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Abstract

While many approaches have been proposed to estimate

and remove blur in a photo, few efforts were made to have

an algorithm automatically understand the blur desirabil-

ity: whether the blur is desired or not, and how it affects the

quality of the photo. Such a task not only relies on low-level

visual features to identify blurry regions, but also requires

high-level understanding of the image content as well as

user intent during photo capture. In this paper, we propose

a unified framework to estimate a spatially-varying blur

map and understand its desirability in terms of image qual-

ity at the same time. In particular, we use a dilated fully con-

volutional neural network with pyramid pooling and bound-

ary refinement layers to generate high-quality blur response

maps. If blur exists, we classify its desirability to three lev-

els ranging from good to bad, by distilling high-level se-

mantics and learning an attention map to adaptively local-

ize the important content in the image. The whole frame-

work is end-to-end jointly trained with both supervisions of

pixel-wise blur responses and image-wise blur desirability

levels. Considering the limitations of existing image blur

datasets, we collected a new large-scale dataset with both

annotations to facilitate training. The proposed methods

are extensively evaluated on two datasets and demonstrate

state-of-the-art performance on both tasks.

1. Introduction

Image blur is very common in natural photos, arising

from different factors such as object motion, camera lens

out-of-focus, and camera shake. In many cases it is un-

desired, when important regions are affected and become

less sharp; while in other cases it is often desired, when

the background is blurred to make the subject pop out, or

motion blur is added to give the photo artistic look. Many

research efforts have been made to either detect the un-

desired blur and subsequently remove it [22, 11, 37, 4],

or directly estimate the desired blur and then enhance it

[2, 38, 23, 8, 21]. However, there are rather limited efforts

to have an algorithm automatically understand whether such

blur is desired or not in the first place, which would be very

Figure 1. Problem statement. Given the natural photos in the left

column, we generate their corresponding blur maps and estimate if

the blur is desirable. Brighter color indicates higher blur amount.

useful to help users categorize photos and make correspond-

ing edits, especially with the dramatic growth in the number

of personal photos nowadays. It can also be used to estimate

photo quality and applied in photo curation [31], photo col-

lage creation [20], image quality and aesthetics [15], and

video summarization [16].

Understanding blur desirability in terms of image qual-

ity nevertheless is not trivial and in many cases very chal-

lenging, as it not only requires accurate spatially-varying

blur amount estimation, but also needs to understand if the

blurry regions are important from the perspective of im-

age content and sometimes user’s intent when capturing the

photo. Take the examples in Fig.1 for instance, both images

in the first and second row are with depth-of-field effect.

Yet the first one is regarded as a good photo while the sec-

ond one is considered bad by most people, only because we

think the blurry runners are the subject intended to be cap-

tured and more important than other content in the scene.

The blur desirability in the third example is somewhere in

between, as even though the tennis racket and the right arm

of the player are blurred, her major body and face are clear,
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which conveys the most important information in the photo.

Motivated by this observation, we propose a novel al-

gorithm for image blur understanding by fusing low-level

blur estimation and high-level understanding of important

image content at the same time. Given an image, our ap-

proach can automatically determine if blur exists in the im-

age, and if exists, can accurately estimate spatially-varying

blur amount and categorize the blur desirability in terms of

image quality to three levels: Good, OK, and Bad, as shown

in Fig.1. Specifically, we propose a unified ABC-FuseNet,

a deep neural network that jointly learns the attention map

(A), blur map (B), and content feature map (C), and fuses

them together to detect if there is blur on important content

and estimate the blur desirability. The pixel-wise blur map

estimation is based on a dilated fully convolutional network

(FCN) with specifically designed global pyramid pooling

mechanism. The local and global cues together make the

blur map estimation more reliable in homogeneous regions

and invariant to multiple object scales. The entire network

is end-to-end jointly trained on both pixel-wise blur map

estimation and image-level blur categorization.

Solving such a problem is in need of a large dataset

with both pixel-level blur amount annotation and image-

level blur category supervision. Considering the limitations

of existing blur image dataset in both quality and quantity,

we collect a new dataset SmartBlur, containing 10, 000 nat-

ural photos with elaborate human annotations of both pixel-

level blur amount and image-level blur categories, to facili-

tate our training and evaluation. Contributions of this paper

are summarized as follows:

• To the best of our knowledge, our work is the first at-

tempt to detect spatially-varying blur and understand

image blur in terms of image quality at the same time.

