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Abstract

We focus on grounding (i.e., localizing or linking) refer-

ring expressions in images, e.g., “largest elephant stand-

ing behind baby elephant”. This is a general yet chal-

lenging vision-language task since it does not only require

the localization of objects, but also the multimodal com-

prehension of context — visual attributes (e.g., “largest”,

“baby”) and relationships (e.g., “behind”) that help to dis-

tinguish the referent from other objects, especially those

of the same category. Due to the exponential complex-

ity involved in modeling the context associated with mul-

tiple image regions, existing work oversimplifies this task

to pairwise region modeling by multiple instance learning.

In this paper, we propose a variational Bayesian method,

called Variational Context, to solve the problem of com-

plex context modeling in referring expression grounding.

Our model exploits the reciprocal relation between the ref-

erent and context, i.e., either of them influences estima-

tion of the posterior distribution of the other, and thereby

the search space of context can be greatly reduced. We

also extend the model to unsupervised setting where no

annotation for the referent is available. Extensive exper-

iments on various benchmarks show consistent improve-

ment over state-of-the-art methods in both supervised and

unsupervised settings. The code is available at https:

//github.com/yuleiniu/vc/.

1. Introduction

Grounding natural language in visual data is a hallmark

of AI, since it establishes a communication channel be-

tween humans, machines, and the physical world, under-

pinning a variety of multimodal AI tasks such as robotic

navigation [38], visual Q&A [1, 16, 49], and visual chat-

bot [6]. Thanks to the rapid development in deep learning-

based CV and NLP, we have witnessed promising results

not only in grounding nouns (e.g., object detection [30]),
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Figure 1. The proposed Variational Context model. Given an input

referring expression and an image with region proposals, we local-

ize the referent as output. We develop a grounding score function,

with the variational lower-bound composed by three cue-specific

multimodal modules, indicated by the description in the dashed

color boxes.

but also short phrases (e.g., noun phrases [28] and rela-

tions [47, 36]). However, the more general task: grounding

referring expressions [25], is still far from resolved due to

the challenges in understanding of both language and scene

compositions [10]. As illustrated in Figure 1, given an in-

put referring expression “largest elephant standing behind

baby elephant” and an image with region proposals, a model

that can only localize “elephant” is not satisfactory as there

are multiple elephants. Therefore, the key for referring ex-

pression grounding is to comprehend and model the con-

text. Here, we refer to context as the visual objects (e.g.,

“elephant”), attributes (e.g., “largest” and “baby”), and re-

lationships (e.g., “behind”) mentioned in the expression that

help to distinguish the referent from other objects.

One straightforward way of modeling the relations be-

tween the referent and context is to: 1) use external syn-

tactic parsers to parse the expression into entities, mod-

ifiers, and relations [34], and then 2) apply visual rela-

tion detectors to localize them [47]. However, this two-

stage approach is not practical due to the limited general-

ization ability of the detectors applied in the highly unre-

stricted language and scene compositions. To this end, re-
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cent approaches use multimodal embedding networks that

jointly comprehend language and model the visual rela-

tions [26, 11]. Due to the prohibitively high cost of an-

notating both referent and context of referring expressions

in images, multiple instance learning (MIL) [7] is usually

adopted in them to handle the weak supervision of the unan-

notated context objects, by maximizing the joint likelihood

of every region pair. However, for a referent, the MIL

framework essentially oversimplifies the number of context

configurations of N regions from O(2N ) to O(N). For ex-

ample, to localize the “elephant” in Figure 1, we may need

to consider the other three elephants all together as a multi-

nomial subset for modeling the context such as “largest”,

“behind” and “baby elephant”.

In this paper, we propose a novel model called Varia-

tional Context for grounding referring expressions in im-

ages. Compared to the previous MIL-based approaches [26,

11], our model approximates the combinatorial context

configurations with weak supervision using a variational

Bayesian framework [15]. Intuitively, it exploits the reci-

procity between referent and context, given either of which

can help to localize the other. As shown in Figure 1, for

each region x, we first estimate a coarse context z, which

will help to refine the true localizations of the referent. This

reciprocity is formulated into the variational lower-bound

of the grounding likelihood p(x|L), where L is the text

expression and the context is considered as a hidden vari-

able z (cf. Section 3). Specifically, the model consists of

three multimodal modules: context posterior q(z|x, L), ref-

erent posterior p(x|z, L), and context prior pz(z|L), each

of which performs a grounding task (cf. Section 4.3) that

aligns image regions with a cue-specific language feature;

each cue dynamically encodes different subsets of words in

the expression L that help the corresponding localization

(cf. Section 4.2).

Thanks to the reciprocity between referent and context,

our model can not only be used in the conventional super-

vised setting, where there is annotation for referent , but

also in the challenging unsupervised setting, where there

is no instance-level annotation (e.g., bounding boxes) of

both referent and context. We perform extensive experi-

ments on four benchmark referring expression datasets: Re-

fCLEF [14], RefCOCO [45], RefCOCO+ [45], and Ref-

COCOg [25]. Our model consistently outperforms previous

methods in both supervised and unsupervised settings. We

also qualitatively show that our model can ground the con-

text in the expression to the corresponding image regions

(cf. Section 5).

