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Abstract

In this paper, we address an open problem of zero-shot

learning. Its principle is based on learning a mapping

that associates feature vectors extracted from i.e. images

and attribute vectors that describe objects and/or scenes

of interest. In turns, this allows classifying unseen object

classes and/or scenes by matching feature vectors via map-

ping to a newly defined attribute vector describing a new

class. Due to importance of such a learning task, there ex-

ist many methods that learn semantic, probabilistic, linear

or piece-wise linear mappings. In contrast, we apply well-

established kernel methods to learn a non-linear mapping

between the feature and attribute spaces. We propose an

easy learning objective inspired by the Linear Discriminant

Analysis, Kernel-Target Alignment and Kernel Polarization

methods [12, 8, 4] that promotes incoherence. We evalu-

ate the performance of our algorithm on the Polynomial as

well as shift-invariant Gaussian and Cauchy kernels. De-

spite simplicity of our approach, we obtain state-of-the-art

results on several zero-shot learning datasets and bench-

marks including a recent AWA2 dataset [45].

1. Introduction

The goal of zero-shot approaches is to learn a mapping

that matches any given data point, say an image descriptor,

to a predefined set of attributes which describe contents of

that data point/image, etc. The hope is that such a mapping

will generalize well to previously unseen combinations of

attributes, therefore facilitating recognition of new classes

of objects without the need for retraining the mapping itself

on these new objects. The quality of zero-shot learning may

depend on many factors i.e., (i) the mapping has to match

visual traits captured by descriptors and attributes well, (ii)

some visual traits and attributes describing them have to be

shared between the classes of objects used for training and

testing, otherwise transfer of knowledge is impossible, (iii)

the mapping itself should not overfit to the training set.

∗Both authors contributed equally.

The task of zero-shot learning can be considered as a

form of transfer learning [6, 27]. Given a new (target)

task to learn, the arising question is how to identify the so-

called commonality [39, 21] between this task and previous

(source) tasks, and transfer the knowledge from source tasks

to the target task. Thus, one has to address three questions:

what to transfer, how, and when [39]. For zero-shot learn-

ing, the visual traits and attributes describing them, which

are shared between the training and testing sets, form this

commonality. However, the objects in training and testing

sets are described by disjoint classes. The role of mapping

is to facilitate the identification of presence/absence of such

attributes, therefore enabling the knowledge transfer. From

that point of view, zero-shot learning assumes that the com-

monality is pre-defined (attributes typically are) and can be

identified in both training and testing data. Alternatively,

one can try to capture the commonality from the training

and/or testing data (manually or automatically) beforehand

e.g., by discovering so-called word2vec embeddings [28, 1].

Going back to the zero-shot learning terminology, we

focus in this paper on the design of mapping a.k.a. the

so-called compatibility function. Various works addressing

zero-shot learning and the design of mapping functions have

been proposed [26, 11, 33, 30, 38, 29, 13, 2], to name but a

few of approaches evaluated in [44]. We note the use of two

kinds of compatibility functions: linear and non-linear.

In this paper, we recognize the gap in the trends and em-

ploy kernel methods [37] combined with an objective in-

spired by the Linear Discriminant Analysis (LDA) [12, 9],

a related convex-concave relaxation KISSME [23], Kernel-

Target Alignment [8] and Kernel Polarization [4] meth-

ods. Specifically, we are interested in training a mapping

function via a non-linear kernel which ‘elevates’ datapoints

from the Euclidean space together with attribute vectors

into a non-linear high-dimensional Hilbert space in which

the classifier can more easily separate datapoints that come

from different classes. Our objective seeks a mapping for

which all datapoints sharing the same label with attribute

vectors are brought closer in the Hibert space to these at-

tribute vectors while datapoints from different classes are

pushed far apart from each other. The mapping function
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takes a form of projection with soft/implicit weak incoher-

ence mechanism related to idea [32]. Thus, our algorithm is

related to subspace selection methods as our projection al-

lows the rotation and scaling but limits the amount of shear

and excludes translation. Figure 1 illustrates our approach.

For kernels, we experiment with the Polynomial fam-

ily [36] and the shift-invariant Radial Basis Function (RBF)

family including the Gaussian [36, 37] and Cauchy [5] ker-

nels. Our choice of the Polynomial family is motivated by

its simplicity while the RBF family by its ability to em-

bed datapoints in a potentially infinite-dimensional Hilbert

space. Moreover, kernels are known to impose implicitly a

regularization on the plausible set of functions from which a

solution to the classification problem is inferred e.g., a small

radius of an RBF kernel implies a highly complex decision

boundary while a large radius has the opposite impact.

To our best knowledge, we are the first to combine non-

linear kernels with an objective inspired by LDA [12] and

kernel alignment [8] in the context of zero-shot learning.

2. Related Work

We describe first the most popular zero-shot learning

methods and explain how our work differs from them.

Linear mapping a.k.a. the linear compatibility function is

widely utilized in zero-shot learning. Some notable works

include [13, 2, 3, 34], to name but a few of methods.

Deep Visual-Semantic Embedding (DeViSE) model [13]

utilizes a pre-trained neural language model and a deep neu-

ral network later retrained for zero-shot learning. DeViSE

uses a pairwise ranking loss inspired by the Ranking SVM

[17] to learn parameters in the linear transformation layer.