In particular,we propose an end-to-end trainable neural

network ABC-FuseNet to jointly estimate blur map, at-

tention map, and content feature map, which are fused

together to understand important content in the image

and perform final blur desirability estimation.

• We collect a large-scale blur image dataset SmartBlur,

containing 10, 000 natural photos with annotations of

both pixel-level blur amount and image-level blur de-

sirability, which we plan to release in the future. Be-

sides the tasks addressed in the paper, SmartBlur can

serve as a versatile benchmark for various tasks such

as blur magnification and image deblur. Data is re-

leased at https://github.com/Lotuslisa/

Understand_Image_Blur.

• The proposed approach is extensively evaluated on

SmartBlur as well as a public blur image dataset [23].

Experimental results show it significantly outperforms

the state-of-the-art baseline methods on both blur map

estimation and blur desirability categorization.

2. Related Work

Most existing work focused on local blur detection, as-

suming the users already know the blur category (desired or

undesired) [8]. Different cues and hand-craft features are

used to estimate blur amount, such as image gradients [38],

local filters [23], sparse representation [24], local binary

patterns [33], and relevance to similar neighboring regions

[29]. Nevertheless, those hand-craft features are error-prone

as they are not robust to various conditions and are lack

of semantic information. In recent years, neural networks

have proved their superiority to the conventional counter-

parts [12, 27, 32, 6]. Park et al. [21] improve the accuracy of

defocus blur estimation by combining handcrafted features

with deep features from a convolutional neural network

(CNN). This work limits its application to defocus blur esti-

mation, and often fails when detecting blurs caused by cam-

era shake. In addition, all the above-mentioned methods do

not estimate whether the detected blur is desired or not in

terms of image quality.

More recently, Yu et al.[34] learn a deep neural network

to detect photographic defects, including undesired blur.

However, there is no explicit understanding on the image

content in their learning. As a result, the model sometimes

still mis-classifies good depth-of-field effects into undesired

defects. It also suffers from low accuracy due to limited

training data in terms of both annotation quality and quan-

tity. Although image blur analysis has been an active re-

search area for recent years, we found that there are very

limited number of high-quality blur image datasets [19, 1].

The most widely used blur image dataset-CUHK [23] only

has pixel-level binarized annotations. The scale of CUHK

is also small (1000 images).

3. The SmartBlur Dataset

To train and evaluate the proposed ABC-FuseNet, we

need a large-scale dataset with both pixel-level blur amount

and image-level blur desirability annotations. However, ex-

isting datasets only contain limited number of images with

coarsely-annotated blur amount, and no annotations on blur

desirability, as shown in Table 1. Therefore, we collect a

new dataset SmartBlur, which contains 10, 000 natural pho-

tos with elaborate human annotations of both pixel-level

blur amount and image-level blur desirability to supervise

the blur map estimation and blur desirability classification.

SmartBlur provides a reliable training and evaluation plat-

form for blur analysis, and can serve as a versatile bench-

mark for various tasks such as blur magnification and im-

age deblur. In this section, we describe the data collection

and annotation with detailed statistics. More details can

be found in the supplementary material. SmartBlur will be

publicly available to promote research in blur analysis.
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Dataset CUHK[23] CERTH[19] Portland[18] SmartBlur

# of Images 1000 2450 2976 10,000

Blur Type 1,2 1,2,3 3 1,2,3

Blur Amount
Pixel-wise

binary

Image-wise

binary

Image-wise

binary

Pixel-wise

multi-level

Blur Desirability X X X !

Image Source Natural Natural+Synthetic Synthetic Natural

Table 1. Comparison of blur image datasets. For Blur Type, 1, 2,

3 indicates motion blur, defocus, and camera shake respectively.