2. Related Work

Grounding Referring Expressions. Grounding refer-

ring expression is also known as referring expression com-

prehension, whose inverse task is called referring expres-

sion generation [25]. Different from grounding phrases [29,

28] and descriptive sentences [12, 32], the key for ground-

ing referring expression is to use the context (or pragmatics

in linguistics [37]) to distinguish the referent from other ob-

jects, usually of the same category [10]. However, most pre-

vious works resort to use holistic context such as the entire

image [25, 12, 32] or visual feature difference between re-

gions [45, 46]. Our model is similar to the works on explic-

itly modeling the referent and context region pairs [11, 26],

however, due to the lack of context annotation, they re-

duce the grounding task into a multiple instance learning

framework [7]. As we will discuss later, this framework

is not a proper approximation to the original task. There

are also studies on visual relation detection that detect ob-

jects and their relationships [21, 5, 47, 17, 48]. However,

they are limited to a fixed-vocabulary set of relation triplets

and hence are difficult to be applied in natural language

grounding. Our cue-specific language feature is similar to

the language modular network [11] that learns to decom-

pose a sentence into referent/context-related words, which

are different from other approaches that treat the expression

as a whole [25, 23, 46, 19].

Variational Bayesian Model vs. Multiple Instance

Learning. Our proposed variational context model is in a

similar vein of the deep neural network based variational

autoencoder (VAE) [15], which uses neural networks to

approximate the posterior distribution of the hidden value

q(z|x), i.e., encoder, and the conditional distribution of the

observation p(x|z), i.e., decoder. VAE shows efficient and

effective end-to-end optimization for the intractable log-

sum likelihood log
∑

z p(x, z) that is widely used in genera-

tive processes such as image synthesis [44] and video frame

prediction [43]. Considering the unannotated context as the

hidden variable z, the referring expression grounding task

can also be formulated into the above log-sum marginaliza-

tion (cf. Eq. (2)). The MIL framework [7] is essentially a

sum-log approximation of the log-sum, i.e.,
∑

z log p(x, z).
To see this, the max-pooling function logmaxz p(x, z) used

in [11] can be viewed as the sum-log
∑

z log p(x|z)p(z),
where p(z) = 1 if z is the correct context and 0 otherwise,

indicating there is only one positive instance; maximizing

the noisy-or function log(1−
∏

z(1−p(x, z))) used in [26]

is equivalent to maximize
∑

z log p(x, z), assuming there is

at least one positive instance. However, due to the numer-

ical property of the log function, this sum-log approxima-

tion will unnecessarily force every (x, z) pair to explain the

data [8]. Instead, we use the variational Bayesian upper-

bound to obtain a better sum-log approximation. Note

that visual attention models [2, 42] simplify the variational

lower bound by assuming p(z) = q(z|x); however, we

explicitly use the KL divergence KL(q(z|x)||p(z)) in the

lower bound to regularize the approximate posterior q(z|x)
not being too far from the prior p(z).
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3. Variational Context

In this section, we derive the variational Bayesian for-

mulation of the proposed variational context model and the

objective function for training and test.

3.1. Problem Formulation

The task of grounding a referring expression L in an im-

age I , represented by a set of regions x ∈ X , can be viewed

as a region retrieval task with the natural language query

L. Formally, we maximize the log-likelihood of the condi-

tional distribution to localize the referent region x∗ ∈ X :

x∗ = argmax
x∈X

log p(x|L), (1)

where we omit the image I in p(x|I, L).
As there is usually no annotation for the context, we

consider it as a hidden variable z. Therefore, Eq. (1)

can be rewritten as the following maximization of the log-

likelihood of the conditional marginal distribution:

x∗ = argmax
x∈X

log
∑

z

p(x, z|L). (2)

Note that z is NOT necessary to be one region as assumed

in recent MIL approaches [11, 26], i.e., z ∈ X . For ex-

ample, the contextual objects “surrounding elephants” in

“a bigger elephant than the surrounding elephants” should

be composed by a multinomial subset of X , resulting in an

extremely large sample space that requires O(2|X |) search

complexity. Therefore, the marginalization in Eq (2) is in-

tractable in general.

To this end, we use the variational lower-bound [15] to

approximate the marginal distribution in Eq. (2) as:

log p(x|L) = log
∑

z

p(x, z|L) ≥ Q(x, L) =

Ez∼qφ(z|x,L) log pθ(x|z, L)︸ ︷︷ ︸
Localization

−KL (qφ(z|x, L)||pω(z|L))︸ ︷︷ ︸
Regularization

,

(3)

where KL(·) is the Kullback-Leibler divergence, φ, θ, and

ω are independent parameter sets for the respective distri-

butions. As shown in Figure 1, the lower bound Q(x, L)
offers a new perspective for exploiting the reciprocal nature

of referent and context in referring expression grounding:

Localization. This term calculates the localization score

for x given an estimated context z, using the referent-cue

of L parameterized by θ. In particular, we design a new

posterior qφ(z|x, L) that approximates the true context prior

p(z|x, L), which models the context z using the context-cue

of L parameterized by φ. In the view of variational auto-

encoder [15, 35], this term works in an encoding-decoding

fashion: qφ is the encoder from x to z, and pθ is the decoder

from z to x.

