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Abstract

Neural style transfer has drawn broad attention in re-

cent years. However, most existing methods aim to explic-

itly model the transformation between different styles, and

the learned model is thus not generalizable to new styles.

We here attempt to separate the representations for styles

and contents, and propose a generalized style transfer net-

work consisting of style encoder, content encoder, mixer and

decoder. The style encoder and content encoder are used

to extract the style and content factors from the style ref-

erence images and content reference images, respectively.

The mixer employs a bilinear model to integrate the above

two factors and finally feeds it into a decoder to generate

images with target style and content. To separate the style

features and content features, we leverage the conditional

dependence of styles and contents given an image. During

training, the encoder network learns to extract styles and

contents from two sets of reference images in limited size,

one with shared style and the other with shared content.

This learning framework allows simultaneous style trans-

fer among multiple styles and can be deemed as a special

‘multi-task’ learning scenario. The encoders are expected

to capture the underlying features for different styles and

contents which is generalizable to new styles and contents.

For validation, we applied the proposed algorithm to the

Chinese Typeface transfer problem. Extensive experiment

results on character generation have demonstrated the ef-

fectiveness and robustness of our method.

1. Introduction

In recent years, style transfer, as an interesting appli-

cation of deep neural networks (DNNs), has increasingly

attracted attention among the research community. Exist-

ing studies either apply an iterative optimization mecha-

nism [8] or directly learn a feed-forward generator network

to force the output image to be with target style and target

contents [12, 23]. A set of losses are accordingly proposed

for the transfer network, such as the pix-wise loss [10], the

perceptual loss [12, 27], and the histogram loss [25]. Re-
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Figure 1. The framework of the proposed EMD model.

cently, several variations of generative adversarial networks

(GANs) [14, 28] are introduced by adding a discriminator

to the style transfer network which incorporates adversarial

loss with transfer loss to generate better images. However,

these studies aim to explicitly learn the transformation from

a certain source style to a given target style, and the learned

model is thus not generalizable to new styles, i.e. retraining

is needed for transformations of new styles which is time-

consuming.

In this paper, we propose a novel generalized style trans-

fer network which can extend well to new styles or contents.

Different from existing supervised style transfer methods,

where an individual transfer network is built for each pair

of style transfer, the proposed network represents each style

or content with a small set of reference images and attempts

to learn separate representations for styles and contents.

Then, to generate an image of a given style-content com-

bination is simply to mix the corresponding two represen-

tations. This learning framework allows simultaneous style

transfer among multiple styles and can be deemed as a spe-

cial ‘multi-task’ learning scenario. Through separated style

and content representations, the network is able to gener-

ate images of all style-content combination given the corre-

sponding reference sets, and is therefore expected to gener-

alize well to new styles and contents. To our best knowl-

edge, the study most resembles to ours is the bilinear model

proposed by Tenenbaum and Freeman [22], which obtained

independent style and content representations through ma-

trix decomposition. However, it usually requires an exhaus-

tive enumeration of examples for accurate decomposition of

new styles and contents, which may not be readily available

for some styles/contents.

As shown in Figure 1, the proposed style transfer net-

work, denoted as EMD thereafter, consists of a style en-
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Table 1. Comparison of EMD with existing methods.
Methods Data format Generalizable to new styles? Requirements for new style transfer What the model learned?

Pix2pix [10] paired

The learned model can only

transfer images to styles

which appeared in the

training set. For new styles,

the model has to be

retrained.

Retrain on a lot of training images

for a source style and a target style.

The translation from a certain source

style to a specific target style.

CoGAN [14] unpaired

CycleGAN [28] unpaired

Rewrite [1] paired

Zi-to-zi [2] paired

AEGN [16] paired

Perceptual [12] unpaired Retrain on many input content

images and one style image.
Transformation among specific styles.

StyleBank [5] unpaired

Patch-based [6] unpaired
The learned model can be

generalized to new styles.

One or a small set of style/content

reference images.

The swap of style/content feature maps.

AdaIn [9] unpaired The transferring of feature statistics.