3.1. Data Collection

To collect a large and varied set of natural photos, we

download 75, 000 images from Flickr which carry a Cre-

ative Commons license. Then we select 10, 000 images for

further annotation. When selecting these 10, 000 photos,

we try to balance the number of images of different image

blur desirability levels: Good blur, OK blur, Bad blur, and

No blur (if there is no blur in the image). We also try to

have photos with different blur types: object motion, cam-

era shake, and out-of-focus. These 10, 000 images are cap-

tured by various camera models in different shooting con-

ditions, and cover different scenes. Image resolution ranges

from 500×300 to 1024×720. To our knowledge, SmartBlur

is the largest blur image dataset with richest annotations.

3.2. Data Annotation

For each image in SmartBlur, we have two levels of an-

notations: pixel-level blur amount and image-level blur de-

sirability. We train professional annotators on both labeling

tasks. Each image is labeled by 3 annotators, and we check

and merge the final annotations to make sure they are cor-

rect. As shown in Fig. 2, for pixel-level blur amount an-

notation, we label each region in the image with four blur

amounts: No Blur, Low Blur, Medium Blur, and High blur.

This is distinctly different from the existing datasets, which

only indicate the pixel-level or image-level blur existence.

We classify them based on the visual appearance with pre-

defined criteria: No blur - no visible blur; Low - the blur is

visible, but people can still see the details in blurred region;

Medium - the details are not clear anymore; High - not only

details are missing, the textures are largely changed, and the

shapes are distorted. The boundary of each region is anno-

tated based on the blur amount, instead of object semantics.

For image-level blur desirability, we label each image with

four categories: good-blur, ok-blur, bad-blur, or no-blur.

Good-blur indicates the blur is manipulated by photogra-

phers to create visually pleasing effects. The blur in good-

blur images often appears on the background or unimpor-

tant objects. Ok-blur indicates the blur is on some small or

unimportant regions, or with negligible small amount. Such

blur is not created on purpose, and is usually generated due

to imperfect capture conditions or limited expertise of the

photographer. Bad-blur indicates the blur is on the impor-

tant objects with non-negligible amount. Such blur is not

desirable and significantly degrade the image quality. No-

Figure 2. Annotation Samples from SmartBlur.

Bad-Blur Ok-Blur Good-Blur No-Blur Total

Training 1568 1583 3777 1422 8400

Validation 200 200 200 200 800

Testing 200 200 200 200 800

Total 1968 1983 4177 1822 10,000

Table 2. Dataset split and image amount for different categories.

blur indicates the whole image is sharp, with no blur in it.

Annotation samples are shown in Fig. 2.

SmartBlur consists of 1, 822 no-blur images, 1, 968 bad-

blur images, 1, 983 ok-blur images, and 4, 177 good-blur

images, making it with 10, 000 images in total. We ran-

domly split it into three portions: training, validation, and

testing. The image amount for each set, as well as for each

category is described in Table 2. For evaluation and vali-

dation, we random select the same amount of images from

each blur type to balance the data of different categories.

Compared with existing datasets, SmartBlur has the fol-

lowing advantages: 1. It is the first dataset that has pixel-

level blur amount annotations with multiple levels, from

low, medium to high. 2. It is the first dataset that has image-

level blur desirability annotation in terms of image quality.

3. It is the largest blur image dataset, with all natural photos.

4. Proposed Approach

In this paper, we introduce the problem of automatically

understanding image blur in terms of image quality. Such

a task not only relies on low-level visual features to detect

blur regions, but also requires high-level understanding of

the image content and user intent. In this section, we pro-

pose ABC-FuseNet, a unified framework to jointly estimate

spatially-varying blur map and understand its effect on im-

age quality to classify blur desirability.

4.1. Approach Overview

The architecture of ABC-FuseNet is provided in Fig. 3.

ABC-FuseNet is a novel network to fuse low-level blur es-
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Figure 3. Architecture of ABC-FuseNet. It jointly learns the blur map, attention map, and content feature map, and fuses them together to

detect if there is blur on important content and estimate the blur desirability.

timation and high-level understanding of important image

content. Given an image, our approach automatically deter-

mine if blur exists in the image. If blur exists, we accurately

estimate spatially-varying blur amount and classify its blur

desirability into three categories ranging from good to bad,

by distilling high-level semantics and learning an attention

map to adaptively attend to important regions. In particu-

lar, ABC-FuseNet jointly learn the attention map, blur map,

and content feature map, and fuse them together for blur

desirability classification. We use a dilated fully convolu-

tional neural network (upper branch in Fig. 3) with pyramid

pooling and boundary refinement module to generate high-

quality blur response maps. The local and global features

together make the blur map estimation more reliable in ho-

mogeneous regions and invariant to multiple object scales.

