
Classifier Learning with Prior Probabilities

for Facial Action Unit Recognition

Yong Zhang1,2, Weiming Dong1, Bao-Gang Hu1, and Qiang Ji3∗

1National Laboratory of Pattern Recognition, CASIA
2University of Chinese Academy of Sciences

3Rensselaer Polytechnic Institute

zhangyong201303@gmail.com, weiming.dong@ia.ac.cn, hubg@nlpr.ia.ac.cn, qji@ecse.rpi.edu

Abstract

Facial action units (AUs) play an important role in hu-

man emotion understanding. One big challenge for data-

driven AU recognition approaches is the lack of enough AU

annotations, since AU annotation requires strong domain

expertise. To alleviate this issue, we propose a knowledge-

driven method for jointly learning multiple AU classifiers

without any AU annotation by leveraging prior probabilities

on AUs, including expression-independent and expression-

dependent AU probabilities. These prior probabilities are

drawn from facial anatomy and emotion studies, and are

independent of datasets. We incorporate the prior probabil-

ities on AUs as the constraints into the objective function of

multiple AU classifiers, and develop an efficient learning al-

gorithm to solve the formulated problem. Experimental re-

sults on five benchmark expression databases demonstrate

the effectiveness of the proposed method, especially its gen-

eralization ability, and the power of the prior probabilities.

1. Introduction

Automatic facial action unit (AU) recognition has

attracted increasing attention, and achieved impressive

progress in the past decades [2, 7, 33, 3]. Due to subtle

facial appearance changes, significant across-subject vari-

ations, uncertain and ambiguous facial motion measure-

ments, and lack of ground-truth AU annotations, AU recog-

nition is very challenging. Recently, several works turn

to leverage relationships among AUs or relationships be-

tween expression and AUs to facilitate AU classifier learn-

ing, since there exist significant dependencies among multi-

ple AUs. They either use discriminative approaches or gen-

erative approaches. For discriminative approaches, the re-

lationships are leveraged to introduce regularization on the

parameters of classifiers [32, 12]. They encourage the pa-
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rameters of AU classifiers or the estimated AU labels to be

close if the AUs are positively correlated. For generative ap-

proaches, the relationships are directly learned from train-

ing AU labels and then applied to predict AUs [20, 25].

Although the dependencies among AUs can improve the

performance of AU classifiers, almost all of these works

formulate AU recognition as a supervised learning or semi-

supervised learning, and thus require fully AU-annotated or

partly-annotated facial images for training. However, the

AU annotation needs strong domain expertise.

Can we learn AU classifiers without AU annotations? In

this paper, we propose a novel method to jointly learn clas-

sifiers for multiple AUs without any AU annotation. We

leverage prior probabilities on AUs, including expression-

dependent AU probabilities and expression-independent

AU probabilities, which are obtained from facial anatomy

and emotion studies, and are independent of datasets. Un-

like existing works which use AU labels for AU classifier

learning, we adopt the probabilities on AUs to train AU

classifiers. The generic knowledge from facial anatomy and

long-term expert observations and studies is almost univer-

sally applicable to different people in real applications. The

knowledge is imposed as soft probabilistic constraints to

train the AU classifiers.

The main contributions of this paper are summarized as

follows. Firstly, we propose a knowledge-driven method to

jointly learn multiple AU classifiers by leveraging proba-

bilities on AUs instead of AU annotations. We systemati-

cally summarize different types of generic knowledge from

facial anatomy and emotion studies, including a variety of

single and joint AU probabilities, and formulate AU recog-

nition as a joint classifier and label learning problem. Sec-

ondly, we propose an algorithm to optimize the formulated

problem by iteratively updating classifiers and AU labels.

Thirdly, we evaluate the proposed method on five bench-

mark databases and compare it to the state-of-the-art meth-

ods.
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2. Related Work

AU recognition is a multi-label classification problem,

since multiple AUs may be present simultaneously. Re-

cently, several works exploit AU relations to facilitate the

learning process of AU classifiers through either generative

or discriminative strategy. Generative models are used to

model structural outputs such as [10, 17, 26]. Tong et al.

[20] proposed Bayesian Network (BN) to capture the de-

pendencies among multiple AUs through its structure and

conditional probabilities. Wang et al. [25] used Restricted

Boltzman Machine (RBM) to capture dependencies among

AUs. Unlike the above two works which learn AU depen-

dencies from ground truth AU labels, Li et al. [11] proposed

to learn a BN from the pseudo-data which is generated ac-

cording to AU dependencies summarized from prior knowl-

edge. Similar idea was also used in [4]. These methods still

require ground-truth AU labels to obtain AU measurement.

