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Abstract

In this paper, we study the task of detecting semantic

parts of an object, e.g., a wheel of a car, under partial occlu-

sion. We propose that all models should be trained without

seeing occlusions while being able to transfer the learned

knowledge to deal with occlusions. This setting alleviates

the difficulty in collecting an exponentially large dataset to

cover occlusion patterns and is more essential. In this sce-

nario, the proposal-based deep networks, like RCNN-series,

often produce unsatisfactory results, because both the pro-

posal extraction and classification stages may be confused

by the irrelevant occluders. To address this, [25] proposed a

voting mechanism that combines multiple local visual cues

to detect semantic parts. The semantic parts can still be de-

tected even though some visual cues are missing due to oc-

clusions. However, this method is manually-designed, thus

is hard to be optimized in an end-to-end manner.

In this paper, we present DeepVoting, which incorporates

the robustness shown by [25] into a deep network, so that

the whole pipeline can be jointly optimized. Specifically, it

adds two layers after the intermediate features of a deep

network, e.g., the pool-4 layer of VGGNet. The first layer

extracts the evidence of local visual cues, and the second

layer performs a voting mechanism by utilizing the spatial

relationship between visual cues and semantic parts. We

also propose an improved version DeepVoting+ by learning

visual cues from context outside objects. In experiments,

DeepVoting achieves significantly better performance than

several baseline methods, including Faster-RCNN, for se-

mantic part detection under occlusion. In addition, Deep-

Voting enjoys explainability as the detection results can be

diagnosed via looking up the voting cues.

1. Introduction

Deep networks have been successfully applied to a wide

range of vision tasks, in particular object detection [7, 20,

∗The first three authors contributed equally to this work.

19, 13, 29]. Recently, object detection is dominated by a

family of proposal-based approaches [7, 20], which first

generates a set of object proposals for an image, followed

by a classifier to predict objects’ score for each proposal.

However, semantic part detection, despite its importance,

has been much less studied. A semantic part is a fraction of

an object which has semantic meaning and can be verbally

described, such as a wheel of a car or a chimney of a train.

Detecting semantic parts is a human ability, which enables

us to recognize or parse an object at a finer scale.

In the real world, semantic parts of an object are fre-

quently occluded, which makes detection much harder. In

this paper, we investigate semantic part detection especially

when these semantic parts are partially or fully occluded.

We use the same datasets as in [25], i.e., the VehicleSeman-

ticPart dataset and the VehicleOcclusion dataset. Some typ-

ical semantic part examples are shown in Figure 1. Note

that, the VehicleOcclusion dataset is a synthetic occlusion

dataset, where the target object is randomly superimposed

with two, three or four irrelevant objects (named occluders)

and the occlusion ratios of the target object is constrained.

To the best of our knowledge, VehicleOcclusion is the only

public occlusion dataset that provides accurate occlusion

annotations of semantic parts like the occlusion ratio and

number of occluders. This allows us to evaluate different

methods under different occlusion difficulty levels.

One intuitive solution of dealing with occlusion is to

train a model on the dataset that covers different occlusion

cases. However, it is extremely difficult yet computationally

intractable to collect a dataset that covers occlusion patterns

of different numbers, appearances and positions. To over-

come this difficulty, we suggest a more essential solution,

i.e, training detectors only on occlusion-free images, but al-

lowing the learned knowledge (e.g., the spatial relationship

between semantic parts, etc.) to be transferred from non-

occlusion images to occlusion images. This motivates us to

design models that are inherently robust to occlusions. A

related work is [25], which pointed out that proposal-based

deep networks are less robust to occlusion, and instead pro-

posed a voting mechanism that accumulates evidences from
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Figure 1. Typical semantic parts on six types of rigid objects from the VehicleSemanticPart dataset [25]. Some semantic parts (e.g., wheel)

can appear in different object classes, while some others (e.g., chimney) only appear in one class (train).

multiple local visual cues, and locate the semantic parts

with the help of geometric constraints (i.e., the spatial re-

lationship between the visual cues and the target semantic

part). However, this manually-designed framework is bro-

ken down into several stages, and thus it is difficult to op-

timize it in an end-to-end manner. This motivates us to see

if the robustness shown in [25] can be incorporated into a

deep network which enables end-to-end training naturally.

