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Abstract

The recent advances in deep neural networks have con-

vincingly demonstrated high capability in learning vision

models on large datasets. Nevertheless, collecting expert

labeled datasets especially with pixel-level annotations is

an extremely expensive process. An appealing alternative

is to render synthetic data (e.g., computer games) and gen-

erate ground truth automatically. However, simply apply-

ing the models learnt on synthetic images may lead to high

generalization error on real images due to domain shift. In

this paper, we facilitate this issue from the perspectives of

both visual appearance-level and representation-level do-

main adaptation. The former adapts source-domain images

to appear as if drawn from the “style” in the target domain

and the latter attempts to learn domain-invariant represen-

tations. Specifically, we present Fully Convolutional Adap-

tation Networks (FCAN), a novel deep architecture for se-

mantic segmentation which combines Appearance Adapta-

tion Networks (AAN) and Representation Adaptation Net-

works (RAN). AAN learns a transformation from one do-

main to the other in the pixel space and RAN is optimized

in an adversarial learning manner to maximally fool the

domain discriminator with the learnt source and target rep-

resentations. Extensive experiments are conducted on the

transfer from GTA5 (game videos) to Cityscapes (urban

street scenes) on semantic segmentation and our proposal

achieves superior results when comparing to state-of-the-

art unsupervised adaptation techniques. More remarkably,

we obtain a new record: mIoU of 47.5% on BDDS (drive-

cam videos) in an unsupervised setting.

1. Introduction

Deep Neural Networks have successfully proven highly

effective for learning vision models on large-scale dataset-

s. To date in the literature, there are various datasets (e.g.,

ImageNet [26] and COCO [14]) that include well-annotated

∗This work was performed at Microsoft Research Asia.
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Figure 1. Semantic segmentation on one example frame in street-

view videos by (a) directly applying FCN trained on images from

video games and (b) domain adaptation of FCAN in this work.

images available for developing deep models to a variety of

vision tasks, e.g., recognition [8, 27, 29], detection [6, 24],

captioning [34] and semantic segmentation [1, 16]. Nev-

ertheless, given a new dataset, the typical solution is still

to perform intensive manual labeling despite expensive ef-

forts and time-consuming process. An alternative is to uti-

lize synthetic data which is largely available from computer

games [25] and the ground truth could be freely generated

automatically. However, many previous experiences have

also shown that reapplying a model learnt on synthetic data

may hurt the performance in real data due to a phenomenon

known as “domain shift” [35]. Take the segmentation re-

sults of one frame from real street-view videos in Figure

1 (a) as an example, the model trained on synthetic data

from video games fails to properly segment the scene in-

to semantic categories such as road, person and car. As a

result, unsupervised domain adaptation would be desirable

on addressing this challenge, which aims to utilize labeled

examples from the source domain and a large number of un-

labeled examples in the target domain to reduce a prediction

error on the target data.

A general practice in unsupervised domain adaptation

is to build invariance across domains by minimizing the

measure of domain shift such as correlation distances [28]

or maximum mean discrepancy [32]. We novelly consid-

er the problem from the viewpoint of both appearance-

level and representation-level invariance. The objective of
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appearance-level invariance is to recombine the image con-

tent in one domain with the “style” from the other domain.

As such, the images in two domains appear as if they are

drawn from the same domain. In other words, the visual

appearances tend to be domain-invariant. The inspiration of

representation-level invariance is from the advances of ad-

versarial learning for domain adaptation, which is to mod-

el domain distribution via an adversarial objective with re-

spect to a domain discriminator. The spirit behind is from

generative adversarial learning [7], that trains two model-

s, i.e., a generative model and a discriminative model, by

pitting them against each other. In the context of domain

adaptation, this adversarial principle is then equivalent to

guiding the representation learning in both domains, mak-

ing the difference between source and target representation

distributions indistinguishable through the domain discrim-

inator. We follow this elegant recipe and capitalize on ad-

versarial mechanism to learn image representation that is

invariant across domains. In this work, we are particularly

investigating the problem of domain adaptation on semantic

segmentation task which relies on probably the most accu-

rate pixel-level annotations.

