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Abstract

Pedestrian detection has progressed significantly in the

last years. However, occluded people are notoriously hard

to detect, as their appearance varies substantially depend-

ing on a wide range of occlusion patterns. In this paper,

we aim to propose a simple and compact method based on

the FasterRCNN architecture for occluded pedestrian de-

tection.

We start with interpreting CNN channel features of a

pedestrian detector, and we find that different channels ac-

tivate responses for different body parts respectively. These

findings motivate us to employ an attention mechanism

across channels to represent various occlusion patterns in

one single model, as each occlusion pattern can be formu-

lated as some specific combination of body parts. There-

fore, an attention network with self or external guidances

is proposed as an add-on to the baseline FasterRCNN de-

tector. When evaluating on the heavy occlusion subset, we

achieve a significant improvement of 8pp to the baseline

FasterRCNN detector on CityPersons and on Caltech we

outperform the state-of-the-art method by 4pp.

1. Introduction

Pedestrian detection has been attracting intensive inter-

ests in both academia and industry. During the last decade,

great progress has been achieved [3, 31], especially by prop-

erly adapting CNNs for general object detection to this

canonical task [12, 30, 32]. Although the state-of-the-art

performance is plausible across different datasets, we ob-

serve that it drops significantly as occlusion grows. In

real world applications, occlusion happens very often but

is challenging to handle. To encourage more work for

occlusion handling, the CityPersons dataset has been pro-

posed [32], which consists of a large number of occlusion

cases with various patterns.

Some efforts have been made to handle occlusion, but

Figure 1. Visualization of detection results (at FPPI=0.1) from

our FasterRCNN+ATT-part detector (upper row) and the baseline

FasterRCNN detector (lower row). Our attention based detector

achieves higher recall for occluded pedestrians. The sample im-

ages are selected from the CityPersons [32] validation set; we

show ground truth annotations in green and detection results in

red. All figures are best viewed in color.

most of them train ensemble models for most frequent oc-

clusion patterns [7, 19, 21, 26]. The major drawback of

those methods is that it is very time-consuming at both

training and testing times. Some other works propose to

model different occlusion patterns in a joint framework

[33, 22], but they still rely on an integration of a set of oc-

clusion/part detection scores. The above methods are not

able to cover all occlusion patterns, and the independent in-

tegration procedure inhibits error propagation to the occlu-

sion/part detection module.

In order to deal with a wide range of frequent and less

frequent occlusion patterns in one coherent model, we pro-

pose different attention mechanisms, which guide the de-

tector to pay more attention to the visible body parts. These

attention mechanisms are motivated by the fact that differ-

ent channels of CNN-based detectors, in our case a Faster-

RCNN pedestrian detector, are selective and show strong

responses for different body parts. These explicit represen-

tations of body parts motivate us to propose channel-wise
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attention mechanisms to learn proper attention parameters

for different channels so as to handle different occlusion

patterns effectively.

1.1. Contributions

In summary, our contributions are as follows:

(1) We provide an analysis to understand the relation be-

tween body regions and different CNN channel features of

a pedestrian detector, and find many of them are localizable

and interpretable.

(2) We apply channel-wise attention mechanism to han-

dle different occlusion patterns by adding an additional at-

tention net to the FasterRCNN architecture. We explore dif-

ferent attention guidances, including self attention, visible-

box attention and part attention. Our method only makes

minor changes to the vanilla FasterRCNN architecture, thus

is easy to implement and train.

(3) We achieve state-of-the-art results on several stan-

dard benchmarks; the improvement is significant especially

on the heavy occlusion subset. On CityPersons, the pro-

posed method achieves 8pp gain compared to the Faster-

RCNN baseline; on Caltech, we outperform the state-of-

the-art method by 4pp.

To the best of our knowledge, this paper is the first at-

tempt to analyze channel-wise attention for pedestrian de-

tection, and it is the first work to handle occlusion in the

FasterRCNN architecture.

1.2. Related Work

Since we use a FasterRCNN detector as our base pedes-

trian detector, and an attention network as an add-on to han-

dle occlusion, we review recent work on CNN based pedes-

trian detectors, occlusion handling for pedestrians and at-

tention mechanisms respectively.