To this end, we propose DeepVoting, an end-to-end

framework for semantic part detection under partial occlu-

sion. Specifically, we add two convolutional layers after

the intermediate features of a deep neural network, e.g., the

neural responses at the pool-4 layer of VGGNet. The first

convolutional layer performs template matching and out-

puts local visual cues named visual concepts, which were

verified to be capable of detecting semantic parts [26]. This

layer is followed by a ReLU activation [16], which sets a

threshold for filtering the matched patterns, and a dropout

layer [22], which allows part of evidences to be missing.

After that, the second convolution layer is added to perform

a voting mechanism by utilizing the spatial relationship be-

tween visual cues and semantic parts. The spatial/geometric

relations are stored as convolutional weights and visual-

ized as spatial heatmaps. The visual concepts and spatial

heatmaps can be learned either on foreground objects only

or on whole image with context. We first follow [25] to train

our model on foreground objects only by cropping the ob-

ject bounding boxes. We further show that visual concepts

and spatial heatmaps can also exploit context information

by using the whole image to train our model, and we call

this improved version DeepVoting+.

We investigate both DeepVoting and DeepVoting+ in our

experiments. The first version, in which contexts are ex-

cluded, significantly outperforms [25] with the same set-

ting, arguably because the end-to-end training manner pro-

vides a stronger method for joint optimization. The sec-

ond version, which allows contextual cues to be incorpo-

rated, fits the training data better and consequently produces

higher detection accuracies. In comparison to the state-of-

the-art object detectors such as Faster-RCNN [20], Deep-

Voting enjoys a consistent advantage, and the advantage

becomes more significant as the occlusion level goes up.

DeepVoting brings two additional benefits apart from be-

ing robust to occlusion: (i) DeepVoting enjoys much lower

model complexity, i.e., the number of parameters is one or-

der of magnitude smaller, and the average testing speed is

2.5× faster; and (ii) DeepVoting provides the possibility to

interpret the detection results via looking up the voting cues.

2. Related Work

Deep convolutional neural networks have been applied

successfully to a wide range of computer vision prob-

lems, including image recognition [11, 21, 23, 9], seman-

tic segmentation [14, 2, 30], object detection [7, 20, 19,

13, 29], etc. For object detection, one of the most pop-

ular pipeline [7, 20] involved first extracting a number of

regions named object proposals [1, 24, 12, 20], and then

determining if each of them belongs to the target class.

Bounding-box regression and non-maximum suppression

were attached for post-processing. This framework signif-

icantly outperforms the deformable part-based model [6]

trained on top of a set of handcrafted features [4].

There are some works using semantic parts to assist ob-

ject detection [3, 31]. Graphical model was used to assem-

ble parts into an object. Also, parts can be used for fine-

grained object recognition [28, 27], be applied as auxiliary

cues to understand classification [10], or be trained for ac-

tion and attribute classification [8]. Besides, [17] investi-

gated the transferability of semantic parts across a large tar-

get set of visually dissimilar classes in image understanding.

Detecting semantic parts under occlusion is an impor-

tant problem but was less studied before. [25] combined

multiple visual concepts via the geometric constraints, i.e.,

the spatial distribution of the visual concepts related to the

target semantic parts, to obtain a strong detector. Different

from [25], DeepVoting implements visual concept extrac-

tion and the geometric relationships as two layers, and at-

tach them directly to the intermediate outputs of a deep neu-

ral network to perform an end-to-end training. This yields

much better performance compared to [25].
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3. The DeepVoting Framework

3.1. Motivation

We aim at detecting the semantic parts of an object un-

der occlusion. First of all, we argue that only occlusion-free

images should be used in the training phase. This is be-

cause the appearance and position of the occluders can be

arbitrary, thus it is almost impossible to cover all of them

by a limited training set. It is our goal to design a frame-

work which can transfer the learned knowledge from the

occlusion-free domain to the occlusion domain.

One possible solution is to adapt the state-of-the-art ob-

ject detection methods, such as Faster-RCNN [20], to de-

tect semantic parts. Specifically, the adapted methods first

extract a number of proposals for semantic parts and then

compute the classification scores for each of them. But, we

point out that this strategy may miss some partially or fully

occluded semantic parts because of two important factors:

(1) occlusion may distract the proposal generation network

from extracting good proposals for semantic parts; (2) even

with correct proposals, the classifier may still go wrong

since the appearance of the occluded semantic parts can be

totally different. We verify that these factors indeed down-

grade the performance of Faster-RCNN in Section 4.3.