For discriminative approaches, the dependencies among

AUs are embodied by introducing the constraints into the

objective function. Zhao et al. [32] used the constraints of

group sparsity and positive and negative AU correlations to

learn multiple AU classifiers. EmotionNet [2] is a super-

vised learning method for AU prediction. It replaces human

AU annotation with automatic annotation by AU recogni-

tion algorithms. It complements our approach in the sense

that we use generic knowledge to replace human annota-

tion. Eleftheriadis et al. [7] proposed a multi-conditional la-

tent variable model to integrate AU label dependencies into

a latent space and learn AU classifiers. Zhang et al. [30]

proposed to use multi-task multiple kernel learning to de-

tect multiple AUs simultaneously by leveraging their intrin-

sic relations. Almaev et al. [1] constructed person-specific

models with considering both relations across subjects and

AUs. Zhao et al. [34] proposed a patch-based CNN model

for region learning and AU detection. However, all of them

require complete AU annotations for training. The models

trained on one dataset are limited to the dataset where they

are trained and cannot generalize well among datasets. A

few works consider AU classification under partial AU an-

notations such as [27, 23, 28, 12, 24, 29].

To the best of our knowledge, only one work can han-

dle AU recognition without AU annotation. Ruiz et al. [19]

proposed to learn AU classifiers with expression labels, but

without AU labels. Their model consists of two layers.

The hidden layer is the AU classifiers and the visible layer

maps the AU labels to expression. They use expression-

dependent single AU probabilities to generate AU labels

and use the generated samples to learn the visible layer by

training a linear classifier. Each AU label is generated in-

dependently. Then, given the image and expression pairs,

they train the hidden layer. The method has the following

drawbacks. Firstly, it only uses knowledge on individual

AUs and ignores dependencies among AUs. Such knowl-

edge may generate unreasonable AU labels, since AUs are

dependent on each other due to either underlying facial

anatomy or the need to produce meaningful facial expres-

sion. Without considering relationships among AUs, the

generated unreasonable AU labels affect the learning of the

visible layer, and further the learning error will propagate

to the learning of the hidden layer. Secondly, the method

requires exact probabilities for single AUs given the expres-

sion. But, in general case, the prior probabilities might be

represented by inequalities rather than exact probabilities

and some singe AU probabilities are even not available. Fi-

nally, their method, requires, expression level labels for ev-

ery training sample if no AU labels are provided.

Unlike Ruiz et al.’s work, our method exploits not only

individual AU probabilities but also joint AU probabili-

ties that represent relationships among AUs and expres-

sion. For individual AU probabilities, we also include more

types than [19]. Our model can handle both equality con-

straints for exact probabilities as well as inequality con-

straints for inexact probabilities. For joint AU probabilities,

besides expression-dependent AU relationships, we also ex-

ploit expression-independent AU relationships, including

relationships among AUs that are controlled by the under-

lying facial anatomy, independent of facial expression. As

a result, by exploiting expression-independent AU relation-

ships, our model can also use samples without expression

labels during training. Finally, we introduce an analytical

method to systematically incorporate the AU probabilities

for simultaneous AU classifier learning and AU label learn-

ing. In summary, our method represents a significant theo-

retical extension to [19], and the extension leads to signifi-

cant performance improvement over [19].

The rest is arranged as follows. We first identify related

generic domain knowledge from existing theories or stud-

ies (Sec. 3), then represent the knowledge as probabilistic

constraints on AU states and relationships (Sec. 4.1), and

finally use the constraints for learning (Sec. 4.2).

3. AU Probabilities

Existing methods require AU annotations for classifier

learning. Accurate AU annotation requires expertise and

time. We propose to learn classifiers for multiple AUs by

leveraging prior probabilities on AUs instead of knowing

AU annotations. Prior probabilities can be categorized into

two groups, i.e., expression-independent and expression-

dependent AU probabilities. They represent the dependen-

cies among AUs. The former is applied to all the samples

including samples without expression while the latter is ap-

plied to samples with expression labels.

3.1. Expression­independent joint AU probabilities

As defined in FACS [6], AUs are used to capture hu-

man facial movements by their facial appearance. Each AU
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Table 1. The expression-independent AU dependencies according

to facial anatomy and FACS [6]

AU relations AU pairs

Positive correlation (1,2), (4,7) , (4,9), (7,9),

(6,12), (9,17), (15,17), (15,24),

(17,24), (23,24)

Negative correlation (2,6), (2,7), (12,15), (12,17)

movement is controlled by one or a group of facial muscles.

Because of the underlying facial anatomy, AUs may depend

on each other, independent of facial expression. Accord-

ing to facial anatomy and FACS, some AUs are likely to

co-occur while other AUs seldomly appear together. Since

AUs are controlled by facial muscles, their dependencies

depend on the underlying facial anatomy. The dependencies

among AUs caused by the underlying mechanism of mus-

cles, are called expression-independent joint AU dependen-

cies. The dependencies can be divided into two parts, i.e.,

positive and negative correlations. The positive correlation

is that some AUs are likely to appear simultaneously be-

cause these AUs are controlled by the same muscle group

or neighboring muscle groups. For example, both AU1 (in-

ner brow raiser) and AU2 (outer brow raiser) are controlled

by the muscle group of Occipito fraontalis. The contrac-

tion of the lateral part produces AU2, and the contraction

of the central part produces AU1. Since the contraction of

the lateral part always happens together with the contrac-

tion of the central part, the occurrence of AU2 increases the

chance of the occurrence of AU1. Therefore, AU1 and AU2

are positively correlated.