Attention map estimation is based on the fully convolutional

network (middle branch in Fig. 3). The entire network is

end-to-end trained on both pixel-level blur map estimation

and image-level blur desirability categorization.

4.2. Blur Map Estimation

The blur map is estimated with fully convolutional neu-

ral networks (FCN), building on top of Inception-V2 [28]1.

Accurate blur map estimation is faced with two main chal-

lenges. First, it is difficult to detect blurs in small re-

gions, because the feature map resolution is reduced by

the repeated combination of max-pooling and downsam-

pling (striding) performed at consecutive layers in the CNN,

which is originally designed for image classification. To

effectively enlarge the receptive fields without sacrificing

much spatial resolutions, we remove the downsampling op-

erator and replace the regular convolution in Inception 4a

1While other networks such as ResNet [9] and VGGNet [25] can also

be utilized as the backbone network, we choose Inception-V2 for its rela-

tively smaller model size.

with dilated convolutions [5]. In addition, we combine the

high-level semantic features with the low-level features af-

ter the first convolution layer to keep spatial resolution and

make better estimation of blurs in the small regions. Specif-

ically, the high-level features are upsampled by bilinear in-

terpolation and then concatenated with the low-level fea-

tures along the channel dimension. To further obtain better

blur region boundaries, several boundary refinement layers

with dense connections are appended after upsampling.

The second challenge is to detect blurs in multiple scale

objects and in the homogeneous regions, which show al-

most no difference in appearance when they are sharp or

blurred. A standard way to deal with the challenge of vari-

able scales is to re-scale the CNN for the same image and

then aggregate the feature or score maps [14, 7], which sig-

nificantly increases computation cost. Inspired by [36], we

adopt a pyramid pooling module to combine the local and

global clues together to make the final blur detection more

reliable in the homogeneous regions and invariant to multi-

ple object scales. Such strategy provide hierarchical global

prior, containing information with different scales and vary-

ing among different sub-regions . To be specific, we pool

four-level features from Inception 5b: 1× 1, 2× 2, 3× 3,

6×6. To maintain the weight of global feature, we use 1×1
convolution layer after each pyramid level to reduce the di-

mension of context representation to 1/4 of the original one.

Then we upsample each pooled feature map into the same

size as Inception 5b and concatenate them together as the

final pyramid pooling feature.

4.3. Blur Desirability Classification

As understanding image blur relies on both low-level vi-

sual features to estimate blur responses map, and high-level

understanding of the image content and user intent. We fur-

ther learn content feature map to facilitate blur desirability
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classification. Specifically, we extract semantic feature map

from res5c of ResNet-50 [9] with pretained weights (lower

branch in Fig. 3). To understand if blur is on the impor-

tant content in the image, we estimate an attention map at

the same time to adaptively localize the important content.

The attention map estimation is based on the fully convolu-

tional networks. We pre-train the attention map branch with

salient object segmentation datasets [35] to obtain the initial

weights.

After learning the blur map (Bm), attention map (Am),

and content feature map (Cm), we fuse these three maps to-

gether and feed them to a light classifier to estimate the im-

age blur category. Here we propose a dual attention mecha-

nism to extensively exploit the blur responses and high-level

semantics when concatenating these three maps together.

To be specific, we stack Bm×Am, Bm×(1−Am), and Cm

in the channel direction to form the final input of the blur

category classifier, which contains two convolution layers,

two dropout layers, and one fully connected layer 2. The

whole ABC-FuseNet is end-to-end trainable, in which the

blur map estimation and blur desirability classification are

jointly trained with both supervisions. We conduct exten-

sive ablation study in Section 5 to verify the efficacy of the

proposed mechanisms.