EMD triplet The feature representation of style/content.

coder, a content encoder, a mixer, and a decoder. Given a

set of reference images, the style/content encoder leverages

the conditional dependence of styles and contents to learn

style/content representations. The mixer then combines the

corresponding style and content representations using a bi-

linear model. The decoder finally generates the target im-

ages based on the combined representations. Each training

example for the proposed network is provided as a triplet

<RSi
, RCj

, Iij>, where Iij is the target image of style

Si and content Cj . RSi
and RCj

are respectively the style

and content reference sets, each consisting of r random im-

ages of the corresponding style Si and content Cj . The en-

tire network is trained end-to-end with a weighted L1 loss

measuring the difference between the generated images and

the target images. As it is difficult to validate the decom-

position of style and content for images, we here use the

character typeface transfer as a special case of style transfer

to validate the proposed method. Extensive experiment re-

sults have demonstrated the effectiveness and robustness of

our method for style transfer. The main contributions of our

study are summarized as follows.

• We propose a generalized style transfer network which

is able to generate images of any unseen style/content

given a small set of reference images.

• The network decomposes an image into separate style

and content representations, taking advantages of the

conditional dependence of contents and styles.

• This learning framework allows simultaneous style

transfer among multiple styles and can be deemed as

a special ‘multi-task’ learning scenario.

2. Related Work

Neural Style Transfer. DeepDream [17] may be the first

attempt to generate artistic work using Convolution Neural

Networks (CNNs). Then Gatys et. al successfully applied

CNNs to neural style transfer [8]. They generate the tar-

get image by optimizing a noise image iteratively using a

pretrained network, which is time-consuming. Therefore,

many studies have been done for finding a way to directly

learn a feed-forward generator network. Johnson et. al pro-

posed a perceptual loss function to help neural style trans-

fer [12]. Ulyanov et. al proposed a texture network for

both texture synthesis and style transfer [23]. Further, Chen

et. al proposed the stylebank to represent each style by a

convolution filter, which can simultaneously learn numer-

ous styles [5]. For arbitrary neural style transfer, [6] pro-

posed a patch-based method to replace each content feature

patch with the nearest style feature. Further, [9] proposed

a faster method based on adaptive instance normalization

which performed style transfer in the feature space by trans-

ferring feature statistics.

Image-to-Image Translation. Image-to-image transla-

tion is to learn the mapping from the input image to output

image, such as from edges to real objects. Pix2pix [10]

used a conditional GAN based network which needs paired

data for training. However, paired data are hard to collect

in many applications. Therefore, some methods with no

need for paired data are proposed. Liu and Tuzel proposed

the coupled GAN (CoGAN) [14] for learning a joint dis-

tribution of two domains by a weight sharing way. Later,

Liu [13] extended the CoGAN to unsupervised image-to-

image translation problem. Some other studies [3, 20, 21]

encourage the input and output to share certain content even

though they may differ in style by enforcing the output to

be close to the input in a predefined metric space, such as

class label space and so on. Recently, Zhu et. al proposed

the cycle-consistent adversarial network (CycleGAN) [28]

which performs well for many vision and graphics tasks.

Character Style Transfer. Most existing studies take

character style transfer as an image translation task. The

“Rewrite” project uses a simple traditional flavour top-down

CNNs structure and can transfer a typographic font to an-

other stylized typographic font [1]. As the improvement

version, the “zi-to-zi” project can transfer multiple styles

by assigning each style an one-hot category label and train-

ing the network by a supervised way [2]. The recent work

“From A to Z” also adopts a supervised method and assigns

each character an one-hot label [24]. Lyu et. al proposed an

auto-encoder guided GAN network (AEGN) which can syn-

thesize calligraphy images with specified style from stan-

dard Chinese font images [16].
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Figure 2. The detailed architecture of the proposed generalized EMD model for style transfer.

However, most of the methods reviewed above can only

transfer styles in the training set and the network must be

retrained for new styles. In contrast, the proposed EMD net-

work can generate images with novel styles/contents given

only a small set of reference images. We present a compar-

ison of the methods in Table 1.