By consolidating the idea of appearance-level and

representation-level invariance into unsupervised domain

adaption for enhancing semantic segmentation, we present

a novel Fully Convolutional Adaptation Networks (FCAN)

architecture, as shown in Figure 2. The whole framework

consists of Appearance Adaptation Networks (AAN) and

Representation Adaptation Networks (RAN). Ideally, AAN

is to construct an image that captures high-level content in

a source image and low-level pixel information of the target

domain. Specifically, AAN starts with a white noise im-

age and adjusts the output image by using gradient descen-

t to minimize the Euclidean distance between the feature

maps of the output image and those of the source image or

mean feature maps of the images in target domain. In RAN,

a shared Fully Convolutional Networks (FCN) is first em-

ployed to produce image representation in each domain, fol-

lowed by bilinear interpolation to upsample the outputs for

pixel-level classification, and meanwhile a domain discrim-

inator to distinguish between source and target domain. An

Atrous Spatial Pyramid Pooling (ASPP) strategy is particu-

larly devised to enlarge the field of view of filters in feature

map and endow the domain discriminator with more power.

RAN is trained by optimizing two losses, i.e., classification

loss to measure pixel-level semantics and adversarial loss

to maximally fool the domain discriminator with the learnt

source and target representations. With both appearance-

level and representation-level adaptations, our FCAN could

better build invariance across domains and thus obtain en-

couraging segmentation results in Figure 1 (b).

The main contribution of this work is the proposal of Ful-

ly Convolutional Adaptation Networks for addressing the

issue of semantic segmentation in the context of domain

adaptation. The solution also leads to the elegant views of

what kind of invariance should be built across domains for

adaptation and how to model the domain invariance in a

deep learning framework especially for the task of semantic

segmentation, which are problems not yet fully understood

in the literature.

2. Related Work

We briefly group the related works into two categories:

semantic segmentation and deep domain adaptation.

Semantic segmentation is one of the most challenging

tasks in computer vision, which attempts to predict pixel-

level semantic labels of the given image or video frame.

Inspired by the recent advance of Fully Convolutional Net-

works (FCN) [16], there have been several techniques, rang-

ing from multi-scale feature ensemble (e.g., Dilated Convo-

lution [36], RefineNet [13], DeepLab [1] and HAZNet [33])

to context information preservation (e.g., ParseNet [15], P-

SPNet [37] and DST-FCN [23]), being proposed. The orig-

inal FCN formulation could also be improved by exploit-

ing some post processing techniques (e.g., conditional ran-

dom fields [38]). Moreover, as most semantic segmentation

methods rely on the pixel-level annotations which require

extremely expensive labeling efforts, researchers have also

strived to leverage weak supervision instead (e.g., instance-

level bounding boxes [3], image-level tags [22]) for seman-

tic segmentation task. To achieve this target, the techniques

such as multiple instance learning [20], EM algorithm [18]

and constrained CNN [19] are exploited in the literature. An

alternative in [10] utilizes the pixel-level annotations from

auxiliary categories to generalize semantic segmentation to

categories where only image-level labels are available. The

goal of this work is to study the exploration of freely acces-

sible synthetic data with annotations and largely unlabeled

real data for annotating real images on the pixel level, which

is an emerging research area.

Deep Domain adaptation aims to transfer model learn-

t in a labeled source domain to a target domain in a deep

learning framework. The research of this topic has proceed-

ed along three different dimensions: unsupervised adap-

tation, supervised adaptation and semi-supervised adapta-

tion. Unsupervised domain adaptation refers to the setting

when the labeled target data is not available. Deep Corre-

lation Alignment (CORAL) [28] exploits Maximum Mean

Discrepancy (MMD) to match the mean and covariance of

source and target distributions. Adversarial Discriminative

Domain Adaptation (ADDA) [31] optimizes the adaptation

model with adversarial training. In contrast, when the la-

beled target data is available, we refer to the problem as

supervised domain adaptation. Tzeng et al. [30] utilizes

a binary domain classifier and devises the domain confu-

sion loss to encourage the predicted domain labels to be u-
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Figure 2. An overview of our Fully Convolutional Adaptation Networks (FCAN) architecture. It consists of two main components: the