Regularization. As KL is non-negative, maximizing

Q(x, L) would encourage that the posterior qφ is similar

to the prior pω , i.e., the estimated context z sampled from

qφ(z|x, L) should not be too far from the referring expres-

sion, which is modeled by pω(z|L) with the generic-cue of

L parameterized by ω. This term is necessary as the esti-

mated z could be overfitted to region features that are incon-

sistent with the visual context described in the expression.

3.2. Training and Test

Deterministic Context. The lower-bound Q(x, L)
transforms the intractable log-sum in Eq. (2) into the effi-

cient sum-log in Eq. (3), which can be optimized by us-

ing Monte Carlo unbiased gradient estimator such as RE-

INFORCE [40]. However, due to that φ is dependent on

the sampling of z over O(2|X |) configurations, its gradient

variance is large. To this end, we implement qφ(z|x, L) as

a differentiable but biased encoder:

z = f(x, L) =
∑

x′∈X

x′ · qφ(x
′|x, L), (4)

where we slightly abuse qφ as a score function such that∑
x′ qφ(x

′|x, L) = 1. Note that this deterministic context

can be viewed as applying the “re-parameterization” trick as

in Variational Auto-Encoder [15]: rewriting z ∼ qφ(z|x, L)
to z = f(x, L; ǫ), ǫ ∼ p(ǫ), where the stochasticity of the

auxiliary random variable ǫ comes from training samples

x ∈ X (ǫ). A clear example is Adversarial Autoencoder [24]

which shows that such stochasticity achieves similar test-

likelihood compared to other distributions such as Gaus-

sian.

Objective Function. Applying Eq. (4) to Eq. (3), we can

rewrite Q(x, L) into a function of only one sample estima-

tion, which is a common practice in SGD:

Q(x,L)=log pθ(x|z,L)−log qφ(z|x,L)+log pω(z|L). (5)

In supervised setting where the ground truth of the ref-

erent is known, to distinguish the referent from other

objects, we need to train a model that outputs a high

p(x|L) (i.e., Q(x, L)), while maintaining a low p(x′|L)
(i.e., Q(x′, L)), whenever x′ 6= x. Therefore, we use

the so-called Maximum Mutual Information loss as in [25]

− log{Q(x, L)/
∑

x′ Q(x′, L)}, where we do not need to

explicitly model the distributions with normalizations; we

use the following score function:

Q(x, L) ∝ S(x, L) = sθ(x, L)−sφ(x, L)+sω(x, L), (6)

where z is omitted as it is a function of x in Eq. (4). sθ,

sφ, and sω are the score functions (e.g., pθ ∝ sθ) for pθ,

qφ, and pω , respectively. These functions will be detailed in
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Figure 2. The architecture of the proposed Variational Context model. It consists of a region feature extraction module (Section 4.1, and

a language feature extraction module (Section 4.2), and three grounding modules (Section 4.3). It can be trained in an end-to-end fashion

with the input of a set of image regions and a referring expression, using the supervised loss ( Eq. (7)) or the unsupervised loss (Eq. (8)).

fc: fully-connected layer. concat: vector concatenation. L2Norm: L2 normalization layer. ⊙: element-wise vector multiplication. ⊕: add.

Section 4.3. In this way, maximizing Eq. (5) is equivalent

to minimizing the following softmax loss:

Ls = − log softmaxS(xgt, L), (7)

where the softmax is over x ∈ X and xgt is the ground truth

referent region.

Note that the reciprocity between referent and context

can be extended to unsupervised learning, where neither of

the referent and context has annotation. In this setting, we

adopt the image-level max-pooled MIL loss functions for

unsupervised referring expression grounding:

Lu = −max
x∈X

log softmaxS(x, L), (8)

where the softmax is over x ∈ X . Note that the max-pooled

MIL function is reasonable since there is only one ground

truth referent given an expression and image training pair.

At test stage, in both supervised and unsupervised set-

tings, we predict the referent region x∗ by selecting the re-

gion x ∈ X with the highest score:

x∗ = argmax
x∈X

S(x, L), (9)

4. Model Architecture

The overall architecture of the proposed variational con-

text model is illustrated in Figure 2. Thanks to the deter-

ministic context in Eq. (4), the five modules in our model

can be integrated into an end-to-end differentiable fashion.

Next, we will detail the implementation of each module.