Pedestrian detection with CNNs. Convolutional neural

networks (convnets) have achieved great success in the gen-

eral object detection task on the ImageNet [17], Pascal, and

MS COCO datasets [11]. Early works [12, 30] applying

convnets for pedestrian detection are based on the RCNN

structure [9], which relies on high-quality external propos-

als to achieve good performance. More recently, Faster-

RCNN [23] has become the de-facto standard architecture,

which allows end-to-end learning. At the meantime, some

works present good results using customized architectures,

such as MS-CNN [4] and SA-FastRCNN [18]. However,

proper modifications to the vanilla FasterRCNN [32] al-

low to reach state-of-the-art results in pedestrian detection.

Therefore, we follow [32] and use the adapted FasterRCNN

architecture for experiments in this paper.

Occlusion handling for pedestrian detection. The most

common occlusion handling strategy is to learn a set of

detectors, each corresponding to one specific manually de-

signed occlusion pattern. Different features are employed,

including hand-crafted features [7, 19] and deep convolu-

tional features [21, 26]. The final decision is made by inte-

grating the output of these ensemble models. The drawback

of those methods is that each part/occlusion pattern detec-

tor is learned independently, and it is time consuming to

apply the set of models at test time. On the other hand,

some other works proposed to learn multiple occlusion pat-

terns in a joint way [33, 22], which saves a lot of training

and testing time. However, the final decision is still made

by integrating multiple part scores, which makes the whole

procedure more complex and hard to train. In contrast we

learn a continuous attention vector that is both easy to train

and also has low overhead.

Attention mechanisms in CNNs. The attention mecha-

nism has been widely used in CNNs for different computer

vision tasks, for instance, object detection [2], digits recog-

nition [15], and pose estimation [20]. The above works all

investigate to model spatial correlations. In contrast, [13]

proposes squeeze-and-excitation networks to model the in-

terdependencies between channels of convolutional fea-

tures. However, the channel-wise attention is self guided,

i.e. no external signal is employed. In contrast, in this pa-

per we will show that external guidance can help to improve

the performance of channel-wise attention mechanisms.

2. Body Parts and Channel Features

Convnets have shown to be capable of learning represen-

tative features for object detection, and some recent works

analyze the interpretability of the hidden neurons by visual-

izing their activations. For instance, [1] performs network

dissection and finds that many individual units respond to

specific high-level concepts and [28, 10] also find some fil-

ter responses can be linked to semantic parts.

Similarly, in this paper, we investigate whether channels

can be related to human body parts in a pedestrian detec-

tor. We first train a FasterRCNN (VGG16) detector on the

CityPersons training set. After training, we pick one arbi-

trary image from the CityPersons validation set, which con-

tains multiple people, and let it pass the network for feature

extraction. As default, on the top convolutional layer, we

have 512 channels in total.

In the following, we examine the activations of each

channel respectively. As shown in figure 2 for three rep-

resentative channels, the original image is overlaid with the

activation map. From the visualizations, we make the fol-

lowing observation: Many channels show some highly lo-

calizable activation pattern, relating them to specific body

regions or body parts; the three channels show strong acti-

vations at people’s head, upper body and feet respectively.

Similar findings are shown in [25], that in a bird classifica-

tion network some channels are associated with parts.
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Figure 2. Relation to body parts of different channel features from

a FasterRCNN pedestrian detector. Highlighted regions trigger

strong activation inside each channel.

To better understand the relation between body parts and

all channels in a statistical way, we implement pixel-wise

XOR operation between each binarized channel feature map

and part detection heatmap [14]. The correlation value for

each pair is measured by the percentage of one values in

the XOR map. We find for each image, more than 30%

channels show strong correlation (correlation value≥ 60%)

with one of 14 part detection heatmaps.

This observation encourages us to explore the possibility

of channel-wise attention for occluded pedestrian detection

as such an attention mechanism that can focus more on the

visible body regions and focus less on the occluded regions.

3. Guided Attention in CNNs for Occlusion

Handling

The major challenge of handling occlusion comes from

the large variety of occlusion patterns, which lead to rather

diverse appearances of human bodies, as shown in figure 3.

