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Abstract

In this work, we present a novel and effective frame-

work to facilitate object detection with the instance-level

segmentation information that is only supervised by bound-

ing box annotation. Starting from the joint object detec-

tion and instance segmentation network, we propose to re-

cursively estimate the pseudo ground-truth object masks

from the instance-level object segmentation network train-

ing, and then enhance the detection network with top-down

segmentation feedbacks. The pseudo ground truth mask and

network parameters are optimized alternatively to mutually

benefit each other. To obtain the promising pseudo masks in

each iteration, we embed a graphical inference that incor-

porates the low-level image appearance consistency and the

bounding box annotations to refine the segmentation masks

predicted by the segmentation network. Our approach pro-

gressively improves the object detection performance by

incorporating the detailed pixel-wise information learned

from the weakly-supervised segmentation network. Exten-

sive evaluation on the detection task in PASCAL VOC 2007

and 2012 [12] verifies that the proposed approach is effec-

tive.

1. Introduction

Recent years have seen significant progresses in object

detection. Since the deep convolutional neutral network has

been firstly used in R-CNN [19], a lot of improvements have

been made, and they improve the performance from many

different aspects, e.g., deeper networks and stronger fea-

tures [44, 45, 24], better object proposals [38, 46], more

discriminative and powerful features [29, 1], more accu-

rate localization [36, 15], focusing on a set of hard exam-

ples [34, 42].

In this work, we investigate the object detection task

from another important aspect, that is, how to exploit object

segmentation to improve object detection. Although it has

∗This work is done when Xiangyun Zhao was an intern at Microsoft

Research Asia.
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been well recognized in the literature that the two tasks are

closely related and detection could benefit from segmenta-

tion, most previous works, e.g., [1, 8], share two common

drawbacks.

First, they rely on accurate and pixel-wise ground truth

segmentation masks for the segmentation problem. How-

ever, such mask annotation is very expensive to obtain. In-

stead, most large-scale object recognition datasets such as

ImageNet [10] and PASCAL VOC [12] only provide bound-

ing box level annotations. In addition, most of these meth-

ods only explore how to facilitate object detection with se-

mantic image segmentation, which did not independently

consider the characteristics of each instance. We argue that

the instance-level segmentation task is more aligned with

object detection by considering the object information from

different granularity (pixel-level versus box-level). Re-

cently, Mask-RCNN [23] unifies object detection and in-

stance segmentation in a single network, and show that in-

stance segmentation could help object detection. However,

pixel-wise instance segmentation labeling is still required.

Second, most works have independent network struc-

tures for segmentation and detection tasks, e.g., the state-

of-the-art MNC [8] and Mask-RCNN [23]. Although the

two tasks often share the same underlying convolutional

features, the two networks do not directly interact with each

other and the commonality between the two tasks may not

be fully exploited. For the existing approaches, the benefits

of jointing learning are mostly from the better learned deep

feature representation as in a normal multi-task setting. It

is seldom explored that how segmentation information can

benefit detection directly and more closely in a deep learn-

ing framework.

In this work, we propose a novel approach that better ad-

dresses the above two issues, which augments the object de-

tector with generated object masks from the bounding box

annotation, named as Pesudo-mask Augmented Detection

(PAD). It starts from a strong baseline network architecture

that directly integrates the state-of-the-art Fast-RCNN [18]

network for object detection and InstanceFCN [6] for object

segmentation, in a normal multi-task setting.

Given the baseline network, we make two major con-
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tributions. First, our PAD treats ground truth object seg-

mentation masks as hidden variables as they are unknown,

which are gradually refined by only using bounding box an-

notations as the supervision, called as pseudo ground truth

masks. The pseudo masks of training images and the net-

work parameters are optimized alternatively in an EM-like

way. To make the alternative learning more effective, we

propose two novel techniques. Between each iteration, the

pseudo masks are progressively refined by embedding a

graphical model, which improves the pixel-wise estimation

with a graph-cut optimization with low-level appearance co-

herence and the ground truth bounding boxes as additional

constraints. Beside the iteratively refined pseudo masks,

we also incorporate a novel 1D box loss defined over the

groundtruth box, as a supervision signal to help improve

quality of pseudo masks learning, similar to LocNet [17].