The voting mechanism [25] suggests an alternative strat-

egy, which accumulates mid-level visual cues to detect

high-level semantic parts. These mid-level cues are called

visual concepts [26], i.e., a set of intermediate CNN states

which are closely related to semantic parts. A semantic part

is supported by multiple visual concepts via the geometric

constraints between them. Even if the evidences from some

visual concepts are missing due to occlusion, it is still pos-

sible to infer the presence of the semantic part via the evi-

dences from the remaining ones. However, it involves too

many hyper-parameters and thus is hard to be optimized.

In this paper, we propose DeepVoting which incorpo-

rates the robustness shown by [25] into a deep network.

Following [26], the visual concepts are learned when the

objects appear at a fixed scale since each neuron on the in-

termediate layer, e.g., the pool-4 layer, has a fixed recep-

tive field size [21]. Therefore, we assume that the object

scale is approximately the same in both training and test-

ing stages. In the training stage, we used the ground-truth

bounding box to resize the object for the DeepVoting, and

compute the object-to-image ratio to train a standalone net-

work, ScaleNet [18], for scale prediction (see Section 3.4

for details). In the testing stage, the trained ScaleNet was

used to predict the resizing ratio, and then we resize the

testing image according to the predicted ratio.

3.2. Formulation

Let I denote an image with a size of W × H . Follow-

ing [25], we feed this image into a 16-layer VGGNet [21],

and extract the pool-4 features as a set of intermediate neu-

ral outputs. Denote the output of the pool-4 layer as X, or a

W ′×H ′×D cube, where W ′ and H ′ are the down-sampled

scales of W and H , and D is 512 for VGGNet. These fea-

tures can be considered as W ′ ×H ′ high-dimensional vec-

tors, and each of them represents the appearance of a local

region. Denote each D-dimensional feature vector as xi

where i is an index at the W ′ × H ′ grid. These feature

vectors are ℓ2-normalized so that ‖xi‖2 = 1.

3.2.1 Visual Concept Extraction

In [25], a set of visual concepts V = {v1, . . . ,vK} are ob-

tained via K-means clustering, and each visual concept is

considered intuitively as a template to capture the mid-level

semantics from these intermediate outputs. Specifically, the

response of the visual concept vk at the pool-4 feature vec-

tor xi is measured by the ℓ2-distance, i.e., ‖vk − xi‖
2

2
.

We note that xi has unit length, and so ‖vk‖2 ≈ 1 as

it is averaged over a set of neighboring xi’s, so we have

‖vk − xi‖
2

2
≈ 2− 2 〈vk,xi〉 where 〈·, ·〉 is the dot product

operator. Then the log-likelihood ratio tests are applied to

eliminate negative responses. This is driven by the idea that

the presence of a visual concept can provide positive cues

for the existence of a semantic part, but the absence of a

visual concept shall not give the opposite information.

Different from [25], DeepVoting implements this mod-

ule as a convolutional layer, namely visual concept layer,

and attaches it directly after the normalized intermediate

outputs of a deep neural network. The kernel size of this

convolutional layer is set to be 1× 1, i.e., each xi is consid-

ered individually. The ReLU activation [16] follows to set

the negative responses as 0’s and thus avoids them from pro-

viding negative cues. We append a dropout layer [22] with

a drop ratio 0.5, so that a random subset of the visual con-

cept responses are discarded in the training process. This

strategy facilitates the model to perform detection robustly

using incomplete information and, consequently, improves

the testing accuracy when occlusion is present.

The output of visual concept layer is a map Y of size

W ′ ×H ′ × |V|, where V is the set of visual concepts. We

set |V| = 256, though a larger set may lead to slightly better

performance. Although these visual concepts are trained

from scratch rather than obtained from clustering [26], we

show in Section 4.4 that they are also capable of capturing

repeatable visual patterns and semantically meaningful.

3.2.2 Semantic Part Detection via the Voting Layer

After the previous stage, we can find some fired visual con-

cepts, i.e., those positions with positive response values.