4.1. RoI Features

Given an image with a set of Region of Interests (RoIs)

X , obtained by any off-the-shelf proposal generator [50] or

object detectors [20], this module extracts the feature vec-

tor xi for every RoI. In particular, xi is the concatenation

of visual feature vi and spatial feature pi. For vi, we can

use the output of a pre-trained convolutional network (cf.

Section 5). If the object category of each RoI is available,

we can further utilize the comparison between the referent

and other objects to capture the visual difference such as

“the largest/baby elephant”. Specifically, we append the vi-

sual difference feature [45] δvi =
1
n

∑
j 6=i

vi−vj

||vi−vj ||
to the

original vi visual feature, where n is the number of objects

chosen for comparison (e.g., the number of RoI in the same

object category). For spatial feature, we use the 5-d spatial

attributes pi = [xtl

W
, ytl

H
, xbr

W
, ybr

H
, w·h
W ·H ], where x and y are

the coordinates the top left (tl) and bottom right (br) RoI of

the size w × h, and the image is of the size W ×H .

4.2. Cue­Specific Language Features

The cue-specific language feature representation for a re-

ferring expression is inspired by the attention weighted sum

of word vectors [11, 22, 3], where the weights are param-

eterized by context-cue φ, referent-cue θ, and generic-cue

ω. The context-cue language feature yc = [yc1,yc2] is

a concatenation of yc1 for language-vision association be-

tween single RoI and the expression, and yc2 for the as-

sociation between pairwise RoIs; the referent-cue language

feature yr can be represented in a similar way to yc; the

generic-cue language feature yg is only for single RoI asso-

ciation as it is an independent prior. The weights of each cue

are calculated from the hidden state vectors of a 2-layer bi-

directional LSTM (BLSTM) [33], scanning through the ex-

pression. The hidden states encode forward and backward

compositional semantic meanings of the sentences, benefi-

cial for selecting words that are useful for single and pair-

wise associations. Specifically, suppose hj as the 4,000-d

concatenation of forward and backward hidden vectors of

the j-th word, without loss of generality, the word attention

weight αj and the language feature y for single/pairwise

association of any cue can be calculated as:

mj = fc(hj), αj = softmaxj(mj),y =
∑

j
αjwj , (10)

where wj is a 300-d vector. Note that the BLSTM module

can be jointly trained with the entire model.

Figure 3 shows that the cue-specific language features

dynamically weight words in different expressions. We can

have two interesting observations. First, c1 is almost uni-
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Figure 3. Two qualitative examples of the cue-specific language

feature word weights. Darker color indicates higher weights.

c/r+1/2: context/referent-cue + single/pairwise.

form while c2 is highly skewed; although r2 is more skewed

than c1, it is still less skewed than r1. This is reasonable

since: 1) without ground-truth, individual score (c1) does

not help much for context estimation from scratch; context

is more easily found by the pairwise score (c2) induced by

relationships or other objects (e.g., “left” or “frisbee”); 2) in

referent grounding with ground truth, individual score (r1)

is sufficient (e.g., “dog lying” and “black white dog”) and

pairwise score (r2) is helpful; 3) g is adaptive to the num-

ber of object categories in the expression, i.e., if the context

object is of the same category as the referent, g weighs de-

scriptive or relationship words higher (e.g., “lying, stand-

ing, left”), and nouns higher (e.g., “frisbee”), otherwise;

moreover, it demonstrates that the deterministic guess of z
in Eq. (4) is meaningful.

4.3. Score Functions

For any image and expression pair, given the RoI feature

xi, and the cue-specific language feature yc, yr, and yg , we

implement the final grounding score in Eq. (6) as:

zi =
∑

j
softmaxj (sφ(xi,xj ,y

c))xj ,

sθ(x, L)← sθ(xi, zi,y
r),

sφ(x, L)← sφ(xi, zi,y
c),

sω(x, L)← sω(zi,y
g),

(11)

where the right-hand side functions are defined as below.

Context Estimation Score: sφ(xi,xj ,y
c). It is a score

function for modeling the context posterior qφ(z|x, L), i.e.,

given an RoI xi as the candidate referent, we calculate the

likelihood of any RoI xj to be the context. We can also

use this function to estimate the final context posterior score

sφ(xi, zi,y
c). Specifically, the context estimation score is a

sum of the single and pairwise vision-language association

scores: xj and yc1, [xi,xj ] and yc2. Each associate score

is an fc output from the input of a normalized feature:

m1
j = yc1 ⊙ fc(xj), m

2
j = yc2 ⊙ fc([xi,xj ]),

m̃1
j = L2Norm(m1

j ), m̃
2
j = L2Norm(m2

j ),

sφ(xi,xj ,y
c) = fc(m̃1

j ) + fc(m̃2
j ),

(12)

where the element-wise multiplication⊙ is an effective way

for multimodal features [2]. According to Eq. (4), we can

obtain the estimated context z as zi =
∑

j βjxj , where

βj = softmaxj(sφ(xi,xj ,y
c)).