In this paper, we propose to employ channel-wise attention

in convnets allowing the network to learn more representa-

tive features for different occlusion patterns in one coherent

model.

3.1. Overview

The FasterRCNN detector obtains state-of-the-art results

in pedestrian detection [32]. In this paper, we use it as the

(a) (b) (c)

Figure 3. Different occlusion patterns lead to variation of human

appearance.

base detector in our experiments, while adding an attention

network as a separate component to generate a channel-wise

attention vector. The flowchart of our FasterRCNN detec-

tor with an attention network is shown in figure 4. The

upper flow is a typical feature extraction procedure of a

FasterRCNN detector: first, the input images go through

the base net (e.g. VGG16); and then a region proposal net-

work (RPN) is used to generate proposals; after that, the

features for each proposal are generated by cropping from

the top convolutional feature maps and a following RoiPool-

ing layer produces the same length of features for each pro-

posal. These features will go through the classification net-

work for category prediction and bounding box regression.

The FasterRCNN network can be trained end-to-end by op-

timizing the following loss function:

L0 = Lrpn cls + Lrpn reg + Lcls + Lreg, (1)

where: Lrpn cls and Lcls are the cross-entropy loss for clas-

sification in the RPN and main network; Lrpn reg and Lreg

are the L1 loss for bounding box regression.

In our methods, an additional attention net is proposed to

regress the channel-wise attention vector, namely Ω, which

is used to apply a re-weighting operation on the multi-

channel convolutional features. After the re-weighting pro-

cedure, the features are passed to the classification network.

3.2. Channel­Wise Attention

As discussed in section 2, many channels in a pedestrian

CNN are localizable and can be related to different body

parts. This observation strongly motivates us to perform re-

weighting of channel features to handle various occlusion

patterns. Let occlusion pattern n be defined as the following

vector:

occl(n) = [v0p0, v1p1, ..., vkpk], vi ∈ {0, 1}, i ∈ [0, k],
(2)

where pi represents each body part and vi is a binary vari-

able, indicating the visibility of the ith part.

In typical CNNs, channels’ weights are fixed and thus do

not vary across different samples. This mechanism limits
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Figure 5. Three different attention nets use different attention guidances.

the network’s adaptivity to various appearances. For exam-

ple, when the person’s body is occluded as in figure 3(a),

the feet channel contributes to the final score irrespective of

the occlusion. This, however, will typically result in a lower

overall score as the occlusion patterns are too variable to al-

low to generate an equally high score as for un-occluded

pedestrians.

Our intuition is to allow the network to decide for each

sample, how much each channel should contribute in the fi-

nal feature pool. Intuitively, the network should let those

channels representing the visible parts contribute more,

while the invisible parts contribute less.

The re-weighting of channels can be presented as fol-

lows:

foccl(n) = ΩT
nfchn, (3)

where fchn indicates the top channel features, and Ωn is the

weighting parameter vector for the nth occlusion pattern.

In this way, the importance of the channel features varies

for each sample as its occlusion pattern changes. For exam-

ple, when the left body is occluded, Ω should be adjusted so

that the corresponding channels representing the left body

region have lower weights, which means they have lower

impact on the final score.

3.3. Attention Networks

The attention network is an important component in our

method to generate the attention vector Ω. As shown in the

lower part of figure 4, the attention network takes an input

of attention guidance G, and then learns a mapping function

F used to regress Ω as output:

Ω = F (GT ). (4)

While we have motivated the attention vector Ω being

related to specific occlusion patterns, it is important to note,

that our attention vector Ω in all our attention networks is

continuous and thus not restricted to any particular discrete

set of occlusion patterns as some previous work [26, 33,

22]. Instead, the attention vector Ω is trained end-to-end

for all our attention networks either through self-attention

or guided by some additional external information.