For blur map estimation, we apply sigmoid function on

the last layer output of blur map estimation branch. Then,

we compute the L2 loss between the estimated blur map and

the ground truth blur map. As the blur amount for each pixel

is annotated with four different levels in SmartBlur, we nor-

malize these amounts into 0, 1/3, 2/3, and 1 respectively.

The loss function of the blur map estimation is:

LBm
=

1

2N

N
∑

i=1

P
∑

p=1

∥

∥

∥

∥

1

1 + exp(−bi(p; Θ))
− b0i (p))

∥

∥

∥

∥

2

2

(1)

where bi(p; Θ) is the estimated blur amount for pixel p in

image i, and Θ indicates the parameters of the blur estima-

tion branch. b0i (p) is the ground truth blur amount for pixel

p in image i.

For the image blur desirability classification, we convert

each blur category label into an one-hot vector to generate

the ground truth supervision of each training image. The

loss of the blur desirability classification LBc
is computed

by the softmax cross-entropy loss. We note that, there is no

supervision for the attention map estimation. The attention

region in each image is estimated by the weakly supervised

learning from the image blur category. To this end, the total

loss of the ABC-FuseNet is:

L = LBm
+ λLBc

(2)

2Detailed architectures are described in the supplementary material.

5. Experiments

To verify the efficacy of ABC-FuseNet for both blur

map estimation and image blur type classification, we ex-

tensively evaluate the proposed methods on two datasets,

CUHK [23] and SmartBlur. In this section, we discuss the

experiments and results: 1. We first evaluate and compare

ABC-FuseNet with the state-of-the-art methods on CUHK

[23] for the task of blur map estimation. Experimental pro-

tocol and implementation details are provided. Here we

show our proposed method significantly outperforms the

existing methods in terms of both quantitative and quali-

tative results regardless of the blur sources (object motion,

camera shake, or defocus). 2. We then evaluate the pro-

posed methods on the SmartBlur dataset for both blur map

estimation and image blur type classification. We compare

with the state-of-the-art methods and conduct thorough ab-

lation studies to verify the efficacy of ABC-FuseNet.

Implementation details. To train the ABC-FuseNet, we

first pretrain the blur map estimation and attention map es-

timation branches with salient object segmentation dataset

[35] to obtain the initial weights. Afterwards, we further

train the blur map estimation branch with the SmartBlur

dataset. The loss function is optimized via batch-based

Adam [13] and backpropagation. The hyperparameters, in-

cluding initial learning rate, weight decay penalty multi-

plier, and dropout rate are selected by cross-validation, and

are set to be 0.001, 0.05, and 0.5 respectively. The batch

size is 12 images for training. Then we test the performance

of blur map estimation on two datasets, CUHK and Smart-

Blur. Detailed results are described in Sec. 5.1 and Sec. 5.2

respectively. After obtaining the initial weights of blur map

and attention map estimation branches, we jointly train the

network with both blur map supervision and blur desirabil-

ity supervision. The hyperparameters, including the coeffi-

cient of blur type classification loss λ, initial learning rate,

weight decay penalty multiplier, and dropout rate are se-

lected by cross-validation, and are set to be 0.1, 0.01, 0.01,

and 0.5 respectively. The batch size is 4 images for train-

ing. To improve the generalization and robustness of the

network, we apply various data augmentation techniques to

all the training processes: 1. horizontal flip, 2. random crop,

3. random brightness, 4. and random contrast.

5.1. Evaluations on CUHK Dataset

Experiment Settings. We first verify the reliability

and robustness of our algorithm on a public blur detection

dataset CUHK [23]. It contains 1, 000 images with human

labeled blur regions, among which 296 images are partially

motion-blur and 704 images are defocus-blur. It was the

most widely used blur image dataset with pixel-level binary

annotations (1 indicates blur, and 0 indicates clear). As

most of the existing blur detection methods are not learn-

ing based and do not have training images from CUHK,
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Figure 4. Quantitative Precision-Recall comparison on CUHK for

different methods, tested on all blur types.

for a fare comparison with the baselines, we only train the

ABC-FuseNet on our collected SmartBlur dataset and di-

rectly test the trained model on the 1, 000 images of the

CUHK dataset, without finetuning on the CUHK dataset at

all. Such treatment also guarantees that our method is eval-

uated on the same amount of testing set as the baselines.