Appearance Adaptation Networks (AAN) on the left and the Representation Adaptation Networks (RAN) on the right. AAN transfers

images from one domain to the other one and thus the visual appearance tends to be domain-invariant. RAN learns domain-invariant rep-

resentations in an adversarial manner by maximally fooling the domain discriminator with the learnt source and target representations. An

extended Atrous Spatial Pyramid Pooling (ASPP) layer is particularly devised to leverage the regions across different scales for enhancing

the discriminative capability. RAN is jointly optimized with supervised segmentation loss on source images plus adversarial loss.

niformly distributed. Deep Domain Confusion (DDC) [32]

applies MMD as well as the regular classification loss on the

source to learn representations that are both discriminative

and domain invariant. In addition, semi-supervised domain

adaptation methods have also been proposed, which exploit

both labeled and unlabeled target data. Deep Adaptation

Network (DAN) [17] embeds all task specific layers in a re-

producing kernel Hilbert space. Both semi-supervised and

unsupervised settings are considered.

In short, our work in this paper mainly focuses on unsu-

pervised adaptation for semantic segmentation task, which

is seldom investigated. The most closely related work is

the FCNWild [9], which addresses the cross-domain seg-

mentation problem by only exploiting fully convolutional

adversarial training for domain adaptation. Our method

is different from [9] in that we solve the domain shift

from the perspectives of both visual appearance-level and

representation-level domain adaptation, which bridges the

domain gap in a more principled way.

3. Fully Convolutional Adaptation Networks

(FCAN) for Semantic Segmentation

In this section we present our proposed Fully Convolu-

tional Adaptation Networks (FCAN) for semantic segmen-

tation. Figure 2 illustrates the overview of our framework.

It consists of two main components: the Appearance Adap-

tation Networks (AAN) and the Representation Adaptation

Networks (RAN). Given the input images from two domain-

s, AAN is first utilized to transfer images from one do-

main to the other from the perspective of visual appearance.

By recombining the image content in one domain with the

“style” from the other one, the visual appearance tends to be

domain-invariant. We take the transformation from source

to target as an example in this section, and the other options

will be elaborated in our experiments. On the other hand,

RAN learns domain-invariant representations in an adver-

sarial manner and a domain discriminator is devised to clas-

sify which domain the image region corresponding to the

receptive field of each spatial unit in the feature map comes

from. The objective of RAN is to guide the representation

learning in both domains, making the source and target rep-

resentations indistinguishable through the domain discrim-

inator. As a result, our FCAN addresses domain adaptation

problem from the viewpoint of both visual appearance-level

and representation-level domain invariance and is potential-

ly more effective at undoing the effects of domain shift.

3.1. Appearance Adaptation Networks (AAN)

The goal of AAN is to make the images from differen-

t domains visually similar. In other words, AAN tries to

adapt the source images to appear as if drawn from the tar-

get domain. To achieve this, the low-level features over all

the images in target domain should be separated and regard-

ed as the “style” of target domain, as these features encode

the low-level forms of the images, e.g., texture, lighting and

shading. In contrast, the high-level content in terms of ob-

jects and their relations in the source image should be ex-

tracted and recombined with the “style” of target domain to

produce an adaptive image.

Figure 3 illustrates the architecture of AAN. Given a set

of images Xt = {xi
t|i = 1, . . . ,m} in target domain and

one image from source domain xs, we begin with a white

noise image and iteratively render this image with the se-

mantic content in xs plus the “style” of Xt to produce an

adaptive image xo. Specifically, a pre-trained CNN is u-
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Figure 3. The architecture of Appearance Adaptation Networks

(AAN). Given the target image set Xt and one source image xs,

we begin with a white noise image and adjust it towards an adap-

tive image xo, which appears as if it is drawn from target domain

but contains semantic content in the source image. A pre-trained

CNN is utilized to extract feature maps. The high-level image con-

tent of xs is preserved by minimizing the distance between feature

maps of xs and xo, while the style of target domain is kept by min-

imizing the distance between feature correlations of xo and Xt.