Second, based on the commonality of segmentation and

detection tasks, as well as the correlations of the net-

work structures, we propose to connect the two networks

such that the segmentation information provides a top-down

feedback for detection network. In this way, the learning

of detection network is improved as additional supervision

signals are back propagated from the segmentation branch.

The top-down segmentation feedback considers two con-

texts, on both the the global level and instance level. Their

effectivenesses on improving detection accuracy are both

verified in experiments.

The proposed approach is validated using various state-

of-the-art network architectures (VGG and ResNet) on sev-

eral well-known object detection benchmarks (i.e., PAS-

CAL VOC 2007 and 2012). The strong and state-of-the-art

performance verifies its effectiveness.

2. Related Work

Joint Segmentation and Detection There exists quite a

few works that integrate the object segmentation and de-

tection tasks [14, 20, 11, 5, 1, 8, 23]. In spite of their vari-

ous techniques, these methods have common limitations: 1)

the pixel-level segmentation annotation is required, which

is difficult to obtain, 2) the integration of segmentation and

detection is usually loose due to the separately trained seg-

mentation and detection network. Our work overcomes the

two limitations in an integrated learning framework, where

the top-down segmentation feedback is proposed to bridge

the segmentation and detection network.

Using Graphical Models for Segmentation Graphical

models are widely used for traditional image and object

segmentation [3, 39, 32, 30, 41, 4, 27]. Compared to the

feature representation learning by the CNNs, the graphical

inferences possess the merits of effectively incorporating

local and global image constraints (e.g. appearance con-

sistencies, and structure priors) into a single optimization

framework. Recently, some recent works integrate graph-

ical models (e.g., CRF/MRF) into the deep neutral net-

works [47, 35] for a joint training.

In our approach, traditional graph cut based optimiza-

tion [3] is embedded to refine the pseudo ground truth mask

estimation during the iterative learning. It effectively refines

the quality of pixel-wise pseudo masks to progressively im-

prove the discriminative capability of detection and seg-

mentation network.

Weakly Supervised Segmentation Due to the difficulty

of obtaining large-scale pixel-wise segmentation ground

truth, some works resort to weakly supervised learning of

segmentation, such as using bounding box annotation [7,

26] or scribbles [33]. Such methods share some similarity

with ours by using the iterative optimization to gradually

refine the segmentation. They mainly focus on single im-

age segmentation, while our approach jointly optimizes the

detection and weakly-supervised object segmentation net-

work. [7] does not adopt low-level color information to re-

fine the segmentation. The most relevant work is [26]. It

also iteratively refine the segmentation by graphical mod-

els (CRF). Different from it, our approach aims to improve

object detection with weakly supervised segmentation.

3. Pseudo-mask Augmented Detection

We focus on facilitating the object detection with the

instance-level object segmentation information, using only

ground truth bounding box annotations. We denote the set

of all ground truth boxes as Bgt = {Bgt
o }, where subscript

o enumerates all objects in all training images. We use the

former notation throughout the paper for its simplicity.

As motivated earlier, it is beneficial to estimate the per-

pixel object segmentation as well. An auxiliary object seg-

mentation task is added in a normal multi-task setting. That

is, the two tasks share the same underlying convolutional

feature maps. Since the ground truth binary object segmen-

tation masks are unknown, we treat them as hidden vari-

ables, which are first initialized with Bgt, and then itera-

tively refined in our approach. We call them estimated ob-

ject masks as pseudo ground truth masks from the bounding

box annotation, denoted as Mpseudo = {Mpseudo
o }.

Let the network parameters be Θ, and the network output

for object segmentation and detection be M(Θ) and B(Θ),
respectively. The network parameters are learned to mini-

mize the loss function

Lseg(M(Θ)|Mpseudo, Bgt) + Ldet(B(Θ)|Bgt), (1)

where the two loss terms are enforced on object segmenta-

tion and detection tasks, respectively. As defined the net-

work optimization target, the performance of detection net-

work heavily depends on the quality of estimated pseudo
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Figure 1. An overview of our pseudo-mask augmented object detection, consisting of the network architecture and graph cut based pseudo

mask refinement. For each image, the detection sub-network and instance-level object segmentation sub-network share convolutional

layers (i.e. conv1-conv5 for VGG, conv1-conv4 for ResNet). For segmentation sub-network, position-sensitive score maps are generated

by 1 × 1 convolutional layer, and it is then passed through position-sensitive pooling to obtain object masks. The predicted object masks

and bounding box annotations are then combined to refine pseudo masks with a graph-cut refinement, which also provide the supervision

signal for network training in next iteration. In each iteration, we explore the global feedback and instance top-down feedback from the

instance segmentation sub-network to facilitate the object detection sub-network for better detection performance.

