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Abstract

Domain shift, which occurs when there is a mismatch

between the distributions of training (source) and testing

(target) datasets, usually results in poor performance of the

trained model on the target domain. Existing algorithms

typically solve this issue by reducing the distribution dis-

crepancy in the input spaces. However, for kernel-based

learning machines, performance highly depends on the sta-

tistical properties of data in reproducing kernel Hilbert

spaces (RKHS). Motivated by these considerations, we pro-

pose a novel strategy for matching distributions in RKHS,

which is done by aligning the RKHS covariance matri-

ces (descriptors) across domains. This strategy is a gen-

eralization of the correlation alignment problem in Eu-

clidean spaces to (potentially) infinite-dimensional feature

spaces. In this paper, we provide two alignment approaches,

for both of which we obtain closed-form expressions via

kernel matrices. Furthermore, our approaches are scal-

able to large datasets since they can naturally handle out-

of-sample instances. We conduct extensive experiments

(248 domain adaptation tasks) to evaluate our approaches.

Experiment results show that our approaches outperform

other state-of-the-art methods in both accuracy and com-

putationally efficiency.

1. Introduction

Standard supervised learning algorithms rely on the as-

sumption that the training data and the testing data are

drawn from an identical distribution. The validity of this

assumption guarantees that the trained model can general-

ize well to the testing set. However, in real world appli-

cations, data are sensed by various types of acquisition de-

vices and in different situations. For example, in computer

vision tasks, images may be taken by cameras with differ-

ent resolutions or under different light conditions. In such

cases, a distribution mismatch or domain shift usually oc-

curs, and consequently traditional statistical learning meth-

ods tend to perform poorly. Therefore, how to handle the

statistical heterogeneity among data becomes a fundamen-

tal problem, called the domain adaptation problem.

A domain adaptation problem usually involves two do-

mains: the source domain and the target domain. The

source domain is composed of labeled data {Xs,~lX} =
{(xi, lxi

)}Ns

i=1, which can be used to train a reliable clas-

sifier. The target domain is composed of unlabeled data

Y t = {yj}Nt

j=1, whose statistical properties are different.

The main objective is to adapt the model (e.g., classifier)

trained on the source domain to the target domain.

Many works have considered this problem. One class of

algorithms [4, 14, 26] reduces the distribution discrepancies

across domains by pointwise re-weighting. Another widely

investigated paradigm finds domain-invariant feature rep-

resentations. Typical algorithms include domain invariant

projection (DIP) [1], transfer component analysis (TCA)

[23], and joint distribution alignment (JDA) [20]. However,

sometimes, the statistical distributions across domains are

very different, and even their supports are significantly mis-

matched. In such cases, it is difficult to find suitable weights

for matching, or to identify domain-invariant features. More

recently, to solve the above issue, another line of algorithms,

which consider “moving” the source data to the target do-

main so as to make their distributions closer, has been pro-

posed. In [7], Courty et al. borrowed a concept from opti-

mal transport theory [28], making use of the optimal trans-

port plan (map) to “transport” source data. But their method

suffers from a drawback: It can be applied only in transduc-

tive settings. That is, when new data are available, one need

to recompute a new optimization problem. In [27], Sun et

al. used a linear map to transform source data to align co-

variance matrices across domains. However, this method

considers only the linear correlation of data, which limits

its applications on datasets with complex nonlinear correla-

tion structures.

All the above works attempt to tackle domain shift in the

input spaces, which is probably not optimal for kernel-based

learning machines. Moreover, there exist various data rep-

resentations, such as strings [19], graphs [18], lattices [5],
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manifolds [30], and proteins [3], which are not represented

as vectors in Euclidean spaces. Instead they can be well

characterized by kernel functions. Hence, for such datasets,

it is not straightforward (and sometimes not even possible)

to apply the above algorithms.

Motivated by all these considerations, we propose a

novel and conceptually intuitive framework for domain

adaptation, which is done by aligning infinite-dimensional

covariance matrices (descriptors) across domains. More

specifically, we first map the original features to a RKHS,

and then use a linear operator in the result space to “move”

the source data to the target domain such that the RKHS co-

variance descriptors of the transformed data and target data

are close. Computing the pairwise inner product with the

transformed and target samples, we obtain a new domain-

invariant kernel matrix with the closed-form expression,

which can be used in any kernel-based learning machine.