We consider three different types of guidance G: (1) top

convolutional features; (2) visible bounding boxes; (3) part

detection heatmaps. Depending on which information we

use as guidance, we define our attention nets as: self atten-

tion, visible-box attention and part attention nets, respec-

tively. We start with self attention, and then further exploit

to use external information as stronger guidance. We show

an illustration for the above three attention nets in figure 5.
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3.3.1 Self Attention Net

SENet is the first attempt to exploit channel-wise attention

in CNNs [13]. The goal is to enhance the representational

ability for various samples by explicitly modelling the inter-

dependencies between the convolutional channels. To this

end, a “Squeeze-and-Excitation” (SE) block is proposed

to perform sample-dependent feature re-weighting, through

which the more informative features are selected while less

useful ones are suppressed. The SE block is composed of

one global average pooling layer and two consecutive fully

connected layers. SENet is easy to implement, obtaining re-

markable improvements while adding little additional com-

putational costs.

Inspired by SENet, we design our self attention net to

learn the channel-wise attention parameters Ω. It is a re-

implementation of SENet with an identical block structure.

Since no external information is needed, we call it self at-

tention. We show the self attention net in figure 5(a), where

we use conv5 3 features as guidance G to regress Ω.

We refer to the FasterRCNN detector using the self at-

tention net as FasterRCNN+ATT-self in this paper.

3.3.2 Visible-box Attention Net

The self attention net models the channel-wise attention us-

ing the channels themselves, while we believe the attention

network’s capacity can be improved with external informa-

tion as additional input or supervision. Intuitively, one use-

ful guidance to regress Ω should be the occlusion patterns

themselves, as they contain information about visibility of

body parts. Ideally, occlusion patterns should be defined

as in equation 2, by indicating the visibility of each body

part. However, in practice it is too expensive to obtain body

part annotations. Alternatively, we define it coarsely by the

combination of one full body bounding box along with one

visible box, which are provided in some popular pedestrian

datasets. Since we use the visible box as external guidance,

we refer to this net as visible-box attention net.

However, the visible box is not available at test time,

thus the occlusion pattern can not be simply used as input

to the attention net. To overcome this problem, we pro-

pose to learn the occlusion pattern in a supervised manner

inside the attention net. By analyzing the training data on

the CityPersons dataset, we find the most frequent occlu-

sions are as follows: (1) fully visible; (2) upper body visi-

ble; (3) left body visible; (4) right body visible. The other

patterns are ignored as too little training data is available. In

this way, the occlusion pattern estimation is formulated as a

four-class classification task.

The visible-box attention network architecture is shown

in figure 5(b), where the occlusion pattern estimation sub-

net consists of one convolutional and two fully connected

layers. Once the occlusion pattern is estimated, one convo-

lutional layer is used for feature extraction followed by two

fully connected layers to regress Ω. In this way, we add one

more task of occlusion estimation to the pipeline, and the

loss function of the whole system can be written as follows:

LATT−vbb = L0 + αLoccl, (5)

where L0 is the loss function used in vanilla FasterRCNN

(equation 1), and Loccl is defined as cross-entropy loss for

occlusion pattern classification. All the parameters in the

network are optimized in an end-to-end fashion. We set α =
1 by default.

We refer to the FasterRCNN detector using visible-box

attention net FasterRCNN+ATT-vbb in this paper. It is

worth noting that, as a side-effect, an estimate of the oc-

clusion pattern is obtained at test time, not provided by pre-

vious methods.

3.3.3 Part Attention Net

Making use of visible bounding boxes allows us to train an

occlusion pattern estimation subnet, which serves as a guid-

ance to regress the continuous attention vector Ω. However,

there are two problems with visible bounding boxes: (1) It

is expensive to obtain visible boxes as additional training

annotations; (2) Sometimes occlusion happens irregularly,

resulting in that the visible part can hardly be covered by

one single rectangular box, see two examples in figure 6.

To overcome the above two problems, we investigate to

estimate the occlusion pattern by using body part detection

results, which are supposed to predict the visibility of each

body part, e.g. head, shoulder, arm, etc.

In principle, we can implement our part attention net in

the same way as the visible-box attention net, inside which

the occlusion patterns can be estimated and immediately

used as guidance to regress Ω. However, on pedestrian de-

tection datasets, we do not have body part annotations for

supervision, so we decide to use a pre-trained part detection

network trained on the MPII Pose Dataset [14]. This detec-

tor is a fully convolutional network, providing precise pre-

dictions for 14 human body keypoints. We apply this part

detector without any changes or finetuning on the CityPer-

sons dataset and achieve surprisingly good results. We show

two examples in figure 6.