3. Generalized Style Transfer Model

In this section, we present the details of the proposed

generalized style transfer model EMD. The whole model

is an encoder-decoder network which consists of four sub-

nets: Style Encoder, Content Encoder, Mixer and Decoder,

as shown in Figure 2. First, the Style/Content Encoder ex-

tracts style/content representations given style/content ref-

erence images. Next, the Mixer integrates the style feature

and content feature and the combined feature is then fed

into the Decoder. Finally, the Decoder generates the image

with the target style and content.

3.1. Encoder Network

To achieve the generation of images with arbitrary style

and content, it is crucial to separate the style and content

explicitly. The Style Encoder and Content Encoder are de-

signed for this purpose. They both have the same archi-

tecture, consisting of a series of Convolution-BatchNorm-

LeakyReLU down-sampling blocks which yield 1×1 latent

feature representations of the input style/content reference

images. The first convolution layer is with 5× 5 kernel and

stride 1 and the rest are with 3 × 3 kernel and stride 2. All

ReLUs are leaky, with slope 0.2.

The input to the Style Encoder and Content Encoder are

style reference set RSi
and content reference set RCj

, re-

spectively. RSi
consists of r reference images with the

same style Si but different contents Cj1 , Cj2 , . . . , Cjr

RSi
= {Iij1 , Iij2 , . . . , Iijr}, (1)

where Iij represents the image with style Si and content

Cj . Similarly, RCj
is for content Cj (j = 1, 2, . . . ,m) and

consists of r reference images with the same content Cj but

different styles Si1 , Si2 , . . . , Sir

RCj
= {Ii1j , Ii2j , . . . , Iirj}. (2)

The r reference images are concatenated in the channel di-

mension to feed in to the encoders. This allows the encoders

to capture the common characteristics among images of the

same style/content.

3.2. Mixer Network

With the style representations and content representa-

tions obtained by the Style Encoder and Content Encoder,

we combine the two factors by the Mixer which is a bilin-

ear model. The bilinear models are two-factor models with

the mathematical property of separability: their outputs are

linear in either factor when the other is held constant, which

has been demonstrated that the influences of two factors can

be efficiently separated and combined in a flexible represen-

tation that can be naturally generalized to unfamiliar factor

classes [22], such as new styles. Furthermore, the bilinear

model has also been successfully used in zero-shot learn-

ing as a compatibility function to associate visual represen-

tation and auxiliary class text description [4, 7, 26]. The

learned compatibility function can be seen as the shared

knowledge and transferred to new classes. Here, we take

the bilinear model to integrate styles and contents together

and the combination function can be formulated as

Fij = SiWCj , (3)

where W is a tensor with size R × K × B, Si is the R-

dimensional style feature and Cj is the B-dimensional con-

tent feature. Fij can be seen as the K-dimensional feature

vector of image Iij which will be taken as the input of the

Decoder to generate the image with style Si and content Cj .
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3.3. Decoder Network

The image generator is a typical decoder network which

is symmetrical to the encoder and maps the combined fea-

ture representation to the output image with target style

and content. The Decoder roughly follows the architectural

guidelines set forth by Radford et. al [18] and consists of

a series of Deconvolution-BatchNorm-ReLU up-sampling

blocks except the last layer which only contains the decon-

volution layer. Other than the last layer which uses 5×5

kernels and stride 1, all deconvolution layers use 3×3 ker-

nels and stride 2. The outputs are transformed into [0,1] by

the sigmoid function.

In addition, since the stride convolution in Style Encoder

and Content Encoder is detrimental to spatial information

extraction, we adopt the skip-connection which has been

commonly used in semantic segmentation tasks [11, 15, 19]

to refine the segmentation using spatial information from

different resolutions. Here, based on the fact that though the

content inputs and outputs differ in appearances, they share

the same structure, we concatenate the input feature map of

each up-sampling block with the corresponding output of

the symmetrical down-sampling block in Content Encoder

to allow the Decoder to learn back the relevant structure

information lost during the down-sampling process.