Referent Grounding Score: sθ(xi, zi,y
r). After ob-

taining the context feature zi, we can use this score function

to calculate how likely a candidate RoI xi is the referent

given the context zi. This function is similar to Eq. (12).

Context Regularization Score: sω(zi,y
g) −

sφ(xi, zi,y
c). As discussed in Eq. (6), this function

scores how likely the estimated context feature zi is

consistent with the content mentioned in the expression. In

particular, sω(zi,y
g) is only dependent on single RoI:

mi=y
g
i ⊙ fc(zi), m̃i=L2Norm(mi), sω(zi,y

g
i )=fc(mi).

(13)

5. Experiment

5.1. Datasets

We used four popular benchmarks for the referring ex-

pression grounding task.

RefCOCO [45]. It has 142,210 referring expressions for

50,000 referents (e.g., object instances) in 19,994 images

from MSCOCO [18]. The expressions are collected in an

interactive way [14]. The dataset is split into train, valida-

tion, Test A, and Test B, which has 120,624, 10,834, 5,657

and 5,095 expression-referent pairs, respectively. An image

contains multiple people in Test A and multiple objects in

Test B.

RefCOCO+ [45]. It has 141,564 expressions for 49,856

referents in 19,992 images from MSCOCO. The difference

from RefCOCO is that it only allows appearances but no

locations to describe the referents. The split is 120,191,

10,758, 5,726 and 4,889 expression-referent pairs for train,

validation, Test A, and Test B respectively.

RefCOCOg [25]. It has 95,010 referring expressions for

49,822 objects in 25,799 images from MSCOCO. Different

from RefCOCO and RefCOCO+, this dataset not collected

in an interactive way and contains longer sentences contain-

ing both appearance and location expressions. The split is

85,474 and 9,536 expression-referent pairs for training and

validation. Note that there is no open test split for Ref-

COCOg, so we used the hyper-parameters cross-validated

on RefCOCO and RefCOCO+.

RefCLEF [14]. It contains 20,000 images with anno-

tated image regions. It has some ambiguous (e.g. anywhere)

phrases and mistakenly annotated image regions that are not

described in the expressions. For fair comparison, we used

the split released by [12, 32], i.e., 58,838, 6,333 and 65,193

expression-referent pairs for training, validation and test, re-

spectively.

5.2. Settings and Metrics

We used an English vocabulary of 72,704 words con-

tained in the GloVe pre-trained word vectors [27], which
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Table 1. Supervised grounding performances (Acc%) of comparing methods on RefCOCO, RefCOCO+, and RefCOCOg. Note that [46]

reports slightly higher accuracies using ensemble models of Listener and Speaker. For fair comparison, we only report their single models.

State-of-The-Arts Our Baselines

Dataset Split MMI [25] NegBag [26] Attr [19] CMN [11] Speaker [46] Listener [46] VC w/o reg VC w/o α VC

RefCOCO
Test A 71.72 75.6 78.85 75.94 78.95 78.45 75.59 74.03 78.98

Test B 71.09 78.0 78.07 79.57 80.22 80.10 79.69 78.27 82.39

RefCOCO+
Test A 58.42 — 61.47 59.29 64.60 63.34 60.76 57.61 62.56

Test B 51.23 — 57.22 59.34 59.62 58.91 60.14 54.37 62.90

RefCOCOg Val 62.14 68.4 69.83 69.30 72.63 72.25 71.05 65.13 73.98

RefCOCO(det)
Test A 64.90 58.6 72.08 71.03 72.95 72.95 70.78 70.73 73.33

Test B 54.51 56.4 57.29 65.77 63.43 62.98 65.10 64.63 67.44

RefCOCO+(det)
Test A 54.03 — 57.97 54.32 60.43 59.61 56.82 53.33 58.40

Test B 42.81 — 46.20 47.76 48.74 48.44 51.30 46.88 53.18

RefCOCOg(det) Val 45.85 39.5 52.35 57.47 59.51 58.32 60.95 55.72 62.30
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Figure 4. Qualitative results on RefCOCOg (det) showing comparisons between correct (green tick) and wrong referent grounds (red cross)

by VC and CMN. The denotations of the bounding box colors are as follows. Solid red: referent ground; solid green: ground truth; dashed

yellow: context ground. We only display top 3 context objects with the context ground probability > 0.1. We can observe that VC has

more reasonable context localizations than CMN, even in cases when the referent ground of VC fails.

was also used for the initialization of our word vectors. We

used a “unk” symbol for the input word of the BLSTM if the

word is out of the vocabulary; we set the sentence length to

20 and used “pad” symbol to pad expression sentence < 20.

For RoI visual features on RefCOCO, RefCOCO+, and Re-

fCOCOg which have MSCOCO annotated regions with ob-

ject categories, we used the concatenation of the 4,096-d

fc7 output of a VGG-16 based Faster-RCNN network [31]

trained on MSCOCO and its corresponding 4,096-d visd-

iff feature [45]; although RefCLEF regions also have object

categories, for fair comparison with [32], we did not use the

visdiff feature.