Attribute Label Embedding (ALE) model [2] is inspired

by the structured prediction approaches. The authors intro-

duce a linear compatibility function and learn its parameters

by solving a WSABIE [42] ranking objective which ensures

that more importance is given to the top of the ranking list.

Structured Joint Embedding (SJE) framework [3] em-

ploys the linear compatibility function and the structured

SVM [40] to give importance only to the top of the ranked

list. For the latent representation which describes the

seen and unseen classes, SJE uses either human annotated

attribute vectors or latent word2vec embeddings [28] or

global vectors glove [31] learned from a text corpora.

Embarrassingly Simple Zero-Shot Learning (ESZSL)

combines a linear mapping, a simple empirical loss and reg-

ularization terms which penalize the projection of feature

vectors from Euclidean into the attribute space, and the pro-

jection of attribute vectors back into the Euclidean space.

Our approach differs in that we do explicitly use a non-

linear mapping function. With the use of kernel methods,

we first embed datapoints into the attribute space. Then we

utilize a kernel of our choice for scoring the compatibility

between a given datapoint and its corresponding attribute.

Figure 1: Zero-shot kernel alignment. Datapoints x are projected

to the attribute space via the rotation and scaling matrix W which

we learn. Kernels k are centered at y which are attribute vectors.

Non-linear methods have also been utilized in zero-shot

learning [38, 43] and shown to improve the performance.

Cross Modal Transfer (CMT) approach [38] employs a

two-layer neural network with a hyperbolic tangent acti-

vating function which maps images into a semantic space

of words. Unlike many zero-shot learning models, CMT

works well on a mixture of seen and unseen classes.

We note that our approach also handles well both seen

and unseen classes simultaneously. Our non-linear mapping

is obtained via a non-linear kernel [22, 19, 20] and subspace

learning rather than via non-linear layers of CNN per se.

Latent Embeddings (LatEm) model [43] uses a piece-

wise linear compatibility function by combining multiple

mappings learned via a pairwise ranking loss similar to the

DeViSE model [13]. At the test time, the scoring function

selects a mapping from the learned set which is maximally

compatible with a given pair of feature and attribute vectors.

Our approach extends easily to learning multiple map-

ping functions such as class-specific subspaces. Moreover,

our method uses a non-linear kernel that scores how com-

patible a given pair of feature and attribute vector is.

Semantic and probabilistic approaches to zero-shot learn-

ing include Direct and Indirect Attribute Prediction mod-

els (DAP) and (IAP) [25] which learn a probabilistic at-

tribute classifier and predict the label by combining clas-

sifier scores. Convex Combination of Semantic Embed-

dings (ConSE) [29] maps images into a so-called seman-

tic embedding space via convex combination of the class

label embedding vectors. Semantic Similarity Embedding

(SSE) [46] models the source and target data as a mixture

of seen class histograms and uses a structured scoring func-

tion. Synthesized Classifiers (SYNC) [7] learn mapping be-

tween the model space and the semantic class embedding

space with so-called phantom classes. The formulations and

evaluations of several recent methods are provided in [45].

Classifiers. Linear Discriminant Analysis (LDA) uses two

types of statistics: within- and between-class scatters com-

puted from datapoints sharing the same label and the mean

vectors of each within-class scatter, respectively. For bi-
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Kernel k(x,y;W ) S++ if
Shift- ∂k(x,y;W )

∂Winv.

Polynomial [36]
(

xTWy+ c
)r

c≥0, r∈I∞ no rxyT
(

xTWy + c
)r−1

Gaussian [37] exp
(

−||WTx−y||2
2

2σ2

)

σ>0 yes −x(WTx−y)T

σ2 exp
(

−
||WTx−y||2

2

2σ2

)

Cauchy [5] 1
1+σ||WTx−y||2

2

σ>0 yes − 2σx(WTx−y)T
(1+σ||WTx−y||2

2
)2

Table 1: Polynomial, Gaussian and Cauchy kernels k(x,y;W ), their properties and derivatives w.r.t. the projection matrix W introduced

by us. Column S++ indicates when these kernels are positive definite. Parameters r, c and σ denote the degree, bias and radius, respectively.

nary classification, one gets a combined within-class scatter

Σ =Σ1+Σ2 and a between-class scatter Σ∗. Then LDA

seeks a unit length vector w to find the direction of max-

imum and minimum variance of Σ and Σ∗, respectively:

argmaxw,||w||2=1w
T(M)w whereM=Σ−0.5Σ∗Σ−0.5.

KISSME [23] for metric learning [14, 24] assumes ΣS

for the datapoints considered similar and ΣD for the dis-

similar datapoints. Given two datapoints x and x′, KISSME

is given by ∆xT (M)+∆x, where ∆x = x−x′, M =
Σ−1

S −Σ−1
D and (M)+ is re-projection onto the SPD cone.

Our objective is related to LDA/KISSME; we use within-

and between-class terms learnt in a non-linear setting.

3. Background

Below we review our notations and useful kernel tools.

