excluded [8], which is limited to p = ∞. In any

case, [8] is only designed for the special case of triangula-

tion but not our targeted problem—KRot.

Datasets We used 6 publicly available datasets from [9],

covering small to large problem sizes to demonstrate the

scalability of our method. Specifically, we used House

(Small), Lund Cathedral (Small), Lund Cathedral (Large),

Alcatraz Courtyard, Alcatraz Water Tower, and University

of Western Ontario (Large). It is worth noting that for KRot,

the state-of-the-art methods [4, 6, 11] were tested only on

relatively small problems: up to M = 23,674 scene points

and L = 67 cameras in [11]. Here, the data we used have

one order magnitude more scene points and two orders of

magnitude more cameras—as we will show later.
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Figure 4. Runtime of competing methods on synthetic triangula-

tion instances. For each input size L, the runtime was averaged

over M = 20 random instances.

4.1. Triangulation

We compared FDM with (1) Gugat’s algorithm [15],

which was shown in [4] to outperform the other meth-

ods that solve convex sub-problems (bisection [20], Dinkel-

bach’s method [7, 28]), (2) Dai’s method [6], and (3) proxi-

mal splitting [11]. All methods (including FDM) were exe-

cuted in Matlab3. We used SeDuMi [34] as the SOCP solver

for the convex feasibility problems in Gugat.

To initialise a specific triangulation instance, we used the

mid-point method (a closed-form solver) [17] on two ran-

domly selected measurements to find the initial estimate.

Synthetic data We generated L cameras with random

poses, and varied L from 2 to 200 (recall that the size of

a triangulation instance is L). For each L setting, we ran-

domly generated M = 20 3D scene points, projected them

onto the cameras, and added Gaussian noise of σ = 5 to the

projected points—using the projected point as data, this cre-

ated M random triangulation instances per L setting. Fig. 4

shows the runtime of all competing methods

It is evident that FDM and Dai’s method significantly

outperformed Gugat and proximal splitting. Comparing just

the two descent methods that do not employ convex sub-

problems, FDM was not only faster than Dai’s method, the

former also scaled much better to large input sizes. As we

will show later in Sec. 4.2, the good scaling property of

FDM is essential for solving large-scale KRot instances.

Real data The real datasets used contain estimated cam-

era poses, which we used to set up triangulation instances.

Statistics of the datasets and runtime results are available

in Table 1. Again, the excellent performance of FDM (avg

runtime of ≈1 ms) was observed in real data. Note that, al-

though practical triangulation instances are small (L ≤ 20),

it is still crucial to perform triangulation very efficiently due

to the sheer number of triangulation instances.

3For Gugat, using Agarwal’s implementation [4]. For [6, 11], using our

own implementation since the original authors’ code were not available.

4.2. Known rotation problem

We compared Res-Int (with FDM for the sub-problems)

with Gugat’s algorithm and proximal splitting, where the

latter two were executed directly on the full KRot problem

(i.e., each iteration updates all 3(L + M) variables). We

did not compare against using Gugat, proximal splitting and

Dai et al. [6] as sub-problem solvers in the Res-Int frame-

work, since as demonstrated in Table 1, these three meth-

ods as sub-problem solvers are much slower than FDM. In

fact, using Gugat and proximal splitting on the full KRot

problem consumed much less time than using them as sub-

problem solvers in Res-Int. For Res-Int, we also tested both

sequential (seq) and parallel (par) versions (using 4 cores).

The major internal computations of the competitors are

solved by third-party packages that were implemented in

C/C++, e.g., SeDuMi for the SOCP feasibility tests in Gu-

gat, and SBA [22] for the bundle adjustment subroutine in

proximal splitting. Therefore, for a fair comparison, we also

implemented FDM in C-Mex for this experiment.

To initialise a KRot instance, we ran 1 iteration of the bi-

section method given a loose upper bound ub = 100 pixels,

as was done in [4].

Table 2 shows the runtime (in seconds) of the methods.

To ensure that we did not exceed the capacity of SeDuMi

in Gugat, we cull scene points that were observed in few

images (i.e., if a scene point was observed by less than a

certain number ‘vis’ of images, it was removed from the

optimisation). Also, if an algorithm was not able to finish

running within the cut-off limit of 3 hours, we terminated

the program.

As in Table 2, Res-Int (both sequential and parallel

variants) significantly outperformed Gugat and proximal

splitting—in fact, Res-Int was able to scale up to input sizes

that were beyond the reach of the two previous methods.

Note that the 4 bigger data in Table 2 are significantly larger

than the examples tested in [4] and [11].

For qualitative results of our method, see Fig. 5.

5. Conclusion

The proposed Res-Int algorithm for known rotation

problem partitions the task into multiple 3-variable pseudo-

convex optimisations and introduces a novel fast descent

method based on minimum enclosing ball technique to

solve the sub-problems. Not only the Res-Int algorithm

achieves vastly superior performance to existing KRot

methods, the FDM standalone also becomes the state-of-

the-art triangulation solver. We hope to see both algorithms

be applied to broader vision applications in the future.
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Dataset statistics (for triangulation) Avg runtime (in milliseconds)

Name # points # images avg L Gugat [4] Proximal [11] Dai [6] FDM

House (S) 12,444 12 2.83 28.02 25.29 1.28 0.30

Lund (S) 16,878 17 2.68 28.17 22.01 1.28 0.29

Yard 23,674 133 13.58 57.67 44.14 3.20 1.06

Tower 14,828 172 11.43 53.90 47.57 2.74 0.85

UWO (L) 97,326 692 13.61 64.04 72.49 3.19 1.19

Lund (L) 159,055 1,208 14.60 73.04 99.75 3.58 1.25

Table 1. Average runtime (in milliseconds) per triangulation instance on real data. ‘# points’ is the total number of triangulation instances,

and ‘avg L’ is the average size L of the triangulation instances (NB: not all scene points are observed in each image).

Dataset statistics (for KRot) Avg runtime (in seconds)

Name vis # points M # cameras L # obs Gugat [4] Proximal [11] Res-Int (seq) Res-Int (par)

House (S) 4 2,174 12 12,037 27.80 19.18 3.15 2.97

Lund (S) 4 2,873 17 13,629 24.61 14.49 4.70 3.28

Yard 2 23,674 133 321,554 n/a 3,313.10 782.69 245.10

Tower 2 14,828 172 169,618 n/a 1,374.90 387.24 128.02

UWO (L) 2 97,326 692 1,324,698 n/a n/a 2,347.70 698.84

Lund (L) 8 103,940 1,208 2,002,637 n/a n/a 5,880.40 2,978.25
Table 2. Total runtime (in seconds) for KRot on real data. ‘vis’ is the threshold used to cull scene points that were observed in few images

(i.e., if a scene point was observed in <vis images, it was removed from the optimisation). The purpose of culling is to reduce the overall

problem size 3(M + L) and avoid exceeding the “capacity” of SeDuMi in Gugat. ‘# obs’ is the total number of residual functions. If an

algorithm was not able to finish running on an instance in 2 hours, we terminated the program and label their runtime as ‘n/a’ above.

(a) House (S) (b) Lund (S) (c) Yard (d) Tower

(e) Lund (L) (f) UWO (L)

Figure 5. Reconstruction results of Res-Int (Algorithm 1) on 6 real data. Each red ‘+’ represents the position of a camera. Orientations of

the cameras are not shown because they were not part of the optimisation variables of Res-Int.
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