In this paper, we provide two types of linear transforma-

tions (operators) in RKHS: the kernel whitening-coloring

map and the kernel optimal transport map, each of which

corresponds to a new domain-invariant kernel.

As we will show, our approaches have several advan-

tages: (1) They support various data representations, as long

as the kernel functions are well-defined. (2) They can nat-

urally handle out-of-sample patterns. (3) They can align

distributions with large shifts. (4) Exploiting the princi-

pal eigenstructures of RKHS covariance descriptors, our ap-

proaches are computationally efficient.

Organization. In Section 2, we describe the correlation

alignment problem in Euclidean spaces R
n, and introduce

two solutions. In Section 3, we discuss methods of empiri-

cally estimating covariance descriptors in RKHS. Section 4

and Section 5 form the core of our paper, where we gener-

alize correlation alignment to infinite dimensional settings,

and develop domain-invariant kernel machines. In Section

6, we report our experimental results on cross-domain vi-

sual object recognition and document classification. In the

supplementary material, we provide proofs of all mathemat-

ical results in the paper and more discussion on the experi-

mental results.

2. Correlation alignment in R
n

Given two positive definite covariance matrices Σs and

Σt ∈ R
n×n obtained from source and target samples re-

spectively, we aim at finding a linear transformation T :
R

n → R
n, such that

TΣsT
T = Σt. (1)

Eq (1) corresponds to matching two centered Gaussian dis-

tributions. That is, given a random vector ~x ∼ N(~0,Σs),
we need to ensure that after transformation, the new random

vector ~y = T ~x follows the distribution N(~0,Σt).

There may exist many solutions of (1). In our paper, we

investigate two typical ones and generalize them to infinite-

dimensional settings. One solution is the so-called “frustrat-

ingly easy” whitening-coloring map [27], and the other one

is the optimal transport map between Gaussian distributions

[10]. In the next two subsections, we discuss the mecha-

nism of these two solutions in aligning correlations. Fur-

thermore, we consider the rank-deficient case (i.e., Σs and

Σt are not invertible), providing the modified solutions and

the corresponding sufficient conditions under which “com-

plete matching”, characterized by (1), still holds.

2.1. Whitening­coloring map

Write (1) as (TΣ
1

2

s )(TΣ
1

2

s )T = (Σ
1

2

t )(Σ
1

2

t )
T , and set

TΣ
1

2

s = Σ
1

2

t . Then we can obtain an immediate solution

TWC = Σ
1

2

t Σ
− 1

2

s . (2)

The solution TWC can be explained in a two-step procedure:

The source samples are first whitened by Σ
− 1

2

s , and then

recolored by Σ
1

2

t .

However, in practice, the estimated covariance matrices

are usually not invertible, because the dimension of features

may be larger than the sample numbers, and samples may

concentrate on just a low-dimensional subspace. As a result,

the solution TWC is ill-defined. We consider the ad-hoc

modification, i.e.,

T̂WC = Σ
1

2

t (Σ
1

2

s )
†, (3)

where “ † ” denotes the Moore-Penrose pseudoinverse. Dif-

ferent from the full-rank situation, the validity of (1) under

the transformation T̂WC depends on the eigenstructures of

the source and target covariance matrices.

Theorem 1 If Im(Σt) ⊆ Im(Σs), then T̂WCΣsT̂
T
WC =

Σt.

Remark 1 Given any matrix A, Im(A) denotes its range

space, i.e., Im(A) = {A~x,~x ∈ R
n}. The condition in

the proposition requires that the source subspace where the

source samples concentrate contains the target subspace.