3.1. Notations

Let x ∈ R
d be a d-dimensional feature vector. IN

stands for the index set {1, 2, ..., N}. The Frobenius norm

of matrix is given by ‖X‖F =
√

∑

m,n

X2
mn, where Xmn

represents the (m,n)-th element of X . The spaces of

symmetric positive semidefinite and definite matrices are

Sd
+ and Sd

++. Operator [kij ]i,j∈IN
denotes stacking co-

efficients kij into matrix K of size N ×N . Moreover,

δ(x) = limσ→0 exp(−x2/(2σ2)) returns one for x=0 and

zero for x 6=0. We also define 1=[1, ..., 1]T .

3.2. Kernel Alignment

Our model relies on the Kernel Alignment and Kernel

Polarization methods [8, 4] detailed below.

Proposition 1. Let k : R
d×R

d → R and k′ : R
d′

×R
d′

→ R

be two positive (semi-)definite kernel functions. Let two

data matrices X ∈ R
d×N and X ′∈ R

d′×N contain column

vectors xi∈R
d and x′

i∈R
d′

for i∈IN . Assume two kernel

matrices K,K ′∈ SN×N
++ (or S+) for which their (i, j)-th

element is given by k(xi,xj) and k′(x′
i,x

′
j), respectively,

and i, j ∈ IN . Then the empirical alignment of two ker-

nels, which also forms a positive (semi-)definite kernel, is

the quantity given by the dot-product betweenK andK ′:

〈K,K ′〉=
∑

i,j∈IN

k(xi,xj)k
′(x′

i,x
′
j). (1)

Proof. Mercer theorem [36] states that for any ci, cj ∈ R,

the ineq.
∑

i,j∈IN
cicjk(xi,xj)k

′(x′
i,x

′
j) ≥ 0 must hold

for a positive (semi-)definite kernel kk′:

∑

i,j∈IN
cicjk(xi,xj)k

′(x′
i,x

′
j) =

∑

i,j∈IN
cicj 〈φ(xi),φ(xj)〉

〈

ψ(x′
i),ψ(x

′
j)
〉

=
〈

∑

i∈IN
ciφ(xi)ψ(x

′
i)

T ,
∑

j∈IN
cjφ(xj)ψ(x

′
j)

T
〉

=

||
∑

i∈IN
ciφ(xi)ψ(x

′
i)

T ||2H ≥ 0, (2)

where φ(x) ∈ R
d̂ and ψ(x′) ∈ R

d̂′

are so-called feature

maps [36] for kernels k and k′. Such maps always exist for

positive (semi-)definite kernels by definition [36].

Remark 1. The empirical alignment 〈K,K ′〉 can also be

evaluated between rectangular matricesK,K ′∈R
M×N .

Proposition 2. Let k : R
d × R

d → R be a kernel function

which is positive (semi-)definite. Assume that data and ker-

nel matricesX∈R
d×N andK∈SN×N

++ (or S+) are formed

as in Prop. 1. Moreover, let each column vector xi of X

have a corresponding label li for i ∈ IN , so that X has a

corresponding label vector l∈{−1, 1}N . By construction,

L = llT ∈ SN×N
+ is a rank-1 kernel. Then the empirical

alignment of kernels X and L, which also forms a positive

semidefinite kernel, forms a so-called kernel polarization:

〈K,L〉=
∑

i,j∈IN

li lj k(xi,xj)= l
TKl=

∑

(i,j): li=lj

k(xi,xj)−
∑

(i,j): li 6=lj

k(xi,xj)

(3)

Proof. It follows the same steps as for Proposition 1. More-

over, 〈K,L〉 itself forms a positive semidefinite kernel as

K is positive (semi-)definite and L is positive semidefinite

(e.g., rank-1) by design.

Proposition 3. Assume matrix W ∈ R
d×d which column

vectors w1, ...,wd are orthogonal and a projection of dat-

apoint matrix X ∈ R
d×N into the attribute space, that is,

Y =W TX∈R
d×N . Then the inverse proj. isX=WY .

Proof. It follows from the orthogonality of column vec-

tors w1, ...,wdof W that W TW =diag(s1, ..., sd), where

diag(s) is a diagonal matrix with s1, ..., sd on its diago-

nal.
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3.3. Kernel Choices

Table 1 details kernels used in this paper, their parame-

ters and properties such as the shift-invariance and positive

definiteness. We also list derivatives w.r.t. the projection

matrix W introduced by us to map datapoints to the space

of attribute vectors. We detail this in Section 4.

4. Problem Formulation

In this section, we detail our zero-shot kernel learning.

First, we explain our notations. Let us define data matrices

X∈R
d×N and Y ∈R

d′×N which contain N datapoints and

attribute vectors as column vectors xi ∈ R
d and yi ∈ R

d′

for i∈IN , respectively. The number of datapoints per class

c∈IC is Nc. A vector l∈IN
C contains corresponding class

labels, one per datapoint/image, etc. In our case, datapoints

and attribute vectors, which constitute an input to our algo-

rithm, are taken from the standard zero-shot learning pack-

age [44]. As the available attribute vectors are one per class,

we replicate each for all datapoints of a given class. Figure

1 illustrates our approach. Below we first analyze our pro-

posed weak incoherence mechanism.