tilized to extract feature maps for each image. Suppose

every convolutional layer l in the CNN has Nl response

maps, where Nl is the number of channels, and the size

of each response map is Hl × Wl, where Hl and Wl de-

notes the height and width of the map, respectively. As

such, the feature maps in the layer l could be represented

as M l ∈ R
Nl×Hl×Wl . Basically the responses in different

convolutional layers characterize image content on differ-

ent semantic level, where deeper layer responds to higher

semantics. To better govern the semantic content in source

image xs, different weights are assigned to different layers

to reflect the contribution of each layer. The objective func-

tion is then formulated as

min
xo

∑

l∈L

w
l
s Dist(M l

o,M
l
s) , (1)

where L is the set of layers to be considered for measure-

ment. wl
s is the weight of layer l, M l

o and M l
s is the feature

map of layer l on xo and xs, respectively. By minimizing

the Euclidean distance in Eq.(1), the image content in xs is

expected to be preserved in the adaptive image xo.

Next, the “style” of one image is in general treated as

a kind of statistical measurement or pattern, which is ag-

nostic to spatial information [4]. In CNN, one of such sta-

tistical measurements is the correlations between different

response maps. Hence, the “style” of an image Gl on layer

l could be computed by

G
l,ij = M

l,i ⊙M
l,j

. (2)

Gl,ij is the inner product between the vectorized i-th and j-

th response map of M l. In our case, we extend the “style” of

one image to that of one domain (Ḡl
t of the target domain)

by averaging Gl over all the images in target domain. In

order to synthesize the “style” of target domain into xo, we

formulate the objective in each layer as

min
xo

∑

l∈L

w
l
t Dist(Gl

o, Ḡ
l
t) , (3)

where wl
t is the weight for layer l. Finally, the overall loss

function LAAN to be minimized is

LAAN (xo) =
∑

l∈L

w
l
s Dist(M l

o,M
l
s) + α

∑

l∈L

w
l
t Dist(Gl

o, Ḡ
l
t) ,

(4)

where α is the weight to balance semantic content in the

source image and the style of target domain. In the train-

ing, similar to [5], AAN adjusts the output image by back-

propagating the gradients derived from Eq. (4) to xo, result-

ing in the domain-invariant appearance.

3.2. Representation Adaptation Networks (RAN)

With the Appearance Adaptation Networks, the images

from different domains appear to be from the same domain.

To further reduce the impact of domain shift, we attemp-

t to learn domain-invariant representations. Consequent-

ly, Representation Adaptation Networks (RAN) is designed

to adapt representations across domains, which is derived

from the idea of adversarial learning [7]. The adversari-

al principle in our RAN is equivalent to guiding the learn-

ing of feature representations in both domains by fooling

a domain discriminator D with the learnt source and tar-

get representations. Specifically, RAN first utilizes a shared

Fully Convolutional Network (FCN) to extract the repre-

sentations of images or adaptive images through AAN from

both domains. This FCN model F here aims to learn in-

distinguishable image representations across two domains.

Furthermore, the discriminator D attempts to differentiate

between source and target representations, whose outputs

are the domain prediction of each image region that corre-

sponds to the spatial unit in the final feature map. Formally,

given the training set Xs = {xi
s|i = 1, . . . , n} in source

domain and Xt = {xi
t|i = 1, . . . ,m} in target domain, the

adversarial loss Ladv is the average classification loss over

all spatial units, which is formulated as

Ladv(Xs,Xt) = −Ext∼Xt [
1

Z

Z
∑

i=1

log(Di(F (xt)))]

− Exs∼Xs [
1

Z

Z
∑

i=1

log(1−Di(F (xs)))] ,

(5)

where Z is the number of spatial units in the output of D.