From figure 6, we can see that the two persons occluded

by a pole and a car still trigger rather strong response at the

location of the visible parts on the heatmaps. These results

inform us that when a full body detector fails for an oc-

cluded person, the part detector is still able to make precise

predictions for visible parts. Therefore, the part detection

heatmaps can be used as an effective hint of occlusion pat-

terns to guide the attention network.

The attention network using part detections is shown in

figure 5(c), where 14 keypoint heatmaps are used as input.
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Figure 6. Occluded persons show strong response on heatmaps for

visible parts. We use pretrained part detectors from the DeeperCut

paper [14]. For some cases, the visible part cannot be covered by

one single rectangle, while part heatmaps represent the occlusion

patterns more precisely.

As we assume that the spatial information plays an impor-

tant role for guidance we apply one convolutional layer for

feature extraction and two fully connected layers to regress

the continuous attention vector Ω. This is in contrast to the

self attention net that uses global pooling instead.

We refer to the FasterRCNN detector using part attention

net FasterRCNN+ATT-part in this paper.

4. Experiments

In this section, we will first introduce the evaluation met-

rics we use, followed by a brief description to the datasets

used for experiments, and some implementation details. Af-

ter that, we will show experimental results for the different

attention networks, and make a comparison to the state of

the art. In the end, we will visualize how attention works in

our detectors.

4.1. Evaluation Metrics

We use the standard average-log miss rate (MR) in all of

our experiments, which is computed in the FPPI range of

[10−2, 100] [6]. Since we care more about occluded pedes-

trians in this paper, we will show our results across different

occlusion levels:

(1) Reasonable (R): visibility ∈ [0.65, inf ];

(2) Heavy occlusion (HO): visibility ∈ [0.20, 0.65];

(3) Reasonable+Heavy occlusion (R+HO): visibility ∈
[0.20, inf ].

The performance on the R+HO subset is used to measure

the overall performance as it includes a wide range of oc-

clusions. Note that we only consider pedestrians with height

∈ [50, inf ] for all experiments.

4.2. Datasets

CityPersons. We use the CityPersons dataset [32] for

most of our experiments. The CityPersons dataset was built

# images R HO R+HO

CityPersons 500 1579 733 2312

Caltech 4024 1014 273 1287

ETH 1804 - - 11941
Table 1. Comparison of the number of pedestrian boxes in each

evaluation subset on the CityPersons validation set, Caltech test

set and ETH dataset. Note, that for ETH the numbers on R and

HO subsets are not provided as visible boxes are not available.

upon the Cityscapes dataset [5], which was recorded in mul-

tiple cities and countries across Europe and thus shows high

diversity. Importantly, it includes a large number of occlu-

sion cases. We use the original training and validation split,

which are composed of 2,975 and 500 images respectively.

Caltech. The Caltech [6] dataset is one of the most pop-

ular ones for pedestrian detection. It consists of approx-

imately 10 hours of 640 × 480 30Hz video taken from a

vehicle driving through Los Angeles. We use set00-set05

for training and sample with 10Hz to get a large amount of

training data (42,782 images in total). The test set consists

of 4,024 images sampled with 1Hz from set06-set10.

ETH. The ETH dataset [8] ”Setup 1 (chariot Mk I)”

consists of three sequences (1804 images in total) for test-

ing. As the images were captured in the city center, it con-

tains intensive crowds, thus a suitable test base for occluded

pedestrian detection.

In table 1, we show statistics on the evaluation subsets

for different datasets. Although Caltech provides more im-

ages for testing, the number of occlusion cases is smaller

than that on the CityPersons dataset.

4.3. Implementation Details

On the CityPersons dataset, we finetune from the Ima-

geNet model with the Adam solver [16]. We train with an

initial learning rate of 10−3 for 20, 000 iterations and train

for another 5, 000 iterations with a decreased learning rate

of 10−4; we do not upsample the input images, as it is more

than 2x faster for both training and testing, resulting in only

a small performance drop of ∼1pp.

On Caltech, we finetune from the CityPersons model.