Proposition 4. Let us assume some loss ℓ which we min-

imize w.r.t. projection W , and X and Y are defined as

in Section 4. Then the following expression promotes weak

incoherence between column vectors ofW :

argmin
W

ℓ
(

||W TX−Y ||22
)

+ ℓ
(

||WY −X||22
)

. (4)

Proof. For brevity, we drop loss ℓ and consider terms

||W TX−Y ||22 and ||WY−X||22. Clearly, Eq. (4) will yield

approximation error matrices ∆Y and ∆X e.g., W TX =
Y +∆Y andWY =X+∆X . Combining both, we obtain:

(W TW−I)Y =W T∆X+∆Y=ξ, (5)

where ξ is the total approximation error matrix. From

Eq. (5) it follows that if ||ξ||2F → 0, then W TW → I.

This means the lower the approximation error is, the higher

the incoherence becomes. Moreover, if ||ξ||2F = 0, then

columns of W are orthogonal w.r.t. each other. Proposi-

tion 3 is a special case of Proposition 4.

4.1. ZeroShot Kernel Alignment

For shift-invariant kernels, that is kernels which can be

written as k(x−x′, 0), we maximize the following objective

which performs the kernel alignment for zero-shot learning:

W ∗=argmax
W

〈Kσ(W )+K ′
σ(W ),Lλ〉 . (6)

Kσ(W )≡[kσ(W
Txi,yj)]

i,j∈IN
andK ′

σ(W )≡[kσ(xi,Wyj)]i,j∈IN

denote RBF kernels e.g., Gaussian or Cauchy with radius σ.

Note that kernels Kσ and K ′
σ use projections W Tx and

Wy, respectively, which follow Prop. 4. This implies that

Eq. (6) is encouraged to find a solution W ∗ for which its

column vectors w1, ...,wd′ are weakly incoherent/closer to

being orthogonal w.r.t. each other. Therefore, our projec-

tion matrix W is constrained in a soft/implicit manner to

be well-regularized. Such a constrained W is closer to be-

ing a subspace than an unconstrained W . As such, we can

rotate and scale datapoints to project them into the attribute

space. Excluding the shear prevents overfitting e.g., it acts

implicitly as a regularization3.

We apply the polarization mechanism detailed in Prop.

2 which, in some non-linear Hilbert space, will bring

closer/push apart all class-related/unrelated datapoints and

attribute vectors, respectively. This is also similar in spirit

to LDA and KISSME. We define Lλ which encodes labels

for our polarization inspired zero-shot kernel learning as:

Lλ≡ [δ(li−lj)−λ(1−δ(li−lj))]i,j∈IN
, (7)

where li is the i-th coefficient of l. By sorting all labels,

it can be easily verified that [δ(li − lj)]i,j∈IN
equals one

when li = lj and that this term contributes an equivalent

of the block-diagonal entries in L. Moreover, it moves

within-class datapoints close to each other. In contrast,

λ [(1−δ(li−lj))]i,j∈IN
contributes -λ off-diagonally and

its role is to move between-class datapoints away from each

other. Thus, λ controls a form of regularization. It balances

positive and negative entries. Depending on labels l and λ,

kernel L may be positive or negative (semi-)definite1.

Complexity. For Eq. (6), we obtain O(Ndd′+N2d′) com-

plexity which reduces to O(Ndd′+NCd′) if one attribute

vector per class is defined or multiple attribute vectors per

class are defined but only one is drawn per iteration of SGD

as detailed below.

4.2. Practical Implementation

Below we show practical expansions of Eq. (6) for the

RBF kernels from Table 1, which demonstrate the simplic-

ity of our approach:

W ∗=argmax
W

〈Kσ(W )+K ′
σ(W ),Lλ〉 = (8)

=
∑

(i,j): li=lj

kσ(W
Txi,yj)+kσ(xi,Wyj) −λ

∑

(i,j): li 6=lj

kσ(W
Txi,yj)+kσ(xi,Wyj)

=
∑

i∈IN

Nli(kσ(W
Txi,yi)+kσ(xi,Wyi)) −λ

∑

(i,j): li 6=lj

kσ(W
Txi,yj)+kσ(xi,Wyj).

We simplify our problem in Eq. (8) to work with SGD:

fi(W ) = Nli

(

k′σ(W
Txi,yi)+k′σ(xi,Wyi)

)

(9)

+ λ
∑

j∈Rnd(IC\{li})
k′′σ(W

Txi,yj)+k′′σ(xi,Wyj),

1Compare e.g., L0.2=I−0.211
T ∈S

5×5

+
vs. L1=I−11

T ∈R
5×5.