In [25], the fired visual concepts are determined via log-

likelihood ratio tests. These fired visual concepts are then
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Figure 2. The overall framework of DeepVoting (best viewed in color). A car image with two wheels (marked by red frames, one of

them is occluded) is fed into VGGNet [21], and the intermediate outputs are passed through a visual concept extraction layer and a voting

layer. We aggregate local cues from the visual concept map (darker blue indicates more significant cues), consider their spatial relationship

to the target semantic part via voting, and obtain a low-resolution map of semantic parts (darker red or a larger number indicates higher

confidence). Based on this map, we perform bounding box regression followed by non-maximum suppression to obtain the final results.

accumulated together for semantic part detection by con-

sidering the spatial constraints between each pair of visual

concept and semantic part. It is motivated by the nature that

a visual concept can, at least weakly, suggest the existence

of a semantic part. For example, as shown in Figure 2, in a

car image, finding a headlight implies that there is a wheel

nearby, and the distance and direction from the headlight to

the wheel are approximately the same under a fixed scale.

Different from [25], DeepVoting implements the spatial

constraints between visual concepts and the semantic parts

as another convolutional layer, named the voting layer, in

which we set the receptive field of each convolutional kernel

to be large, e.g., 15×15, so that a visual concept can vote for

the presence of a semantic part at a relatively long distance.

This strategy helps particularly when the object is partially

occluded, as effective visual cues often emerge outside the

occluder and may be far from the target.

Though the spatial constraints are learned from scratch

and only semantic part level supervision is imposed during

training, they can still represent the frequency that visual

concepts appear at different relative positions. We refer to

each learned convolutional kernel at this layer as a spatial

heatmap, and some of them are visualized in Section 4.4.

Denote the output of the voting layer, i.e., the semantic

part map, as Z. It is a W ′ ×H ′ × |S| cube where S is the

set of semantic parts. Each local maximum at the seman-

tic part map corresponds to a region on the image lattice

according to their receptive filed. To generate a bounding

box for semantic part detection, we first set an anchor box,

sized 100 × 100 and centered at this region, and then learn

the spatial rescaling and translation to regress the anchor

box (following the same regression procedure in [7]) from

the training data. The anchor size 100× 100 is the average

semantic part scale over the entire training dataset [25].

3.3. Training and Testing

We train the network on an occlusion-free image corpus.

This helps us obtain clear relationship between the visual

concepts and the semantic parts. We discard the background

region by cropping the object according to the ground-truth

bounding box, to be consistent with [25]. Then, we rescale

the cropped image so that the object short edge has 224 pix-

els, which is motivated by [26] to capture the visual con-

cepts at a fixed scale. The image is fed into the 16-layer

VGGNet, and we get the feature vectors at the pool-4 layer.

These feature vectors are normalized and passed through

two layers for visual concept extraction and voting. We

compare the output semantic part map Z with the ground-

truth annotation L by computing dice coefficient between

prediction and ground-truth [15]. To generate the ground-

truth, we find the nearest grid point at the W ′ × H ′ grid

(down-sampled from the original image by the factor of 16)

based on the center pixel of each annotated semantic part,

and set the labels of these positions as 1 and others as 0.

Then we apply Gaussian filtering on the binary ground-truth

annotation, to generate the smoothed ground-truth annota-

tion L. The label cube L is also of size W ′×H ′×|S|. The

similarity between Z and L is defined as:

D(Z,L) =
1

|S|

|S|
∑

s=1

2×
∑W ′,H′

w=1,h=1
zw,h,s × lw,h,s

∑W ′,H′

w=1,h=1

(

z2w,h,s + l2w,h,s

) , (1)

It is straightforward to compute the gradients based on the

loss function L(Z,L) = 1−D(Z,L).
On the testing stage, we first use ScaleNet (see Sec-

tion 3.4) to obtain the object scale. Then, we rescale the

image so that the short edge of the object roughly contains

224 pixels. We do not crop the object because we do not

know its location. Then, the image is passed through the

VGGNet followed by both visual concept extraction and

voting layers, and finally we apply the spatial rescaling and

translation to the anchor box (100× 100) towards more ac-

curate localization. A standard non-maximum suppression

is performed to finalize the detection results.