On the other hand, the negative correlation is that some

AUs never or seldom appear simultaneously. Due to the

underlying facial anatomy, certain muscles can not activate

simultaneously. As a result, the occurrence of some AU

decreases the chance of the occurrence of another AU. For

example, AU12 (lip corner puller) produced by the muscle

group of Zygomaticus Major and AU15 (lip corner depres-

sor) produced by the muscle group of depressor anguli oris

are unlikely to appear simultaneously. Since the contraction

of Zygomaticus Major inhibits the movement of depressor

anguli oris, the occurrence of AU12 decreases the probabil-

ity of the occurrence of AU15. Therefore, AU12 and AU15

are negatively correlated. The positive and negative AU cor-

relations are summarized in Table 1. These relationships

can be applied to all the training samples, including sam-

ples without expression labels.

3.2. Expression­dependent AU probabilities

3.2.1 Expression-dependent single AU probabilities

According to FACS [6], for each expression, AUs can be

classified into primary, secondary, and other AUs depend-

ing on their roles in producing the expression (see Table 2).

Primary AUs are the most important emotional AUs that

can be clearly classified as or are strongly pertinent to one

of the basic expressions. Secondary AUs may co-occur

with primary AUs and they provide supplementary support

for the expression. Firstly, under a certain expression, the

chance of the occurrence of its primary AUs is larger than

the chance of the absence. Secondly, for AUs that are nei-

ther primary nor secondary AUs, their chance to appear is

less than their chance of not to appear.

To quantitatively reveal the relationships among expres-

sion and AUs, Du et al. [5] studied facial expressions, in-

cluding 6 basic expressions (anger, disgust, fear, happiness,

sadness and surprise) and compound expressions. Their

study reports the probabilities for prototypical AUs under

each basic expression and compound emotion category. The

probabilities of prototypical AUs under 6 basic expressions

are shown in Table 3. These probabilities can also be used

to provide weak supervisory information for AU classifier

learning if these probabilities are available.

3.2.2 Expression-dependent joint AU probabilities

AUs often appear together to create meaningful and natural

expressions. We can extract expression-dependent proba-

bilities on multiple AUs according to FACS in Table 2. For

any expression, its primary AUs are more likely to appear

than its secondary AUs. And its secondary AUs have larger

chance to appear than its other AUs. For example, AU4

is a primary AU for anger, AU17 is a secondary AU, and

AU15 is neither a primary or secondary AU. Therefore, un-

der anger expression, AU7 is more likely to appear than

AU17. And AU17 is more likely to appear than AU15.

Besides, to reveal the dependencies between combina-

tions of AUs and expression, Wallace et al. [9] built the

Emotional Facial Action Coding System (EMFACS) con-

sidering only emotion-related facial actions. The study re-

ported the most frequent AU combinations under each of the

6 basic expressions (see Table 4). For example, AU1 (inner

brow raiser) and AU2 (outer brow raiser) are in the upper

face while AU26 (jaw drop) is in the lower face. Though

they are not correlated just according to facial anatomy, they

are likely to appear simultaneously under surprise. Since

these dependencies represent the co-occurrence of AUs,

they represent positive correlations.

4. Proposed Method

Notation Let D = {xn, zn}
N
n=1 denote the training

set. xn ∈ Rd is a d-dimensional feature vector. zn ∈
{1, 2, ...,K} is the expression label. K is the number

of expressions. Z are the expressions of samples in D.

yn = {ymn }Mm=1 denotes the AU labels of the n-th sam-

ple, which are unknown. M is the number of AU labels.

Let Ỹ ∈ {1,−1}N×M denote the estimated AU labels for

all training samples. Ỹm are the m-th estimated AU la-

bels of all training samples, while Ỹm
k are the m-th esti-
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Table 2. Expression-AU relationships according to FACS [6]. Mark ’A’ and ’B’ refer to primary and second AU respectively.

AU 1 2 4 5 6 7 9 10 12 15 16 17 20 23 24 25 26

anger A A B B A A

disgust A A B B

fear A A A A A A B B

happiness A B A B

sadness A B B A A B

surprise A A A B A A

Table 3. The prior probabilities on single AUs adapted from [5]

Expression Probabilities of prototypical AUs

anger AU4 (≥ 0.7), AU7 (≥ 0.7), AU10 (0.26),

AU17 (0.52), AU23 (0.29), AU24 (≥ 0.7)

disgust AU4 (0.31), AU9 (≥ 0.7), AU10 (≥ 0.7),

AU17 (≥ 0.7)

fear AU1 (≥ 0.7), AU2 (0.57), AU4 (≥ 0.7),

AU5 (0.63), AU20 (≥ 0.7), AU25 (≥ 0.7),

AU26 (0.33)

happiness AU6 (0.51), AU12 (≥ 0.7), AU25 (≥ 0.7)

sadness AU1 (0.6), AU4 (≥ 0.7), AU6 (0.5),

AU15 (≥ 0.7), AU17 (0.67)

surprise AU1 (≥ 0.7) , AU2 (≥ 0.7), AU5 (0.66),

AU25 (≥ 0.7), AU26 (≥ 0.7)