Similar to the standard GANs, the adversarial training of

our RAN is to optimize the following minimax function

max
F

min
D

Ladv(Xs,Xt) . (6)
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Given the fact that there are many different objects of

various size in real data, we further take the utilization of

multi-scale representations into account to enhance the ad-

versarial learning. One traditional multi-scale strategy is to

resize the images with multiple resolutions, which indeed

improves the performance but at the cost of large compu-

tation. In this work, we extend Atrous Spatial Pyramid

Pooling (ASPP) [1] to implement this, as shown in Figure

2. Specifically, k dilated convolutional layers with different

sampling rates are exploited in parallel to produce k feature

representations on the output of FCN independently, each

with c feature channels. All the feature channels are then

stacked up to form a new feature map with ck channels,

followed by a 1× 1 convolutional layer plus a sigmoid lay-

er to generate the final score map. Each spatial unit in the

score map presents the probability of the corresponding im-

age region belonging to the target domain. In addition, we

simultaneously optimize the standard pixel-level classifica-

tion loss Lseg for supervised segmentation on the images

from source domain, where the labels are available. Hence,

the overall objective of RAN integrates Lseg and Ladv as

max
F

min
D

{Ladv(Xs,Xt)− λLseg(Xs)} , (7)

where λ is the tradeoff parameter. Through fooling the do-

main discriminator with the source and target representa-

tions, our RAN is able to produce domain-invariant repre-

sentations. In test stage, the images in target domain are fed

into the learnt FCN to produce representations for pixel-

level classification.

4. Implementation

4.1. Appearance Adaptation

We adopt the pre-trained ResNet-50 [8] architec-

ture as the basic CNN. In particular, we only include

the five convolutional layers in the set, i.e., L =
{conv1, res2c, res3d, res4f, res5c}, as the representa-

tions of these layers in general have the highest capability in

each scale. The weights wl
s and wl

t of layers for the images

in source and target domain are generally determined on the

visual appearances of adaptive images. In addition, when

optimizing Eq. (4), a common problem is the need to set the

tradeoff parameter α to balance content and “style.” As the

ultimate goal is to semantically segment each pixel in the

images, it is required to preserve the semantic content pre-

cisely. As a result, the impact of “style” is regarded as only

a “delta” function to adjust the appearance and we empiri-

cally set a small weight of α = 10−14 for this purpose. The

number of maximum iteration I is fixed to 1k. In each itera-

tion i, the image xo is updated by xi
o = xi−1

o −wi−1 gi−1

‖gi−1‖1

,

where gi−1 =
∂Lapp(x

i−1

o )

∂x
i−1

o

, wi−1 = β I−i
I

and β = 10.

4.2. Representation Adaptation

In our implementations, we employ dilated fully convo-

lutional network [1] originated from ResNet-101 [8] as our

FCN, which has proven to be effective on generating power-

ful representations for semantic segmentation. The feature

maps of the last convolutional layer (i.e., res5c) are fed into

both segmentation and adversarial branches. In supervised

segmentation branch, we also augment the outputs of FCN

with Pyramid Pooling [37] to integrate contextual prior into

representation. In adversarial branch, we use k = 4 dilated

convolutional layers in parallel to produce multiple feature

maps, each with c = 128 channels. The sampling rate of

different dilated convolution kernel is 1, 2, 3 and 4, respec-

tively. Finally, a sigmoid layer is utilized next to the ASPP

to output the predictions, which are in the range of [0, 1].

4.3. Training Strategy

Our proposal is implemented on Caffe [12] framework

and mini-batch stochastic gradient descent algorithm is ex-

ploited to optimize the model. We pre-train RAN on source

domain with only segmentation loss. The initial learning

rate is 0.0025. Similar to [1], we use the “poly” learning

rate policy with power fixed to 0.9. Momentum and weight

decay is set to 0.9 and 0.0005, respectively. The batch size

is 6. The maximum iteration number is 30k. Then, we fine-

tune RAN jointly with segmentation loss and adversarial

loss. The tradeoff parameter λ is set to 5. The initial learn-

ing rate is 0.0001. The batch size is 8 and the maximum

iteration number is 10k. The rest hyper-parameters are the

same with those in pre-training.

5. Experiments

5.1. Datasets

We conduct a thorough evaluation of our FCAN on the

domain adaptation from GTA5 [25] (game videos) dataset

to Cityscapes (urban street scenes) dataset [2].

The GTA5 dataset contains 24,966 images (video

frames) from the game Grand Theft Auto V (GTA5) and

the pixel-level ground truth for each image is also created.