Experimental Results. We extensively compare the per-

formance of our method with the state-of-the-art baseline

methods [2, 3, 17, 23, 24, 26, 29, 30, 33, 38, 21, 8], using

publicly released implementations. While most of the base-

lines use hand-crafted visual features, work [21] combined

hand-crafted features with deep features to estimate the de-

focus blur map. The quantitative performance is evaluated

using the precision-recall curve.

Fig. 4 and Fig. 5 show the quantitative Precision-Recall

comparison on CUHK for different methods. Fig. 4 is

the precision-recall curve tested on 1, 000 blur images, in-

cluding both motion blur and defocus blur. Fig. 5 is the

precision-recall curve tested on 704 defocus blur images.

Note that baseline Park et al. [21] is designed for the defo-

cus blur detection. From the comparison we can see that,

for the performance tested on the 1, 000 images with differ-

ent blur sources, our method consistently outperforms all

the state-of-the-art baselines by a large margin, which ver-

ifies its efficacy in detecting blur from different levels and

sources. For the results tested on 704 defocus blur images,

our model also significantly outperforms Park et al. [21]

and Shi et al. [24]. The average precision on CUHK be-

fore/after joint training are 0.869 and 0.868, respectively.

Joint training would focus the blur map estimation on more

important semantic regions, which might not be reflected in

average precision uniformly evaluated over the entire im-

ages. However, it could significantly improve blur desir-

ability classification (Fig. 9).

For qualitative comparison, we show visual results of

some challenging images in CUHK for different methods

[23, 24, 38, 21, 8] in Fig.6. We can see that the estimated

Figure 5. Quantitative Precision-Recall comparison on CUHK for

different methods, tested on defocus blur.

blur maps of our method are the most accurate and clos-

est to the ground truth. It works with different blur types

(object motion in the first three rows, defocus in last four

rows), and with complex scenes and multiple objects (sec-

ond, fourth, seventh, and eighth rows). For the homoge-

neous regions, baselines show some erroneous estimation

results due to the insufficient textures in such regions, while

our method avoid this problem by estimating blur map with

multiple scale features using the pyramid pooling module.

More visual results comparison will be shown in the sup-

plementary material.

5.2. Evaluations on SmartBlur Dataset

Experiment Settings. We now evaluate the performance

of ABC-Fusenet on our SmartBlur dataset for the tasks of

both blur map estimation and blur desirability classification.

As described in Section 3, SmartBlur is a large-scale blur

image dataset containing 10, 000 blur images from different

blur sources and blur levels, with the annotations of both

pixel-levle blur amount and image-levle blur type.

Experimental Results on Blur Map Estimation. The

experiments on SmartBlur dataset including two tasks: blur

map estimation and image blur type classification. We com-

pare the performance of the first task using blur map esti-

mation branch before joint training with the state-of-the-art

baseline methods [23, 24, 21]. For quantitative compari-

son, we utilize the average precision (AP) by averaging the

precision over all recall levels. As most of the baselines

are designed for blur existence estimation (without estimat-

ing blur severity), for a fair comparison, we binarize the

ground truth blur map and compute the precision-recall by

varying the threshold for all the methods. The AP for our

method and baselines are 0.822, 0.616, 0.607, and 0.785 re-

spectively. Our method outperforms all the baseline meth-

ods with a large margin, verifying the efficacy of ABC-

FuseNet to detect blurs from different levels and sources.

For qualitative comparison, We show visual results of some

challenging images in SmartBlur for ABC-FuseNet and the

baseline methods [23, 24, 21] in Figure. 7. These images

have blurs from different sources (defocus, camera shake,
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Figure 6. Visual comparison of blue map estimation on CUHK. The blurred regions have higher intensities than the clear ones.

or object motion) and amounts (low, medium, or high). The

results further demonstrate that our method can produce

high-quality blur maps with accurate boundaries. Further-

more, our method can estimate different blur amounts that

are consisent with ground-truth annotations (third row). An

interesting observation is that for the image blur from cam-

era shake (second row), all the baselines fail to detect the

uniform blur over the whole image. Baselines [3, 23, 21]

tends to output high responses based on the object features,

instead of blur amount. Baseline [24] mistakenly estimate

the whole image as a clear one. By contrast, our method is

robust to different blur sources and can detect the uniform

camera-shake blurs over the whole image.