The model training is single-image based, with all re-

ferring expressions annotated. We applied SGD of 0.95-

momentum with initial learning rate of 0.01, multiplied by

0.1 after every 120,000 iterations, up to 160,000 iterations.

Parameters in BILSTM and fc-layers were initialized by

Xavier [9] with 0.0005 weight decay. Other settings were

default in TensorFlow. Note that our model is trained with-

out bells and whistles, therefore, other optimization tricks
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such as batch normalization [13] and GRU [4] are expected

to further improve the results reported here. Besides the

ground truth annotations, grounding to automatically de-

tected objects is a more practical setting. Therefore, we also

evaluated with the SSD-detected bounding boxes [20] on

the four datasets provided by [46]. A grounding is consid-

ered as correct if the intersection-over-union (IoU) of the

top-1 scored region and the ground-truth object is larger

than 0.5. The grounding accuracy (a.k.a, P@1) is the frac-

tion of correctly grounded test expressions.

5.3. Evaluations of Supervised Grounding

We compared our variational context model (VC) with

state-of-the-art referring expression methods published in

recent years, which can be categorized into: 1) generation-

comprehension based such as MMI [25], Attr [19],

Speaker [46], Listener [46], and SCRC [12]; 2) localiza-

tion based such as GroundR [32], NegBag [26], CMN [11].

Note that NegBag and CMN are MIL-based models. In par-

ticular, we used the author-released code to obtain the re-

sults of CMN on RefCLEF, RefCOCO, and RefCOCO+.

From the results on RefCOCO, RefCOCO+, and Re-

fCOCOg in Table 1 and that on RefCLEF in Table 2,

we can see that VC achieves the state-of-the-art perfor-

mance. We believe that the improvement is attributed to

the variational Bayesian modeling of context. First, on all

datasets, except for the most recent reinforcement learn-

ing based [46], VC outperforms all the other sentence

generation-comprehension methods that do not model con-

text. Second, compared to VC without the regularization

term in Eq. (3) (VC w/o reg), VC can boost the performance

by around 2% on all datasets. This demonstrates the ef-

fectiveness of the KL divergence for the prevention of the

overfitted context estimation.

In particular, we further demonstrate the superiority of

VC over the most recent MIL-based method CMN. As il-

lustrated in Figure 4, VC has better context comprehension

in both of the language and image regions than CMN. For

example, in the top two rows where VC is correct and CMN

is wrong, for the grounding in the second column, CMN

unnecessarily considers the “girl” as context but the expres-

sion only describes using “elephant”; in the last column,

CMN misses the key context “frisbee”. Even in the fail-

ure cases where VC is wrong and CMN is correct, VC still

localizes reasonable context. For example, in the fourth col-

umn, although CMN grounds the correct TV, but it is based

on incorrect context of other TVs; while VC can predict

the correct context “children”. In addition, we observed

that most of the cases that CMN is better than VC involves

multiple humans. This demonstrates that VC is better at

grounding objects of different categories.

VC is also effective in images with more objects. Fig-

ure 5 shows the performances of VC and CMN with various

Table 2. Performances (Acc%) of supervised and unsupervised

methods on RefCLEF.
Sup. Sup. (det) Unsup. (det)

SCRC [12] 72.74 17.93 —

GroundR [32] — 26.93 10.70

CMN [11] 81.52 28.33 —

VC 82.43 31.13 14.11

VC w/o α 79.60 27.40 14.50

Table 3. Unsupervised grounding performances (Acc%) of com-

paring methods on RefCOCO, RefCOCO+, and RefCOCOg.

Dataset Split VC w/o reg VC VC w/o α

RefCOCO
Test A 13.59 17.34 33.29

Test B 21.65 20.98 30.13

RefCOCO+
Test A 18.79 23.24 34.60

Test B 24.14 24.91 31.58

RefCOCOg Val 25.14 33.79 30.26

RefCOCO(det)
Test A 17.14 20.91 32.68

Test B 22.30 21.77 27.22

RefCOCO+(det)
Test A 19.74 25.79 34.68

Test B 24.05 25.54 28.10

RefCOCOg(det) Val 28.14 33.66 29.65

number of bounding boxes. We can observe that VC con-

siderably outperforms CMN over all bounding boxes num-

bers. Recall that context is the key to distinguish objects of

the same category. In particular, on the Test A sets of Ref-

COCO and RefCOCO+ where the grounding is only about

people, i.e., the same object category, the gap between VC

and CMN is becoming larger as the box number increases.

This demonstrates that MIL is ineffective in modeling con-

text, especially when the number of image regions is large.