DeepVoting is trained on the images cropped with

respect to the object bounding boxes to be consistent

with [25]. Moreover, visual concepts and spatial heatmaps

can also exploit context outside object bounding boxes. To
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Figure 3. Examples of images in VehicleSemanticPart dataset and VehicleOcclusion dataset. The first is the original occlusion-free image

from VehicleSemanticPart dataset. The second, third and forth image (in row-major order) are from VehicleOcclusion dataset. There are

2, 3 and 4 occluders, and the occluded ratio of object, computed by pixels, is 0.2–0.4, 0.4–0.6 and 0.6–0.8, respectively.

verify this, we train an improved version, named DeepVot-

ing+, without cropping the bounding boxes. We also resize

the image so that the object short edge contains 224 pixels

in the training stage, and the testing stage is the same as

DeepVoting. Experiments show that DeepVoting+ achieves

better performance than DeepVoting.

3.4. The Scale Prediction Network

The above framework is based on an important assump-

tion, that the objects appear in approximately the same

scale. This is due to two reasons. First, as shown in [26],

the visual concepts emerge when the object is rescaled to

the same scale, i.e., the short edge of the object bounding

box contains 224 pixels. Second, we expect the voting layer

to learn fixed spatial offsets which relate a visual concept to

a semantic part. As an example, the heatmap delivers the

knowledge that in the side view of a car, the headlight of-

ten appears at the upperleft direction of a wheel, and the

spatial offset on x and y axes are about 64 and 48 pixels (4
and 3 at the pool-4 grid), respectively. Such information is

not scale-invariant.

To deal with these issues, we introduce an individual net-

work, namely the ScaleNet [18], to predict the object scale

in each image. The main idea is to feed an input image

to a 16-layer VGGNet for a regression task (the fc-8 layer

is replaced by a 1-dimensional output), and the label is the

ground-truth object size. Each input image is rescaled, so

that the long edge contains 224 pixels. It is placed at the

center of an 224× 224 square and the remaining pixels are

filled up with the averaged intensity. During the training,

we consider the short edge of the object, and ask the deep

network to predict the ratio of the object short edge to the

image long edge (224 pixels). In the test phase, an image

is prepared and fed into the network in the same flowchart,

and the predicted ratio is used to normalize the object to

the desired size, i.e., its short edge contains 224 pixels. We

show in Section 4.2.1 that this method works very well.

3.5. Discussions and Relationship to Other Works

The overall framework of DeepVoting is quite different

from the conventional proposal-based detection methods,

such as Faster-RCNN [20]. This is mainly due to the prob-

lem setting, i.e., when the occlusion is present, the accuracy

of both proposal and classification networks becomes lower.

However, DeepVoting is able to infer the occluded semantic

parts via accumulating those non-occluded visual cues. We

show more comparative experiments in Section 4.3.

We decompose semantic part detection into two steps,

i.e., central pixel detection and bounding box regression.

The first step is performed like semantic segmentation [14]

in a very low-resolution setting (down-sampled from the

original image by the factor of 16). We also borrow the

idea from segmentation [15], which uses a loss function re-

lated to the dice coefficient in optimization. As the seman-

tic part is often much smaller compared to the entire image,

this strategy alleviates the bias of data imbalance, i.e., the

model is more likely to predict each pixel as background as

it appears dominantly in the training data.

4. Experiments

4.1. Dataset and Baseline

We use the VehicleSemanticPart dataset and the Vehi-

cleOcclusion dataset [25] for evaluation. The VehicleSe-

manticPart dataset contains 4549 training images and 4507
testing images covering six types of vehicles, i.e., airplane,

bicycle, bus, car, motorbike and train. In total, 133 se-

mantic parts are annotated. For each test image in Vehicle-

SemanticPart dataset, some randomly-positioned occluders

(irrelevant to the target object) are placed onto the target

object, and make sure that the occlusion ratio of the target

object is constrained. Figure 3 shows several examples with

different occlusion levels.