3.4. Loss Function

Given a set of training examples Dt, the training objec-

tive is defined as

θ = argmin
θ

∑

Iij∈Dt

L(Îij , Iij |RSi
,RCj

), (4)

where θ represents model parameters, Îij is the gener-

ated image and L(Îij , Iij |RSi
,RCj

) is the generation loss

which can be written as

L(Îij , Iij |RSi
,RCj

) = W ij
st ×W ij

b × ||Îij − Iij ||. (5)

We use pixel-wise L1 loss as our generation loss for char-

acter typeface transfer problem rather than L2 loss since L1

loss tends to yield sharper and cleaner images [10, 16].

W ij
st and W ij

b are two weights for target image Iij which

are added to alleviate the imbalance in the target set induced

by the random sampling. In each learning iteration, the size

and thickness of target images in the target set may vary

greatly and the model will be optimized mainly for target

images containing characters which have more pixels and

cause more losses, such as those big and thick characters.

Moreover, models trained using L1 loss may pay more at-

tention to blacker characters and perform poorly on images

with lighter characters. To alleviate these imbalance, we

add these two weights on the generation loss: W ij
st about the

size and thickness of characters, and W ij
b about the dark-

ness of characters.
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Figure 3. The illustration of data set partition, target images selec-

tion and reference set construction (best viewed in color).

As for W ij
st , we first calculate the number of black pixels,

i.e. pixels covered by characters. Then W ij
st is defined as

the reciprocal of the number of black pixels in each target

image

W ij
st = 1/N ij

b , (6)

where N ij
b is the number of black pixels of target image Iij .

As for W ij
b , we calculate the mean value of black pixels

for each target image and set a softmax weight

W ij
b =

exp(meanij)∑
Iij∈Dt

exp(meanij)
, (7)

where meanij is the mean value of the black pixels of the

target image Iij .

4. Experiments

In this section, we evaluate the proposed network for

Chinese Typeface transfer problem. We first introduce the

data set we used followed by the implementation details.

Finally, we present our experimental results.

4.1. Data Set

To evaluate the proposed EMD model with Chinese

Typeface transfer tasks, we construct a data set which con-

tains 832 fonts (styles) and each font has 1732 commonly

used Chinese characters (contents). All images are 80× 80
pixels. We randomly select 75% of the styles and contents

as known styles and contents (i.e. 624 train styles and 1299

train contents) and leave the rest 25% as novel styles and

contents (i.e. 208 novel styles and 433 novel contents).

The entire data set is therefor partitioned into four subsets

as shown in Figure 3: D1, images with known styles and

contents namely train styles and contents, D2, images with

known styles but novel contents, D3, images with known

contents but novel styles, and D4, images with both novel

styles and novel contents. The four data sets represent dif-

ferent levels of style transfer challenges.

4.2. Implementation Details

In our experiment, the output channels of convolution

layers in the Style Encoder and Content Encoder are 1, 2,
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Figure 4. Generation results for D1, D2, D3, D4 (from upper left

to lower right) with different training set size. TG: Target image,

O1: Output for Nt=20k, O2: Output for Nt=50k, O3: Output for

Nt=100k, O4: Output for Nt=300k, O5: Output for Nt=500k. In

all cases, r=10.

4, 8, 8, 8, 8, 8 times of C respectively, where C=64. And

for the Mixer, we set R=B=K in our implementation. The

output channels of the first seven deconvolution layers in

Decoder are 8, 8, 8, 8, 4, 2, 1 times of C respectively. We set

the initial learning rate as 0.0002 and train the model end-

to-end with the Adam optimization method until the output

is stable.

In each experiment, we first randomly sample Nt target

images with known content and known styles as training ex-

amples. We then construct the two reference sets for each

target image by randomly sampling r images of the corre-

sponding style/content. Figure 3 provides an illustration of

target images selection and reference set construction. Each

row represents one style and each column represents a con-

tent. The target images are represented by randomly scat-

tered red “x” marks. The reference images for the target im-

age are selected from corresponding style/content, shown as

the orange circles for the style reference images and green

circles for content reference images. When testing, taking

D4 as an example, each target image in D4 can be generated

with r style/content reference images. The style reference

images can be randomly sampled from images with target

style in D3 and the content reference images are randomly

sampled from images with target content in D2.