Baseline Methods for Image Blur Classification. To

verify the effectiveness of the proposed methods, we ex-

tensively compare ABC-FuseNet with the state-of-the-art

methods and conduct thorough ablation studies. Here we

introduce the baselines: Baseline 1: Direct classification

with CNN [34]. Yu. et al [34] build a classifier based on

GoogLeNet [10] to directly classify if the image has unde-

sired blur. Considering our ABC-FuseNet extracts content

features from ResNet − 50, for a fair comparison, we fol-

lowing the idea in [34] and replace the base net of Baseline

1 with ResNet − 50. We finetune the network with blur

category supervision from SmartBlur. Detailed network ar-

chitecture is in the supplementary material.

To verify the efficacy of fusing low-level blur estima-

tion and high-level understanding of important image con-

tent for the image blur categorization, we build another four

baselines based on the different combinations of the blur

map (Bm), saliency map (Sm), and content feature map

(Cm) to conduct extensive ablation studies. Take Baseline

5 as an example, we show its framework in Fig. 8. Other

baselines share the same pipeline with different combina-

tion of the blur map, saliency map, and content feature map.

The combined maps are fed to a light network to perform

the final image blur categorization. Here we summarize

the configuration of different baselines: Baseline 2: Bm;

Baseline 3: Bm+Cm; Baseline 4: Bm + Sm; Baseline 5:

Bm+Cm + Sm. All the baselines separately generate blur

map, saliency map, or content feature map, and then per-

form blur type classification. Such two-stage treatment is to

provide a comparison with the proposed end-to-end train-

able ABC-FuseNet. To be specific, saliency map is gen-

erated by training the attention map estimation branch of

ABC-FuseNet on the salient object segmentation datasets

[35]. Blur map is generated by training the blur map esti-

mation branch of ABC-FuseNet on the SmartBlur dataset,

with the initial weights pretrained on the salient object seg-

mentation datasets [35]. Content feature map is extracted

from res5c of ResNet− 50 [9].

Experimental Results for Image Blur Classification.

For quantitative analysis, we compare the classification ac-

curacy of ABC-FuseNet and baselines in Fig. 9. From the
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Figure 7. Visual comparison of blue map estimation on SmartBlur. The blurred regions have higher intensities than the unblurred ones.

Figure 8. Framework of Baseline 5.

Figure 9. Comparison of image blur classification accuracy.

Figure 10. Results visualization of ABC-FuseNet.

results we see that, ABC-FuseNet achieves the accuracy of

0.814, outperforming all the baselines by a large margin.

The poor performance of Baseline 1: Direct CNN and Base-

line 2: Bm implies the necessity to combine low-level blur

responses with high-level semantics for image blur catego-

rization. When combining Bm and Cm together, the per-

formance obtain large improvement, from around 0.72 to

0.762. Baseline 4: Bm + Sm is more accurate than Baseline

2: Bm, verifying that the salient map helps better localize

the important content and understand the image blur. Base-

line 5: Bm + Cm + Sm outperforms Baseline 1 to Baseline

4, but it is less accurate than ABC-FuseNet, proving that

joint the training of the whole network significantly improve

the blur classification accuracy. For qualitative analysis, we

visualize the estimated blur map and attention map, and the

classification results in Fig. 10. Our model correctly classi-

fied the desirability in both cases, because of its understand-

ing on the important content in the image, as demonstrated

in the attention maps.

6. Conclusions

In this paper, we introduce the problem of automatically

understanding image blur in terms of image quality and de-

compose this problem into two steps: generating spatially-

variant blur responses, and understanding if such responses

are desired by distilling high-level image semantics. We

propose an end-to-end trainable ABC-FuseNet to jointly es-

timate blur map, attention map, and semantic map, and fuse

three maps to perform final classification. We also propose

a new dataset-SmartBlur, containing 10,000 natural photos

with elaborate human annotations of both pixel-level blur

amount and image-level blur desirability. The proposed

methods significantly outperform all the baselines for the

tasks of both blur map estimation and blur classification.
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