We train six models, one for each object class. All the

models are trained on an occlusion-free dataset, but evalu-

ated on either non-occluded images, or the images with dif-

ferent levels of occlusions added. In the later case, we vary

the difficulty level by occluding different fractions of the

object. We evaluate all the competitors following a popular

criterion [5], which computes the mean average precision

(mAP) based on the list of detected semantic parts. A de-

tected box is considered to be true-positive if and only if its

IoU rate with a ground-truth box is not lower than 0.5. Each

semantic part is evaluated individually, and the mAP of each
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No Occlusions L1 L2 L3

Category KVC DVC VT FR DV DV+ VT FR DV DV+ VT FR DV DV+ VT FR DV DV+

airplane 15.8 26.6 30.6 56.9 59.0 60.2 23.2 35.4 40.6 40.6 19.3 27.0 31.4 32.3 15.1 20.1 25.9 25.4

bicycle 58.0 52.3 77.8 90.6 89.8 90.8 71.7 77.0 83.5 85.2 66.3 62.0 78.7 79.6 54.3 41.1 63.0 62.5

bus 23.8 25.1 58.1 86.3 78.4 81.3 31.3 55.5 56.9 65.8 19.3 40.1 44.1 54.6 9.5 25.8 30.8 40.5

car 25.2 36.5 63.4 83.9 80.4 80.6 35.9 48.8 56.1 57.3 23.6 30.9 40.0 41.7 13.8 19.8 27.3 29.4

motorbike 32.7 29.2 53.4 63.7 65.2 69.7 44.1 42.2 51.7 55.5 34.7 32.4 41.4 43.4 24.1 20.1 29.4 31.2

train 12.3 12.8 35.5 59.9 59.4 61.2 21.7 30.6 33.6 43.7 8.4 17.7 19.8 29.8 3.7 10.9 13.3 22.2

mean 28.0 30.4 53.1 73.6 72.0 74.0 38.0 48.3 53.7 58.0 28.6 35.0 42.6 46.9 20.1 23.0 31.6 35.2

Table 1. Left 6 columns: Comparison of detection accuracy (mean AP, %) of KVC, DVC, VT, FR, DV and DV+ without occlusion.

Right 12 columns: Comparison of detection accuracy (mean AP, %) of VT, FR, DV and DV+ when the object is occluded at three different

levels. Note that DV+ is DeepVoting trained with context outside object bounding boxes. See the texts for details.

object class is the average mAP over all the semantic parts.

DeepVoting and DeepVoting+ (denoted by DV and DV+,

respectively, Section 3.3) are compared with four baselines:

• KVC: These visual concepts are clustered from a set

of pool-4 features using K-Means [26]. The ScaleNet

(detailed in Section 3.4) is used to tackle scale issue

and the extracted visual concepts are directly used to

detect the semantic parts.

• DVC: These visual concepts are obtained from Deep-

Voting, i.e., the weights of the visual concept extrac-

tion layer. The ScaleNet (detailed in Section 3.4) is

used to tackle scale issue and the extracted visual con-

cepts are directly used to detect the semantic parts.

• VT: The voting method first finds fired visual concepts

via log-likelihood ratio tests, and then utilizes spatial

constraints to combine these local visual cues.

• FR: We train models for each category independently.

Each semantic part of a category is considered as a

separate class during training, i.e., for each category,

we train a model with |S| + 1 classes, corresponding

to |S| semantic parts and the background. Different

from other baselines, Faster-RCNN here is trained on

full images, i.e., object cropping is not required. This

enables Faster-RCNN to use context for semantic parts

detection and handle scale issue naturally since seman-

tic parts with various scales are used in training.

4.2. Semantic Part Detection without Occlusion

As a simplified task, we evaluate our algorithm in detect-

ing semantic parts on non-occluded objects. This is also a

baseline for later comparison. In the left six columns of

Table 1, we list the detection accuracy produced by dif-

ferent methods. The average detection accuracies by both

voting and DeepVoting are significantly higher than using

single visual concept for detection, regardless whether the

visual concepts are obtained from K-Means clustering or

DeepVoting. This indicates the advantage of the approaches

Figure 4. The distribution of the ratio of the predicted scale to the

actual scale.

which aggregates multiple visual cues for detection. Mean-

while, DeepVoting is much better than voting due to the

better scale prediction and the end-to-end training manner.

Even the right scale is provided for voting (oracle scale re-

sults in [25]), DeepVoting still beat it by more than 20% in

terms of averaged mAP over 6 objects, which indicates the

benefit brought by the joint optimization of both weights for

visual concept extraction layer and voting layer.

On the other hand, DeepVoting produces slightly lower

detection accuracy compared to Faster-RCNN. We argue

that Faster-RCNN benefits from the context outside object

bounding boxes, as we can see, if we improve DeepVoting

by adding context during the training (i.e. DeepVoting+),

Faster-RCNN will be less competitive compared with our

method. Meanwhile, DeepVoting enjoys lower computa-

tional overheads, i.e., it runs 2.5× faster.