mated AU labels of samples with the k-th expression. Let

P denote the prior probabilities. Part of the prior proba-

bilities are not available. Let pmk = P (ym = 1|z = k)
denote the prior probability for the m-th AU under the k-

th expression. And p̃mk denotes its estimated probability

from Ỹ. Let P i1 denote the estimated marginal probabil-

ity P (yi = 1), and P i1
k denote the estimated conditional

probability P (yi = 1|z = k). Let P i1j1 denote the esti-

mated joint probability of co-occurrence of the i-th and the

j-th AUs, i.e., P i1j1 = P (yi = 1, yj = 1). Similarly,

P i0j1 = P (yi = 0, yj = 1). P i1j1 and P i0j1 are also

computed from Ỹ. Let P
i1j1
k denote the conditional joint

probability P (yi = 1, yj = 1|z = k). Let SP and SN de-

note the sets of expression-independent positively and neg-

atively correlated AU pairs respectively. S = SP ∪ SN .

Let EP denote the set of expression-dependent correlated

AU pairs. And Ek
P ⊂ EP is for the k-th expression. For

expression z, AUs are divided into three groups according

to FACS, including primary AUs (yp), secondary AUs (ys),

and other AUs (yo). Let [·]+ represent [t]+ = max(0, t). |t|
represents the absolute value of t.

4.1. Representation of AU probabilities

Expression-independent joint AU probabilities The

expression-independent joint AU probabilities are applied

to AUs of all training samples. We consider pairwise de-

pendencies, including positive correlation and negative cor-

relation between two AUs. The positive correlation can be

interpreted in two ways, i.e.,

P (yi = 1|yj = 1) > P (yi = 0|yj = 1), (1)

P (yi = 1|yj = 1) > P (yi = 1|yj = 0). (2)

Table 4. Expression-dependent AU dependencies adapted from

EMFACS [9]

Expression AUs

anger 4+5, 4+7, 4+5+7, 17+24, 23

disgust 9, 10

fear 1+2+4, 20

happiness 12, 6+12, 7+12

sadness 1, 1+4, 15, 6+15, 11+15, 11+17

surprise 1+2+5AB, 1+2+26, 1+2+5AB+26

The first indicates that when one AU appears, the

other AU is more likely to appear than not. The

second indicates that the chance of the occurrence of

one AU when the other appears is higher than when

the other does not appear. From Eq. 2, we

have
P (yj=1|yi=1)P (yi=1)

P (yj=1) >
P (yj=0|yi=1)P (yi=1)

P (yj=0) , then

P (yj=1|yi=1)P (yi=1)
P (yj=1) >

[1−P (yj=1|yi=1)]P (yi=1)
[1−P (yj=1)] . We get

P (yj = 1|yi = 1) > P (yj = 1). The equivalent represen-

tations are

P (yi = 1, yj = 1) > P (yi = 0, yj = 1), (3)

P (yi = 1, yj = 1) > P (yi = 1)P (yj = 1). (4)

Similarly, for the negative correlation, we have the follow-

ing two inequalities, i.e.,

P (yi = 1, yj = 1) < P (yi = 0, yj = 1), (5)

P (yi = 1, yj = 1) < P (yi = 1)P (yj = 1). (6)

Constraints on AU pairs enable the joint learning of mul-

tiple AU classifiers instead of learning classifiers individu-

ally. We define the loss for a correlated AU pair as follows

ℓc(Ỹ
i, Ỹj)

=















[P i1P j1 − P i1j1 ]+ + [P i0P j1 − P i1j1 ]+
+[P i1P j0 − P i1j1 ]+, ∀(i, j) ∈ SP

[P i1j1 − P i1P j1 ]+ + [P i1j1 − P i0P j1 ]+
+[P i1j1 − P i1P j0 ]+, ∀(i, j) ∈ SN

, (7)

where P i1 , P i0 , P i1j1 , and P i1j0 are computed by using

the estimated AU labels. They are computed as P i1 =
∑

n
δ(ỹi

n=1)

N
and P i0j1 =

∑
n
δ(ỹi

n=0)δ(ỹj
n=1)

N
. Each term

represents a constraint of joint AU dependencies. The total

loss of expression-independent joint AU probabilities is

Lc(Ỹ) =
∑

(i,j)∈S

ℓc(Ỹ
i, Ỹj). (8)

Expression-dependent single AU probabilities Accord-

ing the specification of primary and secondary AUs in FACS

(Table 2), we extract expression-dependent probabilities. If
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an AU is a primary AU for expression z, the probability of

its occurrence should be larger than the probability of its

absence, i.e., P (yp = 1|z) > P (yp = 0|z). When z = k,

the loss is defined as

ℓA1

s (p̃ik) = [0.5− p̃ik]+, i ∈ Ak
1 , (9)

where p̃ik is the estimated probability of the primary AUi

under expression k. Ak
1 is the set of primary AUs. p̃ik is

computed as p̃ik =
∑

n
δ(zn=k)δ(ỹi

n=1)
∑

n
δ(zn=k) , where δ(t) = 1 if t

is true. If the AU is neither a primary AU nor a secondary

AU, the probability of its occurrence should be less than the

probability of its absence, i.e., P (yo = 1|z) < P (yo =
0|z). When z = k, the loss is defined as

ℓA2

s (p̃ik) = [p̃ik − 0.5]+, i ∈ Ak
2 , (10)

where p̃ik is its estimated probability under expression k. Ak
2

is the set of such AUs under this expression.