In the game, the images are captured on the virtual city of

Los Santos, which is originated from the city of Los Ange-

les. The resolution of each image is 1914 × 1052. There

are 19 classes which are compatible with other segmenta-

tion datasets for outdoor scenes (e.g., Cityscapes) and uti-

lized in the evaluation. The Cityscapes dataset is one pop-

ular benchmark for semantic understanding of urban street

scenes, which contains high quality pixel-level annotation-

s of 5,000 images (frames) collected in street scenes from

50 different cities. The image resolution is 2048 × 1024.

Following the standard protocol in segmentation task (e.g.,

[2]), 19 semantic labels (car, road, person, building, etc.)

are used for evaluation. In between, the training, validation,
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Table 1. The mIoU performance comparisons between different

ways of utilizing AAN.

Train Validation FCN RAN

Src Tar 29.15 44.81

Src Tar Ada 34.68 45.03

Src Ada Tar 31.71 46.21

Src Ada Tar Ada 36.25 45.59

Late Fusion 37.61 46.60

(a) GTA5 to Cityscapes (b) Cityscapes to GTA5

Figure 4. Examples of appearance-level adaptation through AAN.

and test sets contains 2,975, 500, and 1,525 frames, respec-

tively. Following the settings in [9, 21], only the validation

set (500 frames) are exploited for validating the unsuper-

vised semantic segmentation in our experiments.

In addition, we also take the Berkeley Deep Driving Seg-

mentation (BDDS) dataset [9] as another target domain for

verifying the merit of our FCAN. The BDDS dataset con-

sists of thousands of dashcam video frames with pixel-level

annotations, which share compatible label space with C-

ityscapes. The image resolution is 1280 × 720. Following

the settings in [9, 21], 1,500 frames are used for evaluation.

In all experiments, we adopt the Intersection over Union

(IoU) per category and mean IoU over all the categories as

the performance metrics.

5.2. Evaluation of AAN

We first examine the effectiveness of AAN on semantic

segmentation from two aspects: 1) images from which do-

main are adapted by AAN, and 2) adaptation by only per-

forming AAN or plus RAN. Source Adaptation (Src Ada)

here is to render source images with the “style” of the tar-

get domain, and vice versa for Target Adaptation (Tar Ada).

FCN refers to the setting of semantic segmentation by di-

rectly exploiting the FCN learnt on source domain to do

prediction on target images. In contrast, RAN further per-

forms representation-level adaptation by our RAN.

The mIoU performances between different ways of uti-

lizing AAN are summarized in Table 1. Overall, adapting

images in source domain through AAN plus RAN achieves

the highest mIoU of 46.21%. The results by applying AAN

to images in source or target or both domains consistent-

ly exhibits better performance than the setting without the

use of AAN (the first row) when directly employing FCN

Table 2. Performance contribution of each design in FCAN.

Method ABN ADA Conv ASPP AAN mIoU

FCN 29.15

+ABN
√

35.51

+ADA
√ √

41.29

+Conv
√ √ √

43.17

+ASPP
√ √ √ √

44.81

FCAN
√ √ √ √ √

46.60

in segmentation. The results basically indicate the advan-

tage of exploring appearance-level domain adaptation. The

performance in each setting is further improved by RAN,

indicating that visual appearance-level and representation-

level adaptation are complementary to each other. Anoth-

er observation is that the performance gain of RAN tends

to be large when performing AAN on source images. The

gain is however decreased when adapting target images by

AAN. We speculate that this may be the result of synthe-

sizing some noise into the adapted target images by AAN

especially at the boundary of objects and that in turn affects

the segmentation stability. Furthermore, when late fusing

the score maps of segmentation predicted by the four set-

tings, the mIoU performance could be boosted up to 46.6%.

We refer to this fusion version as AAN in the following e-

valuations unless otherwise stated.

Figure 4 shows four examples of appearance-level trans-

fer for images in source and target domain, respectively. As

illustrated in the figure, the semantic content in original im-

ages are all well-preserved in the adaptive images. When

rendering the images in GTA5 with “style” of Cityscapes,

the overall color of the images becomes bleak and the color

saturation tends to be low. In contrast, when reversing the

transfer direction, the color of images in Cityscapes gets

much brighter and with high saturation. The results demon-

strate a good appearance-level transfer in between.