2.2. Optimal transport map

Given two distributions, µs and µt, there are infinitely

many maps T (including nonlinear ones) that can transform

µs to µt, denoted as T#µs = µt. Monge’s optimal transport

problem [28] is to find the most efficient map, in the sense

of minimizing the total transportation cost. The problem is

formulated as

min
T

∫

Rn

c(~x, T (~x))dµs

s.t. T#µs = µt,

(4)
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(a) (b)

(c) (d)

Figure 1: (a) The source samples Xs = [~x1, ~x1, ..., ~xN ].
Different colors represent different classes. (b) The target

domain. (c) The results of transforming the source samples

by the whitening-coloring map (i.e., ~xi → TWC(~xi)). (d)

The results of transforming the source samples by the opti-

mal transport map (i.e., ~xi → TOT(~xi)).

where c(~x, ~y) defines the cost of moving unit mass from

location ~x to location ~y, and the cost is usually chosen as

the squared distance function, i.e., c(~x, ~y) = ‖~x− ~y‖22.

If µs and µt are two regular Gaussian distributions, i.e.,

µs = N(~0,Σs), µt = N(~0,Σt), and Σs and Σt are in-

vertible, then the optimizer of (4) is a symmetric and linear

transformation [10], denoted as TOT, and its expression is

TOT = Σ
1

2

t (Σ
1

2

t ΣsΣ
1

2

t )
− 1

2Σ
1

2

t . (5)

Note that in the literature, TOT is often written as TOT =

Σ
− 1

2

s (Σ
1

2

s ΣtΣ
1

2

s )
1

2Σ
− 1

2

s . In the supplementary material, we

show the equivalence between these two expressions. As

we mentioned before, the transformation between Gaussian

distributions is equivalent to the alignment of covariance

matrices. So the optimal transport map TOT is another so-

lution of (1).

TOT, developed from the optimal transport theory, at-

tempts to avoid long-distance “transportation”. Therefore,

compared with the TWC, TOT can avoid distorting the in-

trinsic structure of data. A toy example for comparing TWC

and TOT is shown in Fig. 1.

Still, if Σs and Σt are non-invertible, we replace the ma-

trix inverse “-” with the pseudoinverse “†”, i.e.,

T̂OT = Σ
1

2

t (Σ
1

2

t ΣsΣ
1

2

t )
† 1

2Σ
1

2

t . (6)

In the next theorem, we provide the sufficient condition for

“complete matching” (1) under the transformation T̂OT.

Theorem 2 If Ker(Σs) ∩ Im(Σt) = {~0}, then we have

T̂OTΣsT̂
T
OT = Σt.

Remark 2 Roughly speaking, because Ker(Σs) ⊥
Im(Σs), the condition in above theorem implies that

there should be substantial overlap between Im(Σs) and

Im(Σt). In addition, this condition is milder than that in

Theorem 1, since Im(Σt) ⊆ Im(Σs) =⇒ Ker(Σs) ∩
Im(Σt) = {~0}.

3. Covariance descriptor estimation in RKHS

In RKHS, covariance descriptors, which are (potentially)

infinite dimensional, are the generalization of covariance

matrices in R
n. Let X be any nonempty set. Let k be

a positive definite kernel on X × X . Let HK be the re-

producing kernel Hilbert space generated by k, and let

φ : X → HK be the corresponding feature map. Given the

samples X = [x1, x2, ..., xN ], we introduce two covariance

descriptor estimation methods in the following discussion.

3.1. Maximum likelihood estimation (MLE)

Let ΦX = [φ(x1), φ(x2), ..., φ(xN )] be the RKHS data

matrix, then the MLE of the covariance descriptor is

MC = ΦXJNJT
NΦT

X
, (7)

where JN = 1√
N
(IN − 1

N
~1N

~1T
N ) is the centering matrix.

The regularized version is

MC = ΦXJNJNΦT
X

+ ρIHK
. (8)

The form (7) is the natural analogy of the MLE of the co-

variance matrix for the Gaussian model in R
n. This form

has been widely applied in kernel ridge regression [17] and

in covariance-descriptor based image classification [24].