For primary AUs and AUs that are neither primary nor

secondary AUs, the total loss of their probabilities is

LA
s (Ỹ,Z) =

K
∑

k=1

(

∑

i∈Ak
1

ℓA1

s (p̃ik) +
∑

i∈Ak
2

ℓA2

s (p̃ik)

)

. (11)

In addition, we can extract expression-dependent single AU

probabilities according to Table 3 if these probabilities are

available. The probabilities of AUs given expression are

represented by P (yi = 1|z) = α or P (yi = 1|z) ≥ α. The

specific values of α for AUs are listed in the table. When

z = k, the loss is defined as

ℓs(p̃
i
k, p

i
k, s

i
k) =







[p̃ik − pik]+, s
i
k = −1

|p̃ik − pik|, s
i
k = 0

[pik − p̃ik]+, s
i
k = 1

, i ∈ Ok,

(12)

where Ok is the set of AUs that have probabilities under

expression k. sik = −1, 0, or 1 represent that the probability

is less, equal, or larger than certain value. S is the set of

sik. The total loss of these probabilities is

Ls(Ỹ,P,S,Z) =

K
∑

k=1

∑

i∈Ok

ℓs(p̃
i
k, p

i
k, s

i
k). (13)

It can be dropped if the single AU probabilities in Table 3

are not available or cannot generalize across databases.

Expression-dependent joint AU probabilities The

expression-dependent joint probabilities are applied to

a group of samples with the same expression. We can

extract two types of expression-dependent probabilities on

multiple AUs according to FACS. Firstly, the probabilities

of primary AUs should be larger than secondary AUs, i.e.,

P (yp = 1|z) > P (ys = 1|z). When z = k, the loss is

ℓB1

c (p̃ik, p̃
j
k) = [p̃jk − p̃ik]+, (i, j) ∈ Bk

1 , (14)

where p̃ik is the estimated probability of the primary AUi

under expression k. p̃
j
k is the estimated probability of the

secondary AUj. Bk
1 is the set of primary and secondary

AU pairs under expression k. Secondly, the probabilities

of secondary AUs should be larger than other AUs, i.e.,

P (ys = 1|z) > P (yo = 1|z). The loss is defined as

ℓB2

c (p̃ik, p̃
j
k) = [p̃jk − p̃ik]+, (i, j) ∈ Bk

2 , (15)

where p̃ik is the estimated probability of the secondary AUi

under expression k. p̃
j
k is the estimated probability of other

AUj. Bk
2 is the set of secondary and other AU pairs under

expression k. The total loss of these expression-dependent

joint AU probabilities is

LB
c (Ỹ,Z) =

K
∑

k=1

(

∑

(i,j)∈Bk
1

ℓB1

c (p̃ik, p̃
j
k) +

∑

(i,j)∈Bk
2

ℓB2

c (p̃ik, p̃
j
k)

)

.

Besides, we can also leverage expression-dependent cor-

related AU pairs in Table 4. The positive correlation repre-

sented as follows

P (yi = 1, yj = 1|z) > P (yi = 0, yj = 1|z), (16)

P (yi = 1, yj = 1|z) > P (yi = 1)P (yj = 1|z). (17)

We define the loss of expression-dependent correlated AU

pairs when z = k as follows

ℓEc (Ỹ
i
k, Ỹ

j
k) = [P i1

k P
j1
k − P

i1j1
k ]+ + [P i0

k P
j1
k − P

i1j1
k ]+

+ [P i1
k P

j0
k − P

i1j1
k ]+, ∀(i, j) ∈ Ek

P . (18)

P i1
k and P

i1j1
k are computed as P i1

k =
∑

n
δ(zn=k)δ(ỹi

n=1)
∑

n
δ(zn=k) ,

P
i1j1
k =

∑
n
δ(zn=k)δ(ỹi

n=1)δ(ỹj
n=1)

∑
n
δ(zn=k) . The total loss of these

expression-dependent joint AU probabilities is

LE
c (Ỹ,Z) =

K
∑

k=1

∑

(i,j)∈Ek
P

ℓEc (Ỹ
i
k, Ỹ

j
k). (19)

4.2. Formulation

The classification loss is defined as L(Ỹ,X;W) =
1

NM

∑M
m=1

∑N
n=1 ℓ(ỹ

m
n ,xn;W

m). Wm, the param-

eter of the m-th classifier, is the m-th column of

W. ℓ(ỹmn ,xn;W
m) is the loss of classifiers. It can

be ℓ(y,x;w) = [1 − y(wTx)]+ for hinge loss and

ℓ(y,x;w) = log(1 + e−ywTx) for logistic loss.