2If there is one attribute vector per class, the choice of index is fixed.
3We also exclude translation as we mean-center our data/attr. vectors.
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where Wt+1 := Wt −
βt

I

∑

i∈Bt

1√
At

∂fi(W )
∂W

is an SGD-

based update for W , Bt are mini-batches of size I , βt is

a decaying learning rate, operator Rnd(IC \ {li}) selects

one index j ∈ IN per class c ∈ IC \{li} e.g., if C = 40,

we get 39 indexes2, each one randomly sampled per class

for all 39 classes. This way, we are able to reduce the

complexity as detailed earlier. Setting k′σ = (1− kσ)
2

and k′′σ = k2σ instead of k′σ = −kσ and k′′σ = kσ , respec-

tively, results in a slightly faster convergence of our algo-

rithm. Also, we set Nli = N
C

for simplicity. Moreover,

At = γAt−1+(1−γ) 1
I

∑

i∈Bt

(

∂fi(W )
∂W

)2
defines the so-

called moving average of the squared gradient used in the

Root Mean Square Propagation (RMSprop) [16] solver.

No incoherence. Equations for RBF kernels with no

soft/implicit incoherence on W can be easily derived from

Prop. 2 by maximizing 〈Kσ(W ),Lλ〉 w.r.t. W . This

yields a solution similar to Eq. (9):

fi(W ) = Nlik
′
σ(W

Txi,yj)+ λ
∑

j∈Rnd(IC\{li})
k′′σ(W

Txi,yj).

(10)

Polynomial kernel. As K+K ′ =2K for Polynomial ker-

nels, the objective in Eq. (6) cannot implicitly impose weak

incoherence constraints on column vectors ofW . Thus, we

add a soft penalty on W to promote incoherence, adjusted

via variable α, and we define a modified problem:

W ∗=argmax
W

〈Kσ(W ),Lλ〉−α||W TW ||2F +αTr(W TW ).

(11)

4.3. Classification

Having learned W ∗, at the classification stage we apply

a simple maximization over testing attribute vectors:

argmax
j∈IN∗ : l∗

j
∈IC∗

k
(

W ∗Tx∗,y∗
j

)

, (12)

where k is a kernel used during training, x∗ is a testing data-

point. Moreover, y∗ are typically previously unseen testing

attribute vectors while l∗ contains testing labels (typically

disjoint with l). Variable C∗ is the number of testing classes

and N∗ is the number of testing attribute vectors (typically

N∗ = C∗). For the problems which require the Nearest

Neighbor classifier with a dot-product based similarity mea-

sure, one can apply e.g. the Nyström approximation [36]

which linearizes kernel k via feature maps φ(x)∈R
d̂:

k(W ∗Tx∗,y∗
j )≈

〈

φ(W ∗Tx∗),φ(y∗
j )
〉

. (13)

This is however outside of the scope of our evaluations and

will be explored in our future work.

Figure 2: The top and bottom row include example images from

the SUN and CUB datasets, respectively. The first two and the last

two columns show examples of training and testing images.

5. Experiments

In what follows, we explain our experimental setup fol-

lowed by evaluations of the proposed zero-shot kernel learn-

ing approach. Subsequently, we discuss our findings.

Datasets. We use five datasets frequently applied in evalua-

tions of zero-shot learning algorithms. Attribute Pascal and

Yahoo (aPY) [11] is a small-scale dataset which contains

15339 images, 64 attributes and 32 classes. The 20 classes

known from Pascal VOC [10] are used for training and 12

classes collected from Yahoo! [11] are used for testing. An-

imals with Attributes (AWA1) [25] contains 30475 images of

50 classes. It has a standard zero-shot learning split with 40

training classes and 10 test classes. Each class is annotated

with 85 attributes. At present, the original images of AWA1

are not available due to copyrights, therefore, a new version

of Animals with Attributes (AWA2) was proposed in work

[45]. AWA2 also has 40 classes for training and 10 classes

for testing. Caltech-UCSD-Birds 200-2011 (CUB) [41] has

11788 images, 200 classes and 312 attributes to describe

each class. The SUN dataset (SUN) [30] consists of 14340

images from 717 classes which are annotated with 102 at-

tributes. Figure 2 shows example images from datasets.

We note that a recent evaluation paper [44] reports that

some of the testing classes from the standard zero-shot

learning datasets overlap with the classes of ImageNet [35]

which is typically used for fine-tuning image embeddings.

This results in a biased evaluation protocol which favors

such classes. Therefore, we use newly proposed splits [44]

for the above five datasets to prevent such a bias and make

results of our work follow protocols that offer a fair compa-

rability with the latest state-of-the-art methods.

Parameters. In this paper, we make use of the data avail-

able in [44]. For image embeddings, we use the 2048 di-

mensional feature vectors extracted from top-layer pool-

ing units of ResNet-101 [15] which was pre-trained on

the ImageNet dataset [35]. For class embeddings, we use

real-valued per-class attribute vectors provided for the aPY,

AWA1, AWA2, CUB and SUN datasets. We perform the
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mean subtraction and the ℓ2-norm normalization on the dat-

apoints and attribute vectors, respectively.

To learn W, we applied SGD with mini-batches of size

I = 10, we set the moving average of the squared gradient

used in the Root Mean Square Propagation (RMSprop) [16]

solver to γ=0.99 and ran the solver for 5–10 epochs. Ker-

nel parameters σ and λ were selected via cross-validation.

For the Polynomial kernel, we chose r=2, 4, 6 and param-

eter α=1. The bias c was selected via cross-validation.