3.2. Computationally efficient estimation (CEE)

We assume that the RKHS data ΦX are sampled from

the factor analysis model:

φ(x) = µ+A~z + ǫ, (9)

where ~z is a d-dimensional latent variable and ~z ∼
N(~0, Id), and ǫ ∼ N(0HK

, ρIHK
). Then the covariance

of φ(x) is C = AAT + ρIHK
. As shown in [31], the esti-

mation of A is ΦXWX , where

WX = JNVd(Id − ρΛ−1
d )

1

2 (10)

is an N × d matrix, and Vd and Λd store the top d eigen-

pairs of CXX = JT
NKXXJN . Now we can obtain a new

estimated covariance descriptor:

EC = ΦXWXW T
X
ΦT

X
+ ρIHK

. (11)
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In the subsequent computation, it will be seen that if the

dimension d of the latent variable is small enough, i.e., d ≪
N , the total time complexity will be significantly reduced.

Therefore, we say that EC is a computationally efficient

estimator. More discussions on this estimator can be found

in [16, 31].

4. Covariance descriptors alignment in RKHS

With estimated covariance descriptors in HK, we can

generalize correlation alignment to infinite dimensional set-

tings. In this section, we provide computable expressions

of the corresponding whitening-coloring map and the opti-

mal transport map (termed the “kernel whitening-coloring

map” and the “kernel optimal transport map”, respectively)

via kernel matrices. The derivation procedures are provided

in the supplementary material.

Given the source samples Xs = [x1, x2, ..., xNs
]

and the target samples Yt = [y1, y2, ..., yNt
], let

ΦX = [φ(x1), φ(x2), ..., φ(xNs
)] and ΦY =

[φ(y1), φ(y2), ..., φ(yNt
)] be the corresponding RKHS

data matrices, and let KXX , KXY , and KY Y be

the kernel matrices, which are respectively defined by

(KXX)ij = 〈φ(xi), φ(xj)〉, (KXY )ij = 〈φ(xi), φ(yj)〉,
and (KY Y )ij = 〈φ(yi), φ(yj)〉. To satisfy the eigenstruc-

ture conditions proposed in Theorem 1 and 2, we make

use of the regularized covariance descriptor for the source

domain data, which corresponds to the artificial assumption

that the source samples are dispersed in the whole Hilbert

space. That is, for MLE, we have

MCs = (ΦXJNs
)(ΦXJNs

)T + ρIHK
(12a)

MCt = (ΦY JNt
)(ΦY JNt

)T , (12b)

and for CEE, we have

ECs = (ΦXWX)(ΦXWX)T + ρIHK
(13a)

ECt = (ΦY WY )(ΦY WY )
T . (13b)

We can see that the expressions of MLE and CEE share the

same structure, which leads to similar subsequent deriva-

tions. Therefore, for brevity, we use (12) for the kernel

whitening-coloring map, and use (13) for the kernel opti-

mal transport map.

4.1. Kernel whitening­coloring map

Proposition 1 With the maximum likelihood estimators

(12), the kernel whitening-coloring map is given by

kT̂WC =(MCt)
1

2 (MCs)
† 1

2

=ΦY JNt
C

† 1

2

Y Y

[

CY XAJNs
ΦT

X +
1√
ρ
JNt

ΦT
Y

]

,

(14)

where CY Y = JT
Nt

KY Y JNt
and CY X = JT

Nt
KY XJNs

are centered kernel matrices, and A =
∑r

k=1
1
λk

( 1√
λk+ρ

−
1√
ρ
)~vk~v

T
k , and {λk, ~vk}rk=1 are positive eigenpairs of

CXX .

4.2. Kernel optimal transport map

Proposition 2 With the computationally efficient estima-

tors (13), the kernel optimal transport map is given by

kT̂OT = (ECt)
1

2

[

(ECt)
1

2 (ECs)(ECt)
1

2

]† 1

2 (ECt)
1

2

= ΦY WY

[

Cw
YXCw

XY + ρ(ΛY − ρId)
]† 1

2W T
Y ΦT

Y ,
(15)

where Cw
YX = W T

Y KY XWX and Cw
XY = (Cw

YX)T , and

ΛY is the diagonal matrix storing the top d eigenvalues of

CY Y .