We start with a small learning rate of 10−4, and then de-

crease the learning rate after every 20, 000 iterations. The

model converges at 30, 000 iterations; we upsample the im-

ages to 900× 1200.

4.4. Comparison of Three Attention Nets

We compare our detectors to the baseline FasterRCNN

detector on the CityPersons validation set in table 2, and we

can make the following observations:

Attention helps overall. While looking at the

overall performance measure of MR on the R+HO

set, all three methods with attention mechanism show
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Detector Attention guidance R HO R+HO

G MR ∆ MR MR ∆ MR MR ∆ MR

FasterRCNN - 15.52 - 64.83 - 41.45 -

FasterRCNN+ATT-self self attention 20.93 -5.41 pp 58.33 +6.50 pp 40.83 +0.62 pp

FasterRCNN+ATT-vbb vbb supervision 16.40 -1.12 pp 57.31 +7.52 pp 39.49 +1.96 pp

FasterRCNN+ATT-part part detections 15.96 -0.44 pp 56.66 +8.17 pp 38.23 +3.23 pp

FasterRCNN+part - 16.90 -1.38 pp 59.03 +5.80 pp 40.64 +0.81 pp
Table 2. Results of detectors using different attention networks on the CityPersons validation dataset. The baseline detector is FasterRCNN;

∆ MR indicates the performance gain on each subset; bold highlights the best results on each subset.

Detector Occl. R HO R+HO

RPN+BF[29] × 9.58 74.36 24.01

DeepParts [26] X 11.89 60.42 22.79

MS-CNN[4] × 9.95 59.94 21.53

JL-TopS [33] X 10.04 49.18 19.22

FasterRCNN × 9.18 57.58 20.03

FasterRCNN+ATT-vbb X 10.33 45.18 18.21
Table 3. Comparison to state-of-the-art detectors on the Caltech

test set. Numbers indicate MR; the second column indicates

whether the method is designed for occlusion handling; bold high-

lights the best results in each subset.

some improvement to the FasterRCNN baseline, rang-

ing from 1pp to 3pp. We also compare to the Faster-

RCNN+part detector, which directly uses the part detec-

tion heatmaps as additional features for classification. The

gap between FasterRCNN+ATT-part and FasterRCNN+part

demonstrates that our attention net is a more effective way

of exploiting occlusion patterns from part detections.

Attention helps more for heavy occlusion cases. The

gap given by attention networks becomes larger for the

heavy occlusion cases, which are more challenging to de-

tect. Especially, we notice the FasterRCNN+ATT-part de-

tector achieves more than 8pp improvement.

External attention > self attention. With self attention,

FasterRCNN+ATT-self obtains a 0.62 pp gain on the R+HO

set, which is smaller than the other two using external at-

tention guidance. We also notice that FasterRCNN+ATT-

self drops more than 5pp on the reasonable subset, which

indicates the model concentrates too much on the hard

cases, resulting in a limited ability to handle different oc-

clusion levels. In contrast, FasterRCNN+ATT-vbb and

FasterRCNN+ATT-part improve overall while obtaining

comparable performance on the reasonable subset.

4.5. Generalization to Other Datasets

In order to investigate the generalization ability of the

proposed methods, we also implement experiments on an-

other two datasets: Caltech and ETH.

The results on the Caltech test set are shown in table 3,

where we make a comparison to state-of-the-art methods.

First, we can see MS-CNN [4], RPN+BF [29] and Faster-

RCNN achieve top results on the reasonable subset, but fail

Detector R+HO ∆ MR

FasterRCNN 35.64 -

FasterRCNN+ATT-part 33.84 +1.80 pp

SpatialPooling[24] 37.37 -

TA-CNN[27] 34.95 -

RPN+BF[29] 30.23 -
Table 4. Comparison to state-of-the art detectors on the ETH

dataset. Numbers indicate MR.

miserably on heavy occlusion cases due to the lack of occlu-

sion handling. Our detector outperforms the previous state-

of-the-art detector JL-TopS [33] by 4pp on the heavy oc-

clusion subset, and establishes a new state of the art on the

R+HO subset, which consists of a wide range of occlusion

levels. We also show some qualitative results in figure 7,

where we can see our detector produces robust detections

for different occlusion patterns. For instance, in the first

example containing crowds, people are occluded with each

other, the other two detectors either miss some of them or

produce many false positives, while our detector generates

well-aligned detections for all of them.