4.3. Experimental Results

In this section, we present the experimental results. First,

we analyze the influence of some factors influencing the

model performance. Then, we validate the separation of

style and content. Finally, we compare the proposed method

with some baseline networks to prove the effectiveness of

our method.

TG:
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O2:

O3:

TG:

O1:

O2:

O3:

TG:

O1:

O2:

O3:

TG:

O1:

O2:

O3:

Figure 5. The impact of the number of reference images on the

generation of images in D1, D2, D3, D4, respectively (from upper

left to lower right). TG: Target image, O1: Output for r=5, O2:

Output for r=10, O3: Output for r=15. In all cases, Nt=300k.

4.3.1 Influence of the Training Set Size

To evaluate the influence of the training set size on style

transfer, we conduct experiments for Nt=20k, 50k, 100k,

300k and 500k. The generation results for D1, D2, D3 and

D4 are shown in Figure 4. As we can see, the larger the

training set, the better the performance, which is consistent

with our intuition. The generated images with Nt=300k and

500k are clearly better than images generated with Nt=20k,

50k and 100k. Besides, the performance of Nt=300k and

Nt=500k is close which implies that with more training im-

ages, the network performance tends to be saturated and

Nt=300k is enough for good results. Therefore, we take

Nt=300k for the following experiments.

4.3.2 Influence of the Reference Set Size

In addition, we conduct experiments with different number

of reference images. Figure 5 displays the image generation

results of Nt=300k with r=5, r=10 and r=15 respectively.

From the figure, we can observe that with more reference

images, characters are generated better in details. Besides,

characters generated with r=5 are overall okay, meaning

that our model can generalize to novel styles using only

a few reference images. The generation results of r=10

and r=15 are close, therefore we take r=10 in our other ex-

periments. Intuitively, more reference images will support
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Figure 6. The impact of the skip-connection on generation of im-

ages in D1, D2, D3, D4, respectively (from upper left to lower

right). TG is the target image, O1 and O2 are outputs of models

without and with skip-connection. In all cases Nt=300k, r=10.

more information about strokes and styles of characters and

the common points in the reference sets will be more ob-

vious. Therefore, given r > 1, our model can achieve co-

learning of images with the same style/content. Moreover,

with r > 1 we can learn more images at once which will

improve the efficiency but if we split the <r, r, 1> triplets

to be r2 <1, 1, 1> triplets, the time will increase nearly r2

times under the same condition.

4.3.3 Effect of the Skip-connection

To evaluate the effectiveness of the skip-connection during

image generation, we compare the results with and without

skip-connection in Figure 6. As shown in the figure, im-

ages in D1 are generated best, next is D3 and last is D2 and

D4, which conforms to the difficulty level and indicates that

novel contents are more challenging to extract than novel

styles. For known contents, models with and without skip-

connection perform closely but for novel contents, images

generated with skip-connection are much better in details.

Besides, the model without skip-connection may generate

images of novel characters to be similar characters which it

has seen before. This is because the structure of novel char-

acters is more challenging to extract and the structure infor-

mation losing during down-sampling will lead the model to

generate blurry even wrong characters. However, with con-

tent skip-connection, the location and structure information

lost will be recaptured by the Decoder network.

4.3.4 Validation of Style and Content Separation

Separating style and content is the key feature of the pro-

posed EMD model. To validate the clear separation of style

CR:

SR1:

SR2:

SR3:

TG:

O1:

O2:

O3:

CR:

SR1:

SR2:

SR3:

TG:

O1:

O2:

O3:

Figure 7. Validation of pure style extraction. CR: the content ref-

erence set, TG: the target image, O1, O2 and O3 are generated by

CR and three different style reference sets SR1, SR2 and SR3.