Note that both (14) and (15) are computable expres-

sions. Take kT̂WC : HK → HK for example,

∀f ∈ HK, we can immediately obtain kT̂WC(f), i.e.,

kT̂WC(f) =
∑Nt

i=1 biφ(yi), where bi are entries of

vector ~b = JNt
C

† 1

2

Y Y

[

CY XAJNs

~FX + 1√
ρ
JNt

~FY

]

,

and ~FX = [f(x1), f(x2), ..., f(xNs
)]T and ~FY =

[f(y1), f(y2), ..., f(yNt
)]T due to the reproducing property.

5. Algorithms

Now, based on the computable expressions (14) and (15),

we can perform nonlinear correlation alignment in RKHS.

The idea behind our algorithm is rather intuitive: We first

“move” the centered source data Ψs =
√
NsΦXJNs

to the

target domain by kT̂△ (△ = WC or OT ), i.e.,

Ψs → Ψs→t = kT̂△(Ψs), (16)

which guarantees well-matching between the covariance

descriptors of the transformed source samples, Ψs→t, and

the centered target samples, Ψt =
√
NtΦY JNt

. Then

we use the transformed source samples to train a classifier

(model). We sketch the procedure in Fig. 2.

Similar to [29], we obtain a domain-invariant kernel ma-

trix K̃ by computing the pairwise inner product with trans-

formed and target samples:

K̃ =

[

△K̃ss △K̃T
ts

△K̃ts △K̃tt

]

=

[

ΨT
s→tΨs→t ΨT

s→tΨt

ΨT
t Ψs→t ΨT

t Ψt

]

.

(17)

Using the kernel whitening-coloring map (14), we get1

Ψs→t = kT̂WC(Ψs) =
√

NsΦY JNt
C

† 1

2

Y Y B

WCK̃ss = NsB
TB

WCK̃ts =
√

NsNtC
1

2

Y Y B =
√

NsNtUY Λ
1

2

Y U
T
Y B,

(18)

1We provide detailed derivation procedures in the supplementary ma-

terial.
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(a) (b)

(c) (d)

Figure 2: (a) The labeled dataset (Xs,~lX) in the source

domain and the unlabeled dataset Y t in the target domain.

Dots and stars represent different classes. (b) The centered

source data, Ψs, and centered target data, Ψt, in RKHS. (c)

Transform the source samples by the map kT̂△ (△ = WC

or OT), and the resultant data are Ψs→t = kT̂△(Ψs). (d)

Train a classifier with Ψs→t.

where B = CY X(CXX + ρINt
)−

1

2 , and (UY ,Λ
1

2

Y ) stores

the top d eigenpairs of CY Y . Note that, in practice, in order

to exploit the principal components and reduce the com-

putational complexity, we artificially select d to be a small

integer, i.e., d ≪ Nt.

Using the kernel optimal transport map (15), we get

Ψs→t = kT̂OT(Ψs) =
√

NsΦY WY D

OTK̃ss = NsD
T (ΛY − ρId)D

OTK̃ts =
√

NsNtJNt
KY Y WY D,

(19)

where D =
[

Cw
YXCw

XY +ρ(ΛY −ρId)
]† 1

2W T
Y KY XJNs

.

The kernel matrix △K̃tt of the centered target samples

remains unchanged in both cases, i.e.,

WCK̃tt = OTK̃tt = ΨT
t Ψt = NtCY Y . (20)

5.1. Domain­invariant kernel machine

The new learned kernel (17) after (nonlinear) correlation

alignment can be used in any kernel-based algorithm. For

example, in kernel ridge regression, the predicted labels for

the target dataset Y t is

~lY = (△K̃ts)(△K̃ss + γINs
)−1~lX . (21)

For the kernel support vector machine, after training a clas-

sifier on the source partition (△K̃ss,~lX), we can predict

labels of the target by

~lY = (△K̃ts)(~α⊙ ~lX) + ~b, (22)

where ~α is the Lagrangian multiplier, ⊙ is the Hadamard

product, and ~b is the bias.

5.2. Out­of­sample prediction

Our algorithms can naturally generalize to out-of-sample

patterns. That is, when new target data Ȳ t come, we can

directly obtain the inner product matrix between the new

centered samples, ΨȲ , and the transformed source samples,

Ψs→t, that already exist, instead of recomputing the total

model.