5.3. An Ablation Study of FCAN

Next, we study how each design in FCAN influences

the overall performance. Adaptive Batch Normalization

(ABN) simply replaces the mean and variance of BN layer

in FCN learnt in source domain with those computed on the

images in target domain. Adversarial Domain Adaptation

(ADA) leverages the idea of adversarial training to learn

domain-invariant representations and the domain discrimi-

nator judges the domain on image level. When the domain

discriminator is extended to classify each image region, this

design is named as Conv. ASPP further enlarges the field

of view of filters to enhance the adversarial learning. AAN

is our appearance-level adaptation.

Table 2 details the mIoU improvement by considering

one more factor for domain adaptation at each stage in F-

CAN. ABN is a general way to alleviate domain shift irre-

spective of any domain adaptation frameworks. In our case,

ABN successfully brings up the mIoU performance from
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Image Ground Truth FCN +ABN +ADA +Conv +ASPP +AAN (FCAN)

Figure 5. Examples of semantic segmentation results in Cityscapes. The original images, their ground truth and comparative segmentation

results at different stages of FCAN are given.

Table 3. Performance comparisons with the state-of-the-art unsu-

pervised domain adaptation methods on Cityscapes.

Method mIoU

DC [30] 37.64

ADDA [31] 38.30

FCNWild [9] 42.04

FCAN 46.60

FCAN(MS) 47.75

29.15% to 35.51%. This demonstrates that ABN is a very

effective and practical choice. ADA, Conv and ASPP are

three specific designs in our RAN and the performance gain

of each is 5.78%, 1.88% and 1.64%, respectively. In other

words, our RAN leads to a large performance boost of 9.3%

in total. The results verify the idea of representation-level

adaptation. AAN further contributes an mIoU increase of

1.79% and the mIoU performance of FCAN finally reaches

46.6%. Figure 5 showcases four examples of semantic seg-

mentation results at different stages of our FCAN. As illus-

trated in the figure, the segmentation results are becoming

increasingly accurate as more adaptation designs are includ-

ed. For instance, at the early stages, the majority categories

such as road and sky cannot be well segmented. Instead,

even the minority classes such as bicycle and truck are seg-

mented nicely during the latter steps.

5.4. Comparisons with State­of­the­Art

We compare with several state-of-the-art techniques.

Domain Confusion [30] (DC) aligns domains via domain

confusion loss, which is optimized to learn a uniform distri-

bution across different domains. Adversarial Discriminative

Domain Adaptation [31] (ADDA) combines untied weight

sharing and adversarial learning for discriminative feature

learning. FCNWild [9] adopts fully convolutional adver-

sarial training for domain adaptation on semantic segmen-

tation. For fair comparison, the basic FCN utilized in all

the methods are originated from ResNet-101. The perfor-

mance comparisons are summarized in Table 3. Compared

to DC and ADDA in which domain discriminator are both

devised on image level, FCNWild and FCAN performing

domain-adversarial learning on region level exhibit better
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Figure 6. Per-category IoU performance of different approaches

and mIoU performance averaged over all the 19 categories.

Image Ground Truth FCAN Prediction Domain Prediction

Figure 7. Examples of semantic segmentation results and the pre-

diction maps by domain discriminator where brightness indicates

the high probability of the region belonging to target domain.

performance. Furthermore, FCAN by additionally incor-

porating ASPP strategy and reinforcing by AAN, leads to

an apparent improvement over FCNWild. The multi-scale

(MS) scheme boosts up the mIoU performance to 47.75%.

Figure 6 details the performance across different categories.

Our FCAN achieves the best performance in 17 out of 19

categories, which empirically validate the effectiveness of

our model on category level.

To examine domain discriminator learnt in FCAN, Fig-

ure 7 illustrates four image examples, including the original

images, their ground truth, segmentation results by FCAN

and prediction maps by domain discriminator. The bright-

ness indicates that the region belongs to target domain with
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Table 4. Results of Semi-supervised adaptation for Cityscapes.