SR:

CR1:

CR2:

CR3:

TG:

O1:

O2:

O3:

SR:

CR1:

CR2:

CR3:

TG:

O1:

O2:

O3:

Figure 8. Validation of pure content extraction. SR: the style refer-

ence set, TG: the target image, O1, O2 and O3 are generated using

SR but three different content reference sets CR1, CR2 and CR3.

and content, we combine one content representation with

style representations from a few disjoint style reference sets

for one style and check whether the generated images are

the same. For better validation, the content reference sets

and style reference sets are all for novel styles and contents

and we generate images with novel style and novel content.

Similarly, we combine one style representation with content

representations from a few disjoint content reference sets.

The results are displayed in Figure 7 and Figure 8, respec-

tively. As shown in Figure 7, the generated O1, O2 and O3

are similar though the style reference sets used are different,

demonstrating that the Style Encoder extracts accurate style

representations since the only one thing the three style ref-

erence sets share is the style. Similar results can be found

in Figure 8, showing that the Content Encoder extracts ac-

curate content representations.

4.3.5 Comparison with Baseline Methods

In this subsection, we compare our method with the follow-

ing baselines for character style transfer.

• Pix2pix [10]: Pix2pix is a conditional GAN based im-

age translation network, which also adopts the skip-

connection to connect encoder and decoder. Pix2pix is

optimized by L1 distance loss and adversarial loss.
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Source:

Pix2pix:

AEGN:

Zitozi:

C-GAN:

EMD:

Target:

L1 loss RMSE PDAR

0.0105 0.0202 0.17

0.0112 0.0202 0.3001

0.0091 0.0184 0.1659

0.0112 0.02 0.3685

0.0087 0.0184 0.1332

Figure 9. Comparison of image generation for known styles and novel contents. Equal number of image pairs with source and target styles

are used to train the baselines.

• Auto-encoder guided GAN (AEGN) [16]: AEGN con-

sists of two encoder-decoder networks, one for image

transfer and another acting as an auto-encoder to guide

the transfer to learn detailed stroke information.

• Zi-to-zi [2]: Zi-to-zi is proposed for Chinese type-

face transfer which is based on the encoder-decoder

architecture followed by a discriminator. In discrim-

inator, there are two fully connected layers to predict

the real/fake and the style category respectively.

• CycleGAN (C-GAN) [28]: CycleGAN consists of two

mapping networks which translate images from style A

to B and from style B to A, respectively and construct

a cycle process.

For comparison, we use the font Song as the source font

which is simple and commonly used and transfer it to target

fonts. Our model is trained with Nt=300k and r=10 and as

an average, we use less than 500 images for each style. We

compare our method with baselines on generating images

with known styles and novel styles, respectively. For novel

style, the baselines is re-trained from scratch.

Known styles as target style. Taking known styles as

the target style, baselines are trained using the same num-

ber of paired images as the images our model used for the

target style. The results are displayed in Figure 9 where

CycleGAN is denoted as C-GAN for simplicity. We can ob-

serve that for known styles and novel contents, our method

performs much better than pix2pix, AEGN and CycleGAN

and close to or a little better than zi-to-zi. This is because

pix2pix and AEGN usually need more samples to learn a

style as Lyu did in [16]. CycleGAN performs poorly and

it only generates part of characters or some strokes, which

may be because it learns the domain mappings and with-

out the domain knowledge, it may perform poorly. Zitozi

performs well since it learns multiple styles at the same

time and the contrast among different styles helps the model

learn styles better.

For quantification analysis, we calculate the L1 loss,

Root Mean Square Error (RMSE) and the Pixel Disagree-

ment Ratio (PDAR) [28] between generated images and tar-

get images. PDAR is the number of pixels with different

values in the two images divided by the total image size af-

ter image binaryzation. We conduct experiments for 10 ran-

domly sampled styles and the average results are displayed

at the last three columns in Figure 9 and the best perfor-

mance is bold. We can observe that our method performs

best and achieves the lowest L1 loss, RMSE and PDAR.