5.3. Time complexity

For the case where we use kT̂WC to “move” source data,

it takes O(N3
s ) +NtN

2
s time to compute B, NtN

2
s time to

compute WC−K̃ss, and O(dN2
t )

2 + dN2
t + dNtNs time

to compute WC−K̃ts.

For the case where we use kT̂OT to “move” source

data, the total time complexity is O(dN2
s ) + O(dN2

s ) +
O(dNsNt) + O(d3). Thanks to the “efficient” estimation

of covariance descriptors that exploits only the principal

eigenstructure, we can avoid large-scale matrix inversion

and multiplication. Hence, although the expressions in (19)

are complicated, the computational time complexity is low.

6. Experiments

In this section, we apply our approaches to two real-

world problems: visual objects recognition and document

classification. We first compare our approaches with other

state-of-the-art domain adaptation algorithms in a transduc-

tive setting, which means that all target samples are used for

estimating covariance descriptors and evaluating the trained

model. We next conduct experiments to measure the ability

of our approaches to deal with out-of-sample patterns.

6.1. Datasets

Four benchmark datasets, i.e., COIL20, Office-Caltech,

20-Newsgroups, and Reuters-21578 are used in the experi-

ments.

The COIL20 [22] dataset contains 1, 440 grayscale im-

ages of 20 classes of objects. The images of each object

were taken at a pose interval of 5 degrees. As a result, each

object has 360o/5o = 72 images. Each image is 32 × 32
pixels with 256 gray levels. We follow the procedure in

[20] to construct two domains. That is, the whole dataset

is partitioned into two subsects, COIL1 and COIL2. The

images taken in the directions [0o, 85o] ∪ [180o, 265o] are

contained in COIL1, and the images taken in the directions

[90o, 175o] ∪ [270o, 355o] are contained in COIL2. The

data distributions in COIL1 and COIL2 should be differ-

ent. There are two domain adaptation tasks, i.e., C1 → C2
and C2 → C1.

2Extracting top d eigenvectors of an Nt×Nt matrix requires O(dN2

t
)

time [25].
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The Office-Caltech [15] dataset contains the images of

ten classes of objects from four domains: 958 images down-

loaded from the Amazon website, 1, 123 images gathered

from a web image search (Caltech), 157 images taken with a

DSLR camera, and 295 images from Webcams. They form

12 domain adaptation tasks: A → C, A → D,...,W → D.

We consider two types of features: the SURF features [2]

and the DeCAF6 features [9]. The SURF features represent

each image with an 800-bin normalized histogram, which is

subsequently standardized by z−score. The DeCAF6 fea-

tures represent each image with a 4,096-dimensional vector,

which is extracted from the 6th layer of a convolutional neu-

ral network.

The 20-Newsgroups 3 dataset has approximately 20, 000
documents, which are categorized in a hierarchical struc-

ture. The top categories are comp, rec, sci, and talk, each

of which has four subcategories. Data drawn from different

subcategories and under the same top categories are consid-

ered as different but related domains. The task is to predict

the top category to which the sample belongs. Following the

procedures in [8] and [21], we generate the cross-domain

datasets. For each of the two top categories P and Q, we se-

lect two subcategories from each of them to form the source

domain, and use the rest subcategories of P and Q as the tar-

get data. Therefore, given top categories P and Q, we can

construct C2
4C

2
4 = 36 domain adaptation tasks, denoted as

“P vs Q”. There are C2
4 = 6 possible combinations for top

categories. In total, we have 6× 36 = 216 tasks. For every

36 tasks, we report the average performance. More detailed

description is given in [8] and [21]. We adopt the prepro-

cessed version of 20-Newsgroups, which contains 15, 033
documents represented by 25, 804-dimensional features.

The Reuters-215784 dataset has three top categories,

i.e., orgs, places and people, each of which has many

subcategories. Still, samples that belong to different sub-

categories are treated as ones drawn from different do-

mains. Based on this, we can construct 6 cross-domain text

datasets: orgs vs people, people vs orgs, orgs vs places,

places vs orgs, people vs places, and places vs people.