5.4. Evaluations of Unsupervised Grounding

We follow the unsupervised setting in GroundR [32]. To

our best knowledge, it is the only work on unsupervised re-

ferring expression grounding. Note that it is also known as

“weakly supervised” detection [48] as there is still image-

level ground truth (i.e., the referring expression). Table 2 re-

ports the unsupervised results on the RefCLEF. We can see

that VC outperforms the state-of-the-art GroundR, which is

a generation-comprehension based method. This demon-

strates that using context also helps unsupervised ground-

ing. As there is no published unsupervised results on Re-

fCOCO, RefCOCO+, and RefCOCOg, we only compared

our baselines on them in Table 3. We can have the follow-

ing three key observations which highlight the challenges

of unsupervised grounding:

Context Prior. VC w/o reg is the baseline without the

KL divergence as a context regularization in Eq. (3). We can

see that in most of the cases, VC considerably outperforms

VC w/o reg by over 2%, even over 5% on RefCOCO+ (det)
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Figure 5. Performances of VC and CMN with different number of object bounding boxes on RefCOCO Test A &B, RefCOCO+ Test A &

B, and RefCOCOg Val. Compared to CMN, we can see that VC is more effective in context modeling when the number of objects is large.

Elephant on right.

Woman with 
green tshirt.

Highest 
cat.

Sandwich that the 
man holding.

The front banana in 
the right hand.Left man.

Figure 6. Common failure cases in unsupervised grounding with

detected bounding boxes. From left to right: RefCOCO, Ref-

COCO+, and RefCOCOg. The failure is mainly to the challenging

unsupervised relation modeling between referent and context.

and RefCOCOg (det). Note that this improvement is signif-

icantly higher than that in supervised setting (e.g., < 3% as

reported in Table 1). The reason is that the context estima-

tion in Eq. (4) would be easier to be stuck in image regions

that are irrelevant to the expression in unsupervised setting,

therefore, context prior is necessary.

Language Feature. Except on RefCOCOg, we consis-

tently observed the ineffectiveness of the cue-specific lan-

guage feature in unsupervised setting, i.e., VC w/o α out-

performs VC in Table 2 and 3. Here α represents the cue-

specific word attention. This is contrary to the observation

in the supervised setting as listed in Table 1, where VC w/o

α is consistently lower than VC. Note that without the cue-

specific word attention α in Eq. (10), the language feature is

merely the average value of the word embedding vectors in

the expression. In this way, VC w/o α does not encode any

structural language composition as illustrated in Figure 3,

thus, it is better for short expressions. However, when the

expression is long in RefCOCOg, discarding the language

structure still degrades the performance on RefCOCOg.

Unsupervised Relation Discovery. Although we

demonstrated that VC improves the unsupervised ground-

ing by modeling context, we believe that there is still a large

space for improving the quality of modeling the context.

As the failure examples shown in Figure (6), 1) many con-

text estimations are still out of the scope of the expression,

e.g., we may localize the “cup” and “table” as context even

though the expression is “woman with green t-shirt”; 2) we
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Figure 7. Word cloud visualizations of cue-specific word attention

α in Eq. 10 of context-cue (c2), referent-cue (r1), and generic-cue

(g) using supervised (top row) and unsupervised training (bottom

row) on RefCOCOg. Without supervision, it is difficult to discover

meaningful language compositions.

may mistake due to the wrong comprehension of the rela-

tions, e.g., “right” as “left”, even if the objects belong to

the same category, e.g., “elephant”. For further investiga-

tion, Figure 7 visualizes the cue-specific word attentions in

supervised and unsupervised settings. The almost identi-

cal word attentions in unsupervised setting reflect the fact

that the relation modeling between referent and context is

not as successful as in supervised setting. This inspires us

to exploit stronger prior knowledge such as language struc-

ture [41] and spatial configurations [48, 39].

6. Conclusions

We focused on the task of grounding referring expres-

sions in images and discussed that the key problem is how

to model the complex context, which is not effectively re-

solved by the multiple instance learning framework used

in prior works. Towards this challenge, we introduced

the Variational Context model, where the variational lower-

bound can be interpreted by the reciprocity between the ref-

erent and context: given any of which can help to localize

the other, and hence is expected to significantly reduce the

context complexity in a principled way. We implemented

the model using cue-specific language-vision embedding

network that can be efficiently trained end-to-end. We val-

idated the effectiveness of this reciprocity by promising

supervised and unsupervised experiments on four bench-

marks. Moving forward, we are going to 1) incorporate ex-

pression language generation in the variational framework,

2) use more structural features of language rather than word

attentions, and 3) further investigate the potential of our

model in the unsupervised referring expression grounding.
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multiple instance problem with axis-parallel rectangles. Artificial

intelligence, 1997. 2

[8] C. W. Fox and S. J. Roberts. A tutorial on variational bayesian infer-

ence. Artificial intelligence review, 2012. 2

[9] X. Glorot and Y. Bengio. Understanding the difficulty of training

deep feedforward neural networks. In ICAIS, 2010. 6

[10] D. Golland, P. Liang, and D. Klein. A game-theoretic approach to

generating spatial descriptions. In EMNLP, 2010. 1, 2

[11] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko. Model-

ing relationships in referential expressions with compositional mod-

ular networks. In CVPR, 2017. 2, 3, 4, 6, 7

[12] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell.