Given the formulations of AU probabilities, we now in-

troduce our method to learn AU classifiers subject to these

AU probabilities. We propose to jointly learn both multiple

AU classifiers and AU labels of training samples by lever-

aging prior knowledge as follows

min
Ỹ,W

L(Ỹ,X;W) + λcLc(Ỹ)

+ λA
s L

A
s (Ỹ,Z) + λsLs(Ỹ,P,S,Z)

+ λE
c L

E
c (Ỹ,Z) + λB

c L
B
c (Ỹ,Z)

s.t. ỹmn ∈ {−1, 1},

n ∈ {1, ..., N},m ∈ {1, ...,M}, (20)

where λc, λA
s , λs, λE

c , and λB
c are the penalty factors. The

first term is the classification loss. The second term is the

loss of expression-independent joint AU probabilities from
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Table 1. The third term is the loss of probabilities of single

AUs from Table 2. The fourth term is the loss of probabil-

ities of single AUs from Table 3, which can be removed if

the probabilities are not available. The last two terms are

loss of expression-dependent joint AU probabilities from

Table 2 and 4. The knowledge is encoded as soft constraints

which can be violated. Please note Eq. 20 can use both

samples with expression labels as well as samples without

expression labels since the second term can be applied to

all the samples. As a result, our method technically can be

solved without even expression labels, as we can only use

the second term in Eq. 20. During testing, the learned AU

classifiers are applied individually. No expression and AU

relationships are needed.

4.3. Optimization

We propose an iterative algorithm under the alternating

optimization framework (see Algo. 1). Given Ỹ, it becomes

a convex problem with respect to W. Given W, we use a

greedy strategy to estimate Ỹ. We use the knowledge from

Table 2 to initialize Ỹ. For a sample with expression, we

assign 1 to the primary or secondary AUs and 0 to other

AUs. Then, we use the assigned labels to initialize W.

Fix Ỹ, optimize W Given Ỹ, the parameters of each

classifier are not coupled, so each classifier can be learned

separately by solving the following subproblem

min
Wm

1

N

N
∑

n=1

ℓ(ỹmn ,xn;W
m). (21)

The subproblem can be solved efficiently by existing opti-

mization algorithms. We use LBFGS [16] for optimization.

Fix W, optimize Ỹ We use a greedy strategy to minimize

the objective function iteratively. An iteration consists of

three steps as shown in Algo. 1. We can find the best AU

configuration for each sample by solving the subproblem

min
ỹn

1

M

M
∑

m=1

ℓ(ỹmn ,xn;W
m) + λcLc(Ỹ)

+ λA
s L

A
s (Ỹ,Z) + λsLs(Ỹ,P,S,Z)

+ λE
c L

E
c (Ỹ,Z) + λB

c L
B
c (Ỹ,Z)

s.t. ỹmn ∈ {−1, 1},m ∈ {1, ...,M}. (22)

The first step for each sample is independent and the evalua-

tion of each configuration is also independent. Therefore, it

can be implemented parallelly. The alternating optimization

procedure is guaranteed to converge because the objective is

minimized at each step and it is non-increasing. The com-

plexity of finding the best Ỹ by brute-force is O(2NM ).
Our greedy approach reduces the complexity to O(N22M ).

5. Experiments

The goal of experiments is to show that our weakly su-

pervised method can achieve better performance than the

Algorithm 1 Model learning with AU probabilities

Input: training data D,

prior probabilities on single AUs P (yi|z),
expression-independent AU pairs S, and

expression-dependent AU pairs EP .

Output: W, Ỹ

1: Initialize Ỹ with single probabilities and update W

2: while not converging do

3: Fix W, update the labels Ỹ

4: Step 1: find the best configuration for each sample

by solving Eq. 22

5: Step 2: (a) compute the objective under the best

configuration of each sample (Eq. 20)

(b) compare the objective values of samples

(c) select the sample with the minimum objective

6: Step 3: update only the selected sample with its best

configuration and keep the previous configurations

of other samples

7: Repeat Step 1∼3 until no reduction of the objective

8: Fix Ỹ, update W by solving Eq. 21

9: end while

10: return W, Ỹ

competing methods and achieve comparable performance

to the methods that use AU annotations.

5.1. Settings

Datasets: The CK+ database [13] is a posed expres-

sion database. Apex frames from 309 sequences of 109
subjects with 6 basic expressions are collected. The MMI

database [21] is a posed expression database. Apex frames

from 196 sequences of 27 subjects with both AUs and ex-

pression are collected. The BP4D database [31] is a spon-

taneous expression database. 391 apex frames from 41 sub-

jects with 6 basic expressions are extracted. The Emotion-

Net database (ENet) [8] is collected in the wild. Few images

have both basic expressions and AU annotations. In our ex-

periments, 345 images with only basic expression annota-

tions and 420 images with only AU annotations are used,

called as ENet-E and ENet-AU respectively. We consider 8
AUs in CK+, MMI and BP4D and consider 6 AUs in ENet.

We use the prior probabilities related to these AUs from Ta-

bles 1, 2, 3, and 4.

Features: We use [15] to detect facial landmarks. Face

images are aligned according to the two eye centers. We

extract LBP (Local Binary Pattern) [18] features around 51
inner landmarks. The patch size is 32× 32. To evaluate our

methods when using different features, we also use the co-

ordinates of the 51 landmarks as another type of feature. If

not specified, the LBP features and the hinge loss are used.