Novel styles as target style. Taking novel styles as

the target style, we test our model to generate images of

novel styles and contents given r=10 style/content refer-

ence images without retraining. As for baselines, retrain-

ing is needed. Here, we conduct two experiments for base-

lines. One is that we first pretrain a model for each base-

line method using the training set our method used and then

fine-tune the pretrained model with the same 10 reference

images as our method used. The results show that all base-

line methods preform poorly and it is unfeasible to learn a

style by fine-tuning on only 10 reference images. Thus, we

omit the experiment results here.

The other setting is training the baseline model from

scratch. Since it is unrealistic to train baseline models with

only 10 samples, we train them using 300, 500, 1299 im-

ages of the target style respectively. Here we use 1299 is

because the number of train contents is 1299 in our data

set. The results are presented in Figure 10. As shown in the

figure, the proposed EMD model can generalize to novel

styles from only 10 style reference images but other meth-

ods need to be retrained with more samples. The pix2pix,

AEGN and CycleGAN perform worst even learned on all

1299 training images, which demonstrates that these three

methods are not effective for character style transfer espe-

cially when the training data are not enough. With only 10

style reference images, our model performs better than zi-

to-zi-300 namely zi-to-zi model learned with 300 examples

for each style, close to zi-to-zi-500 and a little worse than

zi-to-zi-1299. This may be because zi-to-zi learns multiple

styles at the same time and learning with style contrast helps

model learning better.
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Source:

Pix2pix-300:

Pix2pix-500:

Pix2pix-1299:

AEGN-300:

AEGN-500:

AEGN-1299:

Zitozi-300:

Zitozi-500:

Zitozi-1299:

C-GAN-300:

C-GAN-500:

C-GAN-1299:

EMD-10:

Target:

L1 loss RMSE PDAR

0.0109 0.0206 0.1798

0.0106 0.0202 0.1765

0.01 0.0196 0.1531

0.0117 0.02 0.3951

0.0108 0.02 0.2727

0.0105 0.0196 0.26

0.0091 0.0187 0.1612

0.009 0.0185 0.1599

0.009 0.0183 0.1624

0.0143 0.0215 0.5479

0.0126 0.0203 0.4925

0.0128 0.0203 0.4885

0.009 0.0186 0.1389

Figure 10. Comparison of image generation for novel styles and contents given r=10. The baseline methods are trained with 300, 500,

1299 image pairs respectively.

The quantitative comparison results including L1 loss,

RMSE and PDAR are shown at the last three columns of

Figure 10 and we can observe that though given only 10

style reference images, our method performs better than all

pix2pix, AEGN and CycleGAN models and zi-to-zi-300,

and close to zi-to-zi-500 and zi-to-zi-1299, which demon-

strates the effectiveness of our method.

In conclusion, these baseline methods require many im-

ages of source styles and target styles to learn, which may

hard to collect for some styles. Besides, the learned base-

line model can only transfer styles appearing in train set

and for new styles, they have to be retrained which is time-

consuming. But our method can generalize to novel styles

given only a few reference images. In addition, baseline

models can only use images of target styles. However, since

the proposed EMD model learns feature representations in-

stead of transformation among specific styles, it can lever-

age images of any styles and make the most of existing data.

5. Conclusion and Future Work

In this paper, we propose a generalized style transfer net-

work named EMD which could generate images with new

styles and contents given only a few style and content ref-

erence images. The main idea is that from these reference

images, the Style Encoder and Content Encoder could ex-

tract style and content representations, respectively. Then

the extracted style and content representations will be mixed

by a Mixer to generate images with target styles and con-

tents. To separate style and content, we leverage the con-

ditional dependence of styles and contents given an image.

This learning framework allows simultaneous style trans-

fer among multiple styles and can be deemed as a special

‘multi-task’ learning scenario. Then the learned encoders

and mixer will be taken as the shared knowledge and trans-

ferred to new styles and contents. We evaluate the proposed

method on Chinese Typeface transfer task and extensive ex-

periments demonstrate its effectiveness.

In our study, the learning process consists of a series of

image generation tasks and we try to learn a model which

can generalize to novel but related tasks by learning a high-

level strategy, namely learning the feature representations.

This resembles to “learning-to-learn” program. In the fu-

ture, we will explore more about “learning-to-learn” and

integrate it with our framework.
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