For every pair of datasets, e.g., orgs vs people, people vs

orgs, we report the average performance. We adopt the pre-

processed version of Reuters-21578, which contains 3, 461
documents represented by 4, 771-dimensional features.

In summary, we have constructed 2+12×2+216+6 =
248 domain adaptation tasks.

6.2. Transductive experiments setup

We first design experiments in the transductive setting.

We employ the domain-invariant SVM describe in (22) to

conduct classification. We use “KWC” and “KOT” to de-

note our approaches. We compare our approaches with

3http://qwone.com/ jason/20Newsgroups/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/

many state-of-the-art algorithms5: (1) support vector ma-

chine without adaptation (SVM), (2) transfer component

analysis (TCA) [23], (3) subspace alignment (SA) [12], (4)

surrogate kernel matching (SKM) [29], (5) geodesic flow

kernel (GFK) [13], (6) transfer kernel learning (TKL) [21],

(7) correlation alignment (CORAL) [27], (8) transfer multi-

ple kernel learning (TMKL) [11], and (9) joint distribution

optimal transportation (JDOT) [6]. We use SVM as the final

classifier for all above methods.

On the visual adaptation datasets, we use the radial ba-

sis function (RBF) kernel for all kernel-based algorithms,

i.e., SVM, TCA, SKM TKL, and TMKL. On the document

datasets, we use both the linear kernel and the RBF kernel,

and conduct comparisons in both settings. The width of the

RBF kernel is set to be the mean value of the squared dis-

tances between all training samples.

All the methods mentioned above have hyperparameters.

As in [7, 11, 21, 23, 29], we randomly select a small subset

of target samples as validation sets to tune parameters and

evaluate on the remaining target samples. Note that some

algorithms (e.g., GFK and SA) have heuristic methods to

determine parameters and some (e.g., TKL) have default

parameters, but in some datasets, these parameters perform

rather poorly. In order to fairly compare all the methods,

we consider both the heuristic (or default) and manually se-

lected parameters, and report the best results.

For algorithms requiring dimension d, we select d
from {2, 4, 5, 10, 15, 20, ..., 50}. For algorithms requir-

ing regularization parameter γ, we select γ from R =
{0.01, 0.1, 1, 5, 10, 50, 100}. For TKL, we search for the

damping factor ζ in {1.1, 1.2, ..., 2}. For TMKL and SVM,

we select the tradeoff parameter θ and C from R. For

our method KWC, we search ρ in 1
Ns

R. For our method

KOT, since (Id − ρΛ−1
d ) (see (10)) should be positive def-

inite, we first write ρ = λminγ, and then search γ in

{0.01, 0.1, 0.2, ..., 0.9}, where λmin = Min{λX
d , λY

d }, and

λX
d and λY

d are the dth eigenvalues of CXX and CY Y , re-

spectively.

6.3. Experimental results

The experimental results on these four datasets are re-

ported in Table 1, 2, 3, 4, and 5. The best results are high-

lighted in bold. For almost all the tasks, our approaches

KWC and KOT significantly outperform the standard SVM

classifier. Especially on the document datasets, i.e., 20-

Newsgroups and Reuters-21578, the average performance

improvements are more than 10 percent, which demon-

strates the power of aligning RKHS covariance descriptors

in tackling the domain shift issue. Compared with other

state-of-the-art algorithms, our approaches achieve superior

or comparable results on all the object recognition and doc-

ument classification tasks. For some cross-domain datasets,

5We use the codes published by the corresponding authors.
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Table 1: Recognition accuracy (in %) on the COIL20 dataset.
Task SVM TCA GFK SKM SA CORAL TKL KWC KOT

C1 → C2 87.50 82.64 83.75 87.50 84.86 82.22 86.25 88.33 90.42

C2 → C1 86.81 87.50 85.69 90.00 87.22 81.67 88.89 89.03 91.11

Mean 87.16 85.07 84.72 88.75 86.04 81.95 87.57 88.68 90.77

Table 2: Recognition accuracy (in %) on the Office-Caltech dataset with SURF features.
Task SVM TCA GFK SKM SA CORAL DTMKL KWC KOT