4.2.1 Scale Prediction Accuracy

We investigate the accuracy of ScaleNet, which is essen-

tial for scale normalization. For each testing image, we

compute the ratio of the predicted object scale to the ac-

tual scale, and plot the contribution of this ratio over the

entire testing set in Figure 4. One can see that in more than
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Recall at Different Levels mAP w/ Addt’l Prop. mAP by DeepVoting+

Category L0 L1 L2 L3 L1 L2 L3 L1 L2 L3

airplane 99.3 98.1 97.4 96.7 36.2 27.7 20.7 40.6 32.3 25.4

bicycle 99.5 99.0 98.0 96.5 77.9 64.0 44.7 85.2 79.6 62.5

bus 99.8 96.3 93.8 91.5 57.1 42.4 28.3 65.8 54.6 40.5

car 99.8 96.0 94.4 92.7 48.2 30.2 19.4 57.3 41.7 29.4

motorbike 99.0 96.5 95.7 93.3 43.6 33.1 21.3 55.5 43.4 31.2

train 98.3 93.5 90.6 85.6 32.0 19.4 11.3 43.7 29.8 22.2

mean 99.3 96.6 95.0 92.7 49.2 36.1 24.2 58.0 46.9 35.2

Table 2. Left 4 columns: the recall rates (%) of the proposal network at different occlusion levels. Middle 3 and right 3 columns: detection

mAPs (%) of Faster-RCNN (ground-truth bounding boxes are added as additional proposals) and DeepVoting+ at different occlusion levels.

75% cases, the relative error of the predicted scale does not

exceed 10%. Actually, these prediction results are accurate

enough for DeepVoting. Even if ground-truth scale is pro-

vided and we rescale the images accordingly, the detection

accuracy is slightly improved from 72.0% to 74.5%.

4.3. Semantic Part Detection under Occlusion

We further detect semantic parts when the object is oc-

cluded in three different levels. Since the baselines KVC

and DVC perform much worse than other methods even

when occlusion is not present, we ignore these two methods

when performing semantic part detection under occlusion.

In the first level (i.e. L1), we place 2 occluders on each ob-

ject, and the occluded ratio r of the object, computed by pix-

els, satisfying 0.2 6 r < 0.4. For L2 and L3, we have 3 and

4 occluders, and 0.4 6 r < 0.6 and 0.6 6 r < 0.8, respec-

tively (see Figure 3 for examples). The original occlusion-

free testing set is denoted as L0. The detection results are

summarized in Table 1. One can see that DeepVoting out-

performs the voting and the Faster-RCNN significantly in

these cases. For the Faster-RCNN, the accuracy gain in-

creases as the occlusion level goes up, suggesting the advan-

tage of DeepVoting in detecting occluded semantic parts.

As a side evidence, we investigate the impact of the size

of spatial heatmap (the kernel of the voting layer). At the

heaviest occlusion level, when we shrink the default 15×15
to 11× 11, the mean detection accuracy drops from 31.6%
to 30.6%, suggesting the usefulness of long-distance voting

in detecting occluded semantic parts. When the kernel size

is increased to 19× 19, the accuracy is slightly improved to

31.8%. Therefore, we keep the kernel size to be 15× 15 for

a lower model complexity.

To verify our motivation that Faster-RCNN suffers

downgraded performance in both the proposal network and

the classifier, we investigate both the recall of the proposals

and the accuracy of the classifier. Results are summarized

in Table 2. First, we can see that the recall of the propos-

als goes down significantly as the occlusion level goes up,

since the objectness of the semantic part region may be-

come weaker due to the randomly placed occluders. Thus

the second stage, i.e., classification, has to start with a rela-

tively low-quality set of candidates. In the second part, we

add the ground-truth bounding boxes to the existing pro-

posals so that the recall is 100%, feed these candidates to

the classifier, and evaluate its performance on the occluded

images. Even with such benefits, Faster-RCNN still pro-

duces unsatisfying detection accuracy. For example, in de-

tecting the semantic parts of a bicycle at the highest occlu-

sion level (L3), making use of the additional proposals from

ground-truth bounding boxes merely improves the detection

accuracy from 41.1% to 44.7%, which is still much lower

than the number 62.5% produced by DeepVoting+. This im-

plies that the classifier may be confused since the occluder

changes the appearance of the proposals.