Testing protocols. To evaluate our algorithms, we follow

two standard protocols as detailed in [44]. Firstly, we report

the mean top-1 accuracy when training on the training data

and testing on the classes unseen at the training time. Next,

for the generalized zero-shot learning protocol, we perform

testing on classes both seen and unseen during the training

step. For that, we use the harmonic mean of training and

test accuracies as advocated by [44]:

H = 2
AccS · AccU

AccS + AccU
, (14)

where AccS and AccU denote the accuracy for the seen and

unseen at the training stage classes. This strategy can flag

up algorithms which overfit to either seen or unseen classes.

Baselines. We compare our zero-shot kernel learning ap-

proach to several works which include: DAP and IAP [25],

CONSE [29], CMT [38], SSE [46], LATEM [43], ALE [2],

DEVISE [13], SJE [3], ESZSL [34], SYNC [7] and SAE

[18]. Section 2 contains more details about these methods.

Our methods. We compare the following approaches to

the state of the art: the Polynomial kernels denoted (Poly-

nomial) for α = 1 and degree r = 2, 4, 6, respectively,

which are combined with Eq. (11). Moreover, we evaluate

the RBF kernels such as (Cauchy) and (Gaussian) which

are combined with the formulation in Eq. (10). Lastly,

we evaluate the Cauchy and Gaussian kernels (Cauchy-Ort)

and (Gaussian-Ort) combined with our soft/implicit inco-

herence formulation according to Eq. (6) and (9).

5.1. Evaluations

We start our evaluations on the standard protocol fol-

lowed by the generalized zero-shot learning protocol. Sub-

sequently, we perform a sensitivity analysis of our model

w.r.t. its hyperparameters given the validation and testing

data to demonstrate the robustness of zero-shot kernel learn-

ing. The results presented in Tables 2 and 3 were obtained

via cross-validation to prevent overfitting to the testing data.

Standard protocol. Table 2 lists our results and indicates

the scores attained by other recent approaches. Firstly, we

note that the Polynomial kernels (Polynomial, r = 2) and

(Polynomial, r=4), and the RBF kernels (Cauchy-Ort) and

(Gaussian-Ort) for which we imposed soft/implicit incoher-

ence constraints on W, outperform the state-of-the-art ap-

proaches (the upper part of the table) on 4 out of 5 datasets

Method AWA1 AWA2 SUN CUB aPY
Better

than

SOA
DAP [25] 44.1 46.1 39.9 40.0 33.8

IAP [25] 35.9 35.9 19.4 24.0 36.6

CONSE [29] 45.6 44.5 38.8 34.3 26.9

CMT [38] 39.5 37.9 39.9 34.6 28.0

SSE [46] 60.1 61.0 51.5 43.9 34.0

LATEM [43] 55.1 55.8 55.3 49.3 35.2

ALE [2] 59.9 62.5 58.1 54.9 39.7

DEVISE [13] 54.2 59.7 56.5 52.0 39.8

SJE [3] 65.6 61.9 53.7 53.9 32.9

ESZSL [34] 58.2 58.6 54.5 53.9 38.3

SYNC [7] 54.0 46.6 56.3 55.6 23.9

SAE [18] 53.0 54.1 40.3 33.3 8.3

Polynomial, r=2 66.2 64.9 58.7 54.5 41.6 4/5

Polynomial, r=4 65.0 64.3 59.7 57.1 41.7 4/5

Polynomial, r=6 63.6 63.3 59.2 54.6 41.5 3/5

Cauchy 60.1 58.3 57.8 48.7 35.2 0/5

Cauchy-Ort 71.0 69.9 60.4 49.3 41.9 4/5

Gaussian 60.5 61.6 60.6 52.2 38.9 1/5

Gaussian-Ort 70.1 70.5 61.7 51.7 45.3 4/5

Table 2: Evaluations on the standard protocol and the newly pro-

posed datasplits. (Better than SOA) column indicates the number

of datasets on which our methods outperform the state-of-the-art

methods listed in the upper part of the table.

(indicated by 4/5 in the table). In contrast, kernels (Cauchy)

and (Gaussian), for which we imposed no such constraints,

perform notably worse. This validates the benefits of deco-

herence in our model. Moreover, we note that the Gaussian

kernel (Gaussian-Ort) attains the best results on 3 out of 5

datasets (highlighted in bold in the table) when compared

to our (Cauchy-Ort) and (Polynomial, r= 4). Result-wise,

(Gaussian-Ort) outperforms the other state-of-the-art meth-

ods on AWA1, AWA2, SUN and aPY by 4.5, 8, 3.6, 5.5%

top-1 accuracy. In contrast, (Polynomial, r=4) outperforms

other state-of-the-art approaches on CUB by 2.2%.

We conjecture that the good performance of the Gaussian

kernel can be attributed to its ability to ‘elevate’ datapoints

to a potentially infinite-dimensional Hilbert space where a

decision boundary separating datapoints according to labels

can be found with ease e.g., linearly non-separable data-

points become separable. We expect that the Cauchy ker-

nel may also be beneficial due to its slowly decaying tails

(compared to Gaussian) which results in stronger non-local

influences. Lastly, we expect that the non-linearity of Poly-

nomial kernels of degree r = 4 may also be sufficient for

separating otherwise linearly non-separable data.