Natural language object retrieval. In CVPR, 2016. 2, 5, 7

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML, 2015.

7

[14] S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg. Refer-

itgame: Referring to objects in photographs of natural scenes. In

EMNLP, 2014. 2, 5

[15] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In

ICLR, 2014. 2, 3

[16] Y. Li, N. Duan, B. Zhou, X. Chu, W. Ouyang, X. Wang, and M. Zhou.

Visual question generation as dual task of visual question answering.

In CVPR, 2018. 1

[17] Y. Li, W. Ouyang, and X. Wang. Vip-cnn: Visual phrase guided

convolutional neural network. In CVPR, 2017. 2

[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in

context. In ECCV, 2014. 5

[19] J. Liu, L. Wang, and M.-H. Yang. Referring expression generation

and comprehension via attributes. In ICCV, 2017. 2, 6, 7

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 4, 7

[21] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship

detection with language priors. In ECCV, 2016. 2

[22] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image

co-attention for visual question answering. In NIPS, 2016. 4

[23] R. Luo and G. Shakhnarovich. Comprehension-guided referring ex-

pressions. In CVPR, 2017. 2

[24] A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial

autoencoders. In ICLR Workshop, 2016. 3

[25] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and K. Mur-

phy. Generation and comprehension of unambiguous object descrip-

tions. In CVPR, 2016. 1, 2, 3, 5, 6, 7

[26] V. K. Nagaraja, V. I. Morariu, and L. S. Davis. Modeling context

between objects for referring expression understanding. In ECCV,

2016. 2, 3, 6, 7

[27] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for

word representation. In EMNLP, 2014. 5

[28] B. A. Plummer, A. Mallya, C. M. Cervantes, J. Hockenmaier, and

S. Lazebnik. Phrase localization and visual relationship detection

with comprehensive linguistic cues. In ICCV, 2017. 1, 2

[29] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hock-

enmaier, and S. Lazebnik. Flickr30k entities: Collecting region-

to-phrase correspondences for richer image-to-sentence models. In

ICCV, 2015. 2

[30] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In

CVPR, 2017. 1

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. In NIPS, 2015.

6

[32] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele.

Grounding of textual phrases in images by reconstruction. In ECCV,

2016. 2, 5, 6, 7

[33] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural net-

works. TSP, 1997. 4

[34] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D. Manning.

Generating semantically precise scene graphs from textual descrip-

tions for improved image retrieval. In Workshop on Vision and Lan-

guage, 2015. 1

[35] K. Sohn, H. Lee, and X. Yan. Learning structured output representa-

tion using deep conditional generative models. In NIPS, 2015. 3

[36] Q. Sun, B. Schiele, and M. Fritz. A domain based approach to social

relation recognition. In CVPR, 2017. 1

[37] J. A. Thomas. Meaning in interaction: An introduction to pragmat-

ics. Routledge, 2014. 2

[38] J. Thomason, J. Sinapov, and R. Mooney. Guiding interaction be-

haviors for multi-modal grounded language learning. In Proceedings

of the First Workshop on Language Grounding for Robotics, pages

20–24, 2017. 1

[39] Y. Wei, J. Feng, X. Liang, C. Ming-Ming, Y. Zhao, and S. Yan. Ob-

ject region mining with adversarial erasing: A simple classification

to semantic segmentation approach. In CVPR, 2017. 8

[40] R. J. Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. In Machine Learning. 1992. 3

[41] F. Xiao, L. Sigal, and Y.-J. Lee. Weakly-supervised visual grounding

of phrases with linguistic structures. In CVPR, 2017. 8

[42] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,

R. Zemel, and Y. Bengio. Show, attend and tell: Neural image cap-

tion generation with visual attention. In ICML, 2015. 2

[43] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynamics: Prob-

abilistic future frame synthesis via cross convolutional networks. In

NIPS, 2016. 2

[44] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional

image generation from visual attributes. In ECCV, 2016. 2

[45] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Modeling

context in referring expressions. In ECCV, 2016. 2, 4, 5, 6

[46] L. Yu, H. Tan, M. Bansal, and T. L. Berg. A joint speaker-listener-

reinforcer model for referring expressions. In ICCV, 2017. 2, 6, 7

[47] H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua. Visual translation

embedding network for visual relation detection. In CVPR, 2017. 1,

2

[48] H. Zhang, Z. Kyaw, J. Yu, and S.-F. Chang. Ppr-fcn: Weakly super-

vised visual relation detection via parallel pairwise r-fcn. In ICCV,

2017. 2, 7, 8

[49] Z. Zhao, Q. Yang, D. Cai, X. He, and Y. Zhuang. Video question

answering via hierarchical spatio-temporal attention networks. In In-

ternational Joint Conference on Artificial Intelligence (IJCAI), vol-

ume 2, 2017. 1

[50] C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals

from edges. In ECCV, 2014. 4

4166