A → C 43.90 43.18 41.49 42.48 41.23 45.1 45.01 45.95 44.88

A → D 45.22 38.85 36.30 35.03 36.91 39.5 40.85 47.77 43.95

A → W 38.30 41.69 32.20 40.00 40.27 44.4 36.94 41.69 43.73

C → A 53.34 55.43 55.63 52.19 50.61 52.1 54.33 53.24 52.92

C → D 48.40 47.13 48.81 47.13 44.68 45.9 44.74 49.68 52.23

C → W 44.75 44.40 42.68 43.39 41.41 46.4 42.04 47.80 45.76

D → A 30.17 39.14 40.29 37.58 36.43 37.7 34.03 41.65 38.94

D → C 29.56 34.73 35.00 34.11 35.35 33.8 32.10 39.36 38.02

D → W 62.37 83.05 80.68 83.73 85.42 84.7 81.69 85.76 85.76

W → A 32.15 38.41 36.64 37.47 36.63 36.0 36.53 39.04 36.85

W → C 25.65 33.83 28.85 29.83 33.25 33.7 32.50 36.42 34.02

W → D 84.71 81.53 80.25 84.71 81.34 86.6 88.85 82.80 84.71

Mean 44.88 48.45 46.57 47.30 46.96 48.8 47.47 50.93 50.15

like D → C in Table 2, Comp vs Sci and Rec vs Sci in Ta-

ble 4, and People vs Places in Table 5, both KWC and KOT

largely outperform the best competitive methods. A possi-

ble explanation is that our strategy of “moving” the source

samples to the target domain allows us to align distributions

with large shifts. Note that although CORAL uses a sim-

ilar strategy, it does not consider high-order (or nonlinear)

correlations. As a result, the performances of CORAL on

COIL20 (see Table 1) and Office-Caltech with the DeCAF6

features (see Table 3) are less competitive.

6.4. Out­of­sample generalization

In this subsection, we measure our approaches’ ability to

generalize out-of-sample patterns. We conduct experiments

on the office-caltech dataset with SURF and DeCAF6 fea-

tures. To train the model, we randomly select half labeled

samples from the source domain and half unlabeled samples

from the target domain. We test the model on the remain-

ing unlabeled samples in the target domain. We repeat the

above procedures 500 times, and report the average accura-

cies and standard errors. We compare our approaches with

SVM, TCA and GFK. In Table 6 and 7, the experimental re-

sults show that our approaches KWC and KOT outperform

the baseline methods with statistical significance.

6.5. Empirical time complexity

In this subsection, we empirically compare the compu-

tational time of our approaches with other algorithms. We

implement all the algorithms using the Matlab on an Intel

i7-5500U, 2.40 GHz CPU. We test them on the Comp vs

Rec dataset of 20-Newsgroups, which contains 36 cross-

domain adaptation tasks. For every task, both the source

and the target domain have approximately 4, 000 samples

of dimension 25, 804. For fair comparison, we set the same

dimension d = 5 for TCA, KWC, and KOT. We report

the average running times in Table 8. It can be seen that

SKM is most expensive, which may be due to the fact that

it does not consider the low-rank approximations. TCA is

relatively time-consuming. Our approach KOT is extremely

efficient, which demonstrates our theoretical analysis of its

time complexity in the Section 5.3.

7. Conclusion and future work

In this paper, we presented a mathematical and com-

putational framework for domain adaptation by aligning

infinite-dimensional covariance matrices in RKHS. We pro-

posed two alignment strategies: the kernel whitening-

coloring map and the kernel optimal transport map, and

derived their closed-form expressions via kernel matrices.

We further obtained two domain-invariant kernel matrices

that can be used in any kernel-based algorithm. Empiri-

cally, we applied our framework to numerous domain adap-

tation tasks, and achieved promising results on both visual

and document datasets. Moreover, our approaches pos-

sess out-of-sample generalizability and computational effi-

ciency, which enable it scale to large datasets.

In the future, we plan to take the geometry of RKHS

data into account, expecting to get further performance im-

provement by jointly aligning statistical distributions and

geometric structures of data across domains.
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