Evaluation metric: We use F1 score as evaluation met-

ric, i.e., F1 = 2·R·P
R+P

, where R is recall and P is precision.
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Figure 1. Within database performance for each AU. From left to right are the results on CK+, MMI, BP4D, and ENet.

The hyperparameters are selected through cross validation

on the training set. We use the error between the estimated

probabilities and the prior probabilities on single AUs as the

measure for the selection. The ranges of hyperparameters

are λs, λ
A
s , λc, λ

e
c, λ

B
c ∈ {10, 102, 103, 104}.

Comparison: Firstly, we perform within-database AU

recognition using different features and different losses for

classifiers. We compare our method (LP-SM) to weakly su-

pervised methods such as Base, LP-S, and HTL [19]. Base

is the method that exploits the prior probabilities to assign

AU labels to samples by using the threshold as 0.5. The

classifiers are trained on the assigned labels. HTL is cur-

rently the only state-of-the-art method that learns AU clas-

sifiers without AU annotations. It can handle only single

AU probabilities. LP-SM uses both single and joint AU

probabilities. LP-S is a variant of LP-SM, which uses

only single AU probabilities. We use 5 fold subject in-

dependent cross validation for evaluation. Secondly, we

compare to the state-of-the-art supervised learning methods

such as JPML [32], SVM-HMM [22], HRBM [25], and

MC-LVM [7]. They use AU annotations to train classifiers.

5.2. Results

5.2.1 Evaluation of our method

Learning with different features and classifiers. We eval-

uate the performance of our method with different image

features and different losses for classifiers. Table 5 shows

the performance of using different features, i.e., LBP and

geometry features. The classification loss is hinge loss for

Base, LP-S, and LP-SM. Table 6 shows the performance

of using different losses of classifiers, i.e., hinge loss and

logistic loss. The features are LBP. Fig. 1 shows the de-

tailed performance of each AU when using LBP features

and hinge loss. For the ENet database, we use ENet-E for

training and ENet-AU for testing.

Firstly, LP-SM outperforms Base, HTL, and LP-S on all

the three databases when using different features or losses

for classifiers. These results demonstrate that the generic

knowledge on AUs is still applicable when using different

features or losses. Compared to LP-S, LP-SM leverages not

only the prior knowledge on single AUs, but also relation-

ships among multiple AUs. Compared HTL, HTL learns the

mapping from AU to expression first and then learn the AU

classifiers. The learning error at the first stage affects the

second stage. Unlike HTL, we jointly optimize the AU la-

bels and classifiers to avoid error propagation. We also em-

Table 5. Performance of using different features

Database
LBP Landmarks

Base HTL [19] LP-S LP-SM Base HTL [19] LP-S LP-SM

CK 0.470 0.657 0.679 0.719 0.570 0.689 0.689 0.732

MMI 0.348 0.415 0.419 0.508 0.413 0.438 0.442 0.481

BP4D 0.427 0.488 0.515 0.564 0.435 0.470 0.504 0.563

ENet 0.243 0.317 0.311 0.336 0.202 0.311 0.319 0.337

Table 6. Performance of using different losses for classifiers

Database
hinge loss logistic loss

Base LP-S LP-SM Base LP-S LP-SM

CK 0.470 0.679 0.719 0.449 0.661 0.690

MMI 0.348 0.419 0.508 0.360 0.370 0.481

BP4D 0.427 0.515 0.564 0.433 0.501 0.552

ENet 0.243 0.311 0.336 0.239 0.325 0.351

Table 7. Cross-database evaluation of SVM.
target

source CK MMI BP4D

CK 0.783 0.429 0.352

MMI 0.551 0.519 0.509

BP4D 0.403 0.431 0.667

ploy a larger set of AU probabilities to help learn the clas-

sifiers, including expression-independent and expression-

dependent joint AU probabilities. Secondly, Table 7 shows

the cross-database evaluation of SVM that uses AU labels

for training on a source database and for testing on a tar-

get database. The performance of SVM drops dramatically.

Compared to SVM, we apply the same generic knowledge

to different databases and our method achieves better per-

formance. This demonstrates that the generic knowledge

can generalize to different databases.

Contribution of joint AU probabilities. To investigate

the contribution of expression-independent and expression-

dependent relationships, we drop one of them during learn-

ing. The results are shown in Table 8. rmInd rep-

resents learning AU classifiers by dropping expression-

independent relationships while rmDep represents drop-

ping expression-dependent relationships. The results show

that both expression-independent and expression-dependent

relationships contribute, but the expression-independent re-

lationships are more important.

Table 8. Comparison of expression-independent and expression-

dependent joint AU relationships
Method rmInd rmDep LP-SM

CK+ 0.686 0.700 0.719

MMI 0.414 0.452 0.508

BP4D 0.493 0.550 0.564

ENet 0.312 0.322 0.336

Comparison of the sources of single AU probabilities.