4.4. Visualizing Visual Concepts and Heatmaps

In Figure 5, we show some typical examples of the

learned visual concepts and spatial heatmaps. The visual-

ization of visual concepts follows the approach used in [26],

which finds 10 most significant responses on each convolu-

tional filter, i.e., the matching template, traces back to the

original image lattice, and crops the region corresponding

to the neuron at the pool-4 layer. To show different spatial

heatmaps, we randomly choose some relevant pairs of vi-

sual concept and semantic part, and plot the convolutional

weights of the voting layer for comparison. We see that the

learned visual concepts and spatial heatmaps are semanti-

cally meaningful, even though there is only semantic part

level supervision during training.

4.5. Explaining the Detection Results

Finally, we show an intriguing benefit of our approach,

which allows us to explain the detection results. In Fig-

ure 6, we display three examples, in which the target se-

mantic parts are not occluded, partially occluded and fully

occluded, respectively. DeepVoting can infer the occluded

semantic parts, and is also capable of looking up the voting

(supporting) visual concepts for diagnosis, to dig into errors

and understand the working mechanism of our approach.
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VC #027: license plate

VC #073: windshield, right side

VC #029: car wheel, left side

VC #170: car side

SP #20:

license 

plate

SP #23:

rear 

window

SP #1:

car 

wheel

SP #12:

side 

window
Object class: car Object class: car

Figure 5. Visualization of visual concepts and spatial heatmaps (best viewed in color). For each visual concept, we show 10 patches with

the highest responses. Each spatial heatmap illustrates the cues to detect a semantic part, in which yellow, cyan and dark blue indicate

positive, zero and negative cues, respectively. For example, VC #073 (windshield) often appears above SP #20 (license plate), and VC

#170 (car side bottom) often appears below SP #12 (side window).

Object: car; SP #17: headlight

1
2

3

List of voted VC’s:
1. #160: score = . 9∆ , ∆ = ,
2. #245: score = . 9∆ , ∆ = + ,+
3. #091: score = .∆ , ∆ = + ,+

Object: car; SP #20: licence plate

List of voted VC’s:
1. #073: score = .∆ , ∆ = ,−
2. #235: score = .∆ , ∆ = ,+
3. #232: score = .∆ , ∆ = − ,−

1

2

3

Object: car; SP #13: side window

List of voted VC’s:
1. #076: score = .∆ , ∆ = + ,+
2. #038: score = .∆ , ∆ = + ,−
3. #101: score = .∆ , ∆ = + ,+1

2

3VC #091

VC #245

VC #160 VC #076

VC #038

VC #101

VC #073

VC #235

VC #232

Figure 6. DeepVoting allows us to explain the detection results. In the example of heavy occlusion (the third column), the target semantic

part, i.e., the licence plate on a car, is fully occluded by a bird. With the help of some visual concepts (blue dots), especially the 73-rd VC

(also displayed in Figure 5), we can infer the position of the occluded semantic part (marked in red). Note that we only plot the 3 VC’s

with the highest scores, regardless the number of voting VC’s can be much larger.

5. Conclusions

In this paper, we propose a robust and explainable deep

network, named DeepVoting, for semantic part detection

under partial occlusion. The intermediate visual represen-

tations, named visual concepts, are extracted and used to

vote for semantic parts via two convolutional layers. The

spatial relationship between visual concepts and semantic

parts is learned from a occlusion-free dataset and then trans-

ferred to the occluded testing images. DeepVoting is eval-

uated on both the VehicleSemanticPart dataset and the Ve-

hicleOcclusion dataset, and shows comparable performance

to Faster-RCNN in the non-occlusion scenario, and superior

performance in the occlusion scenario. If context is utilized,

i.e., DeepVoting+, this framework outperforms both Deep-

Voting and Faster-RCNN significantly under all scenarios.

Moreover, our approach enjoys the advantage of being ex-

plainable, which allows us to diagnose the semantic parts

detection results by checking the contribution of each vot-

ing visual concepts.

In the future, we plan to extend DeepVoting to detect

semantic parts of non-rigid and articulated objects like ani-

mals. Also, we plan to perform object-level detection under

occlusion by combining these semantic cues.
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