# of images
FCN FCAN

(On Cityscapes) (Semi-supervised)

0 - 46.60

50 47.57 56.50

100 54.41 59.95

200 59.53 63.82

400 62.53 66.80

600 65.39 67.58

800 67.01 68.42

1000 68.05 69.17

Table 5. Comparisons of different unsupervised domain adaptation

methods on BDDS.
Method mIoU

FCNWild [9] 39.37

FCAN 43.35

FCAN(MS) 45.47

FCAN(MS+EN) 47.53

high probability. Let’s recall that adversarial learning is

to maximally fool the domain discriminator. That means

ideally the prediction map of the images in target domain

should be dark. For example, the domain discriminator pre-

dicts wrongly on the regions in the red bounding box in the

first two images, which indicates that the representations on

these regions tend to be indistinguishable. Hence, these re-

gions (sky) are precisely segmented by FCAN. In contrast,

domain discriminator predicts correctly on the regions in

the last two images, indicating that the region representa-

tions are still domain-dependent. As such, the segmentation

results on those regions (bicycle) are not that good.

5.5. Semi­Supervised Adaptation

Another common scenario in practice is that there is a

small number of labeled training examples in target do-

main. Hence, we extend our FCAN to a semi-supervised

version, which takes the training set of Cityscapes as la-

beled data X l
t . Technically, the pixel-level classification

loss on images in target domain is further taken into ac-

count and the overall objective in Eq.(7) then changes

to maxF minD

{

Ladv(Xs,Xt)− λsLseg(Xs)− λtLseg(X l
t )
}

.

Table 4 shows the mIoU performances with the increase of

labeled training data from target domain. It is also worth

noting that here FCN is directly learnt on the labeled data in

target domain and FCAN refers to our semi-supervised ver-

sion. As expected, the performance gain of FCAN tends to

be large if only a few hundred images in target domain are

included in training. The gain is gradually decreased when

increasing the number of images from Cityscapes. Even

when the number reaches 1k, our semi-supervised FCAN is

still slightly better than supervised FCN.

5.6. Results on BDDS

In addition to Cityscapes dataset, we also take BDDS as

target domain to evaluate the unsupervised setting of our

Image FCN Prediction FCAN Prediction

Figure 8. Examples of semantic segmentation results in BDDS.

FCAN. The performance comparisons are summarized in

Table 5. In particular, the mIoU performance of FCAN

achieves 43.35%, making the improvement over FCNWild

by 3.98%. The multi-scale setting, i.e., FCAN(MS), in-

creases the performance to 45.47%. Finally, the ensem-

ble version FCAN(MS+EN) by fusing the models derived

from ResNet-101, ResNet-152 and SENet [11], could boost

up the mIoU to 47.53%. Figure 8 shows three semantic

segmentation examples in BDDS, which are output by FC-

N and FCAN, respectively. Clearly, FCAN obtains much

more promising segmentation results. Even in the case of

a reflection (second row) or patches of cloud (third row) in

the sky, our FCAN can segment the sky well.

6. Conclusion

We have presented Fully Convolutional Adaptation Net-

works (FCAN) architecture, which explores domain adap-

tation for semantic segmentation. Particularly, we study the

problem from the viewpoint of both visual appearance-level

and representation-level adaptation. To verify our claim, we

have devised Appearance Adaptation Networks (AAN) and

Representation Adaptation Networks (RAN) respectively in

our FCAN for each purpose. AAN is to render an im-

age in one domain with the domain “style” from the other

one, resulting in invariant appearance across two domains.

RAN aims to guide the representation learning in a domain-

adversarial manner, which ideally outputs domain-invariant

representations. Experiments conducted on the transfer

from game videos (GTA5) to urban street-view scenes (C-

ityscapes) validate our proposal and analysis. More remark-

ably, we achieve new state-of-the-art performances when

transferring game videos to drive-cam videos (BDDS). Our

possible future works include two directions. First, more

advanced techniques of rendering the semantic content of

an image with another statistical pattern will be investigat-

ed in AAN. Second, we will further extend our FCAN to

other specific segmentation scenarios, e.g., indoor scenes

segmentation or portrait segmentation, where the synthetic

data could be easily produced.
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