Generalized protocol. Table 3 presents our results on the

generalized zero-shot learning protocol. Firstly, we note

that our (Cauchy-Ort) approach outperforms other state-of-

the-art approaches on 3 out of 5 datasets (indicated by 3/5
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AWA1 AWA2 SUN CUB aPY Better
than
SOAMethod ts tr H ts tr H ts tr H ts tr H ts tr H

DAP [25] 0.0 88.7 0.0 0.0 84.7 0.0 4.2 25.1 7.2 1.7 67.9 3.3 4.8 78.3 8.0

IAP [25] 2.1 78.2 4.1 0.9 87.6 1.8 1.0 37.8 1.8 0.2 72.8 0.4 5.7 65.6 10.4

CONSE [29] 0.4 88.6 0.8 0.5 90.6 1.0 6.8 39.9 11.6 1.6 72.2 3.1 0.0 91.2 0.0

CMT [38] 0.9 87.6 1.8 0.5 90.0 1.0 8.1 21.8 11.8 7.2 60.1 8.7 1.4 85.2 2.8

CMT* [38] 8.4 86.9 15.3 8.7 89.0 15.9 8.7 28.0 13.3 4.7 60.1 8.7 10.9 74.2 19.0

SSE [46] 7.0 80.5 12.9 8.1 82.5 14.8 2.1 36.4 4.0 8.5 46.9 14.4 0.2 78.9 0.4

LATEM [43] 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5 15.2 57.3 24.0 0.1 73.0 0.2

ALE [2] 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3 23.7 62.8 34.4 4.6 73.7 8.7

DEVISE [13] 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9 23.8 53.0 32.8 4.9 76.9 9.2

SJE [3] 11.3 74.6 19.6 8.0 73.9 14.4 14.7 30.5 19.8 23.5 59.2 33.6 3.7 55.7 6.9

ESZSL [34] 6.6 75.6 12.1 5.9 77.8 11.0 11.0 27.9 15.8 12.6 63.8 21.0 2.4 70.1 4.6

SYNC [7] 8.9 87.3 16.2 10.0 90.5 18.0 7.9 43.3 13.4 11.5 70.9 19.8 7.4 66.3 13.3

SAE [18] 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8 7.8 54.0 13.6 0.4 80.9 0.9

Polynomial, r=2 5.8 77.3 10.7 6.4 78.8 11.8 20.6 31.5 24.9 16.7 61.3 26.2 4.8 77.5 9.0 0/5

Polynomial, r=4 5.7 78.7 10.6 7.0 83.0 13.0 20.0 31.7 24.5 24.2 63.9 35.1 5.7 79.2 10.6 1/5

Polynomial, r=6 8.3 78.1 15.0 8.7 81.6 15.7 21.0 31.0 25.1 23.8 58.6 33.8 4.9 78.3 9.2 0/5

Cauchy 6.0 79.9 11.1 6.2 82.7 11.5 16.1 29.7 20.9 18.2 49.6 26.6 1.0 84.9 2.0 0/5

Cauchy-Ort 18.3 79.3 29.8 17.6 80.9 29.0 19.8 29.1 23.6 19.9 52.5 28.9 11.9 76.3 20.5 3/5

Gaussian 6.1 81.3 11.4 7.3 79.1 13.3 18.2 33.2 23.5 17.5 59.9 27.1 3.0 82.3 5.8 0/5

Gaussian-Ort 17.9 82.2 29.4 18.9 82.7 30.8 20.1 31.4 24.5 21.6 52.8 30.6 10.5 76.2 18.5 2/5

Table 3: Evaluations on the generalized zero-shot learning protocol and the newly proposed datasplits. We indicate the mean top-1
accuracy on (tr) train+test classes and (ts) test classes only. Moreover, (Better than SOA) indicates the number of datasets on which our

methods outperform the other state-of-the-art methods (the upper part of the table) according to the harmonized score (H).

in the table) according to the generalized score (H) which

takes into account the quality of zero-shot learning when

testing it on classes which were seen and unseen during the

training step. Our (Cauchy-Ort) is closely followed in terms

of scores by (Gaussian-Ort) and (Polynomial, r=4) which

outperform other state-of-the-art methods on 2 and 1 out of

5 datasets, respectively. Moreover, (Cauchy-Ort) attains the

best results on AWA1 and aPY (highlighted in bold in the ta-

ble) when compared to our (Gaussian-Ort) which performs

the best on AWA2. Number-wise, (Gaussian-Ort) outper-

forms the other state-of-the-art methods (the upper part of

the table) on AWA1, AWA2 and aPY by 2.3, 1.2 and 2.5%

measured according to the generalized score (H).

We note that our models which impose our soft/implicit

incoherence outperform again the variants which do not im-

pose it. Moreover, the Cauchy kernel appears to be an ad-

equate choice for varied testing tasks. Cauchy may be less

prone to overfitting to local clusters of datapoints as its tails

decay slower compared to tails of Gaussian.

Sensitivity analysis. Robust algorithms are expected to

generalize well to unseen data and avoid overfitting e.g.,

best classification scores on the validation and test data may

be far away from each other when considered as a function

of hyperparameters. Moreover, oversensitivity to the choice

of hyperparameters may result in an algorithm which is hard

to fine-tune. Below we show how our methods behave w.r.t.

the choice of radius σ for the shift-invariant Gaussian and

Cauchy kernels, the bias parameter c of the Polynomial ker-

nel and the regularization parameter λ from Eq. (6).