The single AU probabilities come from two sources, i.e., the

FACS [6] and the study [5]. To verify the informativeness

of each source, we compare the performance of using sin-

gle AU probabilities from only the FACS or the study [5].
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FACS provides generic singe AU probabilities based on the

specification of primary, secondary, and other AUs. The

study [5] provides more informative probabilities for spe-

cific AUs under different expressions. The results are shown

in Table 9. It shows that both sources of single probabili-

ties contribute and the study [5] is more informative. It also

shows to some extent that the probabilities in [5] can gener-

alize across datasets.

Table 9. Comparison of sources of single AU probabilities

Source FACS Study [5] FACS & Study [5]

CK+ 0.680 0.708 0.719

MMI 0.464 0.488 0.508

BP4D 0.344 0.554 0.564

ENet 0.278 0.334 0.336

Learning individual classifiers. The purpose of multi-

label learning is to use label correlations to improve indi-

vidual classifiers. Though all AUs are trained jointly, dur-

ing recognition, they are applied individually. To verify

whether AU detectors are learned for individual AUs or

their combinations, we analyze the predictions of classifiers

on the CK+ database. The distributions of AU pairs in the

prediction are shown in Table 10. The results show that our

joint learning method generates individual classifiers rather

than classifiers for AU combinations since P(A=1,B=0) or

P(A=0,B=1) of predicted AU pairs are larger than 0.

Table 10. Co-occurrence of AU pairs in the prediction

(A,B)
Positive correlation Negative correlation

(1,2) (4,7) (6,12) (15,17) (2,6) (2,7) (12,15) (12,17)

P(A=1,B=1) 0.30 0.23 0.18 0.28 0.13 0.08 0.04 0.04

P(A=0,B=1) 0.08 0.09 0.09 0.03 0.37 0.26 0.15 0.08

P(A=1,B=0) 0.05 0.05 0.14 0.15 0.16 0.22 0.08 0.39

Semi-supervised Learning. We can extend our

model to a semi-supervised model by adding a term

for samples with AU annotations, i.e., L̄(Y,X;W) =
1

NM

∑K
m=1

∑N
n=1 ℓ(y

m
n ,xn;W

m). We perform an exper-

iment on CK+ under the scenario that half of training sam-

ples have AU annotations. The F1 scores of using only AU

annotations, using only prior probabilities, and using both

are 0.724, 0.719, and 0.754 respectively. It future demon-

strates the power of the prior probabilities.

5.2.2 Comparison to the state-of-the art methods

We compare to the supervised methods that require AU an-

notations. The results are shown in Table 11. (*) indicates

reported results. Though the performance of our method is

not as good as the fully supervised methods, surprisingly, it

achieves promising comparable performance to them with-

out using any AU annotations, especially on CK+ and MMI.

Note that our method applies the same prior probabilities

to different databases while other methods use the AU an-

notations in each database. Though they perform well in

within-database evaluation, the performance drops in cross-

database evaluation (see Table 7). The performance on

ENet is not as good as CK+ since training images have low

quality and contain large pose and illumination variance.

Table 11. Comparison to the state-of-the-art supervised methods.

Method CK+ MMI BP4D ENet

JPML [32] 0.788* - 0.676* -

SVM-HMM [22] - 0.555* - -

HRBM [25] 0.792 0.547 0.688 0.436

MC-LVM [7] 0.801* - - -

LP-SM 0.719 0.508 0.564 0.336

5.2.3 Experiments on the PAIN database

To further evaluate the generalization ability, we apply our

method to the UNBC-McMaster Shoulder Pain Expression

Archive (PAIN) database [14]. The majority faces have no

pain in PAIN. 300 apex frames under pain and 300 frames

without pain are collected. We consider the recognition of

AU6, AU7, and AU12 since other AUs rarely appear. We

extract knowledge from the definition of pain , i.e. pain

= AU4 + max(AU6,AU7) + max(AU9,AU10) + AU43.

Firstly, for the non-pain expression, we have P (AUi =
1|nopain) < P (AUi = 1|pain) for i = 6, 7. Since AU6 and

AU7 are the dominant AUs, we have P (AUi = 1|pain) >

P (AUi = 0|pain) for i = 6, 7. We also have the expression-

independent correlation, i.e., (AU6, AU12). The results are

shown in Table 12. The supervised methods achieve bet-

ter performance since they have the AU annotations which

provide strong supervisory information. But, the perfor-

mance of our method is much better than the random guess

(F1=0.369). It still shows that the generic knowledge is

applicable on the PAIN database and provides useful con-

straints for classifiers in the solution space.

Table 12. Performance on the PAIN database

AU SVM [14] MC-LVM [7] LP-SM

6 0.774 0.987* 0.557

7 0.695 0.679* 0.521

12 0.844 - 0.457

Avg. 0.771 0.833* 0.512

6. Conclusion

In this paper, we propose to use generic domain knowl-

edge to train AU classifiers without AU annotations. Rep-

resented as AU probabilities and derived from the underly-

ing facial anatomy, the domain knowledge imposes generic

constraints on AU dependencies and emotion studies. We

propose to simultaneously learn the AU classifiers and AU

labels of training samples. Evaluations on five databases

show our methods achieve comparable performance to fully

supervised methods, but with much better generalization ca-

pabilities. Besides AU recognition, the proposed method

can be applied to other applications if domain knowledge is

provided, such as object/attribute recognition.
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