We apply our CityPersons models on the ETH dataset.

Since no visible boxes are available, we can only evalu-

ate on all occlusion levels. We show our results in table

4, where we can see that our attention model outperforms

the FasterRCNN baseline by 1.80 pp. Compared to other

state-of-the-art methods, the only one surpassing ours is

RPN+BF [29]. In principle, our attention net can be added

on top of any CNN based method. In this paper, we show

the improvement to FasterRCNN, and we also expect simi-

lar behaviour if applied to RPN+BF.

The above results demonstrate that our attention models

are robust to occlusion across different datasets, which are

recorded in different cities, weather and illumination condi-

tions, and involve various occlusion patterns.

4.6. Discussion

In order to understand how attention handles occlusion in

our models we analyze how Ω varies for pedestrian propos-

als with different occlusion patterns and different channels.

Assume we have H channels at the top convolutional

layer, then Ω for proposal l is a vector of length H:
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(a) FasterRCNN+ATT-vbb

(b) JL-TopS [33]

(c) MS-CNN [4]

Figure 7. Qualitative results from our detector and other competi-

tive methods on the Caltech test set (at FPPI=0.1). The green solid

and green dotted boxes indicate ground truth and ignored ground

truth annotations; the red boxes denote detection results.
Ω

Figure 8. Visualization of how Ω behaves for occluded people.

Each row shows the channel features on the left, and proposals

(for six people detected) with the decreasing ranking of Ω for this

channel on the right. The two channels represent feet and upper

body respectively. For those people whose feet are occluded, Ω

for the feet channel is lower ranked; while Ω for the upper body

channel is highly ranked.

Ωl = [ω0

l , ω
1

l , ..., ω
H−1

l ], (6)

where ωt
l will be applied on t th channel for re-weighting

operation. In our detectors, H = 512.

The elements in Ωl are then sorted in an increasing order,

so as to get the ranking vector:

Rl = [r0l , r
1

l , ..., r
H−1

l ], (7)

where r0l indicates the index of channel with the lowest im-

pact in the final feature pool, and vice versa.

We denote the rank of channel t for proposal l as Ct
l , and

it can be defined as:

Ct
l = m, if rml == t. (8)

For channel t, if Ct
l > Ct

v , i.e. ωt
l ranks higher than ωt

v ,

then this channel plays a more important role for proposal l

than proposal v.

In figure 8, we show two channels, representing the feet

and the upper body respectively. And for each channel, we

show the proposals for six people detected in the image,

with decreasing C value side by side. Among all channels,

the given channel has a higher impact on the proposals on

the left than on the right. We can see that for those peo-

ple whose feet are occluded, the feet channel has a rela-

tively lower impact than those fully visible people; on the

other hand, the upper body is visible for all six proposals,

but it ranks higher for occluded ones, this is because other

channels for invisible parts are ranked lower. In this way,

Ω re-weights the channels and allows occluded people to

generate a high confidence in the final feature pool by up-

weighing visible channels.

5. Conclusion

In this paper, we propose to employ channel-wise atten-

tion to handle occlusion for pedestrian detection. From the

visualization, we find that many channel features are local-

izable and often correspond to different body parts. Moti-

vated by these findings, we design an attention net to gener-

ate attention vectors for re-weighting the top convolutional

channels. This attention net can be added as an additional

component to any CNN based detector. We explore differ-

ent attention guidances, and find that all improve perfor-

mance for occluded cases while the most effective one is

the one based on part detections.

We report experimental results on the CityPersons, Cal-

tech and ETH datasets, and show significant improvements

over the baseline FasterRCNN detector. In particular, on

CityPersons, we achieve a significant improvement of 8pp

on the heavy occlusion subset and on Caltech, we outper-

form the previous state of the art by 4pp for heavily oc-

cluded people. Encouraged by the above results, we believe

that the proposed method will also improve results for the

general object detection task, where occlusion is also a ma-

jor challenge.
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