Figure 3 (columns 1–3) shows how our zero-shot ker-

nel learning performs on the AWA1 dataset w.r.t. the listed

above hyperparameters. The standard evaluation protocol is

used. The top row demonstrates that the kernel radius is an

important parameter in our setup. For (Gaussian-Ort), the

validation and test curves vary smoothly. The best results

are attained for σ=0.6 and σ=1, respectively. The differ-

ence in the testing accuracy evaluated at σ=0.6 and σ=1
amounts to 2.5%. A similar trend emerges for (Cauchy-

Ort). Such a discrepancy between the validation and testing

scores shows that there is a visible domain shift between

the validation and test problems. This result is typical for

the knowledge transfer tasks such as domain adaptation and

zero-shot learning. For (Polynomial, r = 4), the validation

and testing scores attain maximum for the same c=1, how-

ever, they are ∼5% below the performance of (Gaussian-

Ort) and (Cauchy-Ort). This reveals that while the Polyno-

mial kernel may generalize well, it lacks the capacity of the

RBF kernels to capture highly non-linear data patterns.

Figure 3 (columns 1–3, bottom) show our scores w.r.t.

the regularization parameter λ which, in our setting, con-

trols how strongly the between-class datapoints are pushed

from each other after the projection into the attribute space.
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Figure 3: (Columns 1–3) Validation (val) and testing (test) accuracies on AWA1 for the standard evaluation protocol. We vary σ, λ and

c. In the top row, we vary the radius σ for kernels (Gaussian-Ort) and (Cauchy-Ort). For (Polynomial, r = 4), we vary its bias c. The

bottom row shows the performance w.r.t. regularization λ of our kernel polarization model given fixed σ and/or c selected earlier via

cross-validation. (Column 4) The accuracy and the objective w.r.t. the number of iterations t for (Gaussian-Ort) on the SUN dataset. The

top and bottom plots concern training (train) vs. validation (val) and training plus validation (tr+val) vs. testing (test), respectively.

It appears that the peaks in validation and testing accura-

cies match each other well for all three kernels used in this

experiment. The value of λ does not affect dramatically the

performance of our algorithm and the range for which the

best performance is attained varies from 0.8–2. However, it

is also clear that if λ→ 0 or λ→∞, the scores drop. This

demonstrates the importance of balancing the impact of so-

called within- and between-class statistics in our zero-shot

kernel model which ‘polarizes’ these statistics.

Figure 3 (column 4) shows how our algorithm behaves

w.r.t. the number of solver iterations t on the SUN dataset.

The top row shows that the training objective attains lower

values compared to the validation objective for t≥2000. As

the objective decreases, there is a clear increase in the accu-

racy for both the training and validation curves. The same

behavior is observed in the bottom row which demonstrates

that our algorithm is stable w.r.t. to t.

Finally, Table 4 shows that Proposition 4 and following

from it Eq. (6) promote the weak incoherence.

6. Conclusions

In this paper, we have proposed a novel approach to zero-

shot learning by the use of kernels. Our model is inspired

by the the Linear Discriminant Analysis [12, 9] and kernel

alignment methods [8, 4]. To the best of our knowledge,

we are the first to show how to combine zero-shot learning

with the Polynomial and the RBF family of kernels to ob-

tain a non-linear compatibility function. Our model shows

that a learned projection that embeds datapoints in the at-

tribute space and from there, in the non-linear Hilbert space,

is a robust tool for zero-shot learning. We learn an approxi-

mate subspace by encouraging in a soft/implicit manner the

incoherence between column vectors of the projection ma-

trix. Therefore, our projection incorporates the rotation and

scaling but prevents the shear which causes overfitting due

to more degrees of freedom in such an unconstrained model.

Each of our models achieve state-of-the-art results on up

to four out of five datasets on the standard zero-shot learn-

ing benchmark for new stricter recently proposed datasplits.

Moreover, each of our models obtain state-of-the-art results

on up to three out of five datasets on the new generalized

zero-shot learning benchmark which takes into account so-

called harmonized scores for classes seen and unseen dur-

ing the training process. We note that if we were to pick

one best kernel per dataset, this would lead to further im-

provements in accuracy. For future directions, this warrants

an investigation into multiple kernel learning in the context

of zero-shot kernel learning. We also plan to investigate the

benefit of learning class-wise subspace matrices.

Gauss. AWA1 AWA2 SUN CUB aPY
Non-Ort 376.4 420.7 209.1 2361.4 342.1
Eq. (6) 131.6 205.0 59.1 1018.8 259.5
Cauchy AWA1 AWA2 SUN CUB aPY
Non-Ort 357.7 346.9 187.1 2614.4 334.0
Eq. (6) 138.3 178.2 124.1 1227.5 214.9

Table 4: Incoherence on various kernels and datasets. For the ℓ2-

norm normalized columns of W we computed ||W TW −I||2F .

Lower values indicate more incoherence between columns of W .
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