masks Mpseudo. That is, the poor estimation of Mpseudo

leads to poor network learning of M(Θ), which in turn

would cause negative chain effect on whole iterative frame-

work for object detection. We propose an effective learning

approach that progressively improves the quality Mpseudo

from a coarse initialization using Bgt, as summarized in

Algorithm 1. The detection network parameters Θ and

pseudo masks Mpseudo are alternatively optimized follow-

ing a EM-like way, with the other fixed in each iteration.

Note that Algorithm 1 only operates on training images.

The learned network parameters Θ are applied on test im-

ages to generate detection and segmentation results.

The instance-level segmentation masks M(Θ) from the

pixel-wise prediction of segmentation network are usually

noisy and poor. This is partially because pseudo masks

are not accurate enough, and the estimation is made in a

pixel-wise manner, which does not consider the correlations

between the pixels such as smoothness constraints used in

most segmentation approaches. As shown in Algorithm 1,

we thus propose two novel ingredients to achieve the effec-

tive iterative learning. First, in each object mask refinement

step (Sec. 3.2), the pseudo ground truth mask for each ob-

ject is improved using the traditional graphical inference. It

is formulated as a global optimization problem that consid-

ers not only the current mask estimation from the network,

but also the low level image appearance coherence and the

ground truth bounding boxes, which is efficiently solved by

graph cut [2].

Second, we notice that only using the pseudo mask

Algorithm 1 Iterative learning of network parameters Θ
and pseudo ground truth masks Mpseudo.

1: input: ground truth bounding boxes Bgt

2: initialize the pseudo masks Mpseudo from Bgt;

3: learn Θ0 with loss in Eq. (1) ⊲ Sec. 3.1

4: for t = 1 to T do

5: refine Mpseudo from M(Θt−1) and Bgt ⊲ Sec. 3.2

6: learn Θt with loss in Eq. (1) ⊲ Sec. 3.1

7: end for

8: output: final network parameters Θt

9: output: pseudo ground truth masks Mpseudo

Mpseudo as 2D pixel-wise supervision signals may be not

sufficient as the masks themselves are often noisy and not

accurate enough. Thus, the 1D box loss( explained in

Sec. 3.1) in Eq. (1) and (2) (Sec. 3.1) is incorporated to con-

sider the additional constraints provided by the ground truth

bounding box. The 1D loss term complements the noisy 2D

segmentation loss and performs better regularization on the

segmentation network learning.

With the aforementioned two novel techniques, both

pseudo masks Mpseudo and network parameters Θ are im-

proved steadily, benefiting from each other. Based on the

refined object masks, we add connections between the seg-

mentation and detection sub-networks such that the seg-

mentation features provide top-down feed back for the de-

tection, leading to better results in the object detection

(Sec. 3.1).
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Figure 2. Example predicted pseudo masks by the iterative refinement and employing graph cut optimization.

3.1. Network Architecture and Training

As shown in Figure 1, following the common multi-task

learning, we adopt two sub-networks for the object segmen-

tation and detection tasks, which are built on the shared

feature maps. We first extract the object proposals, or re-

gions of interest (ROIs) from the Region Proposal Network

(RPN) [38]. For simplicity, we do not use the complex train-

ing strategy in [38]. Instead, we pre-train the RPN and fix

the ROIs throughout our experiments.

Object Segmentation with Pseudo Masks In general,

this sub-network can adopt any instance-level object seg-

mentation network such as DeepMask [37], MNC [8], etc.

In this work, we adopt the similar technique as in Instance-

FCN [6] and FCIS [31], which are state-of-the-art methods

for instance segmentation. It applies 1 × 1 convolutional

layer on the feature maps to produce k2 position sensitive

score maps. The k2 (we use k = 7 in this work) maps en-

code the relative-position information between image pix-

els and ROIs (e.g., top-left, bottom-right). Given a ROI, its

per-pixel score map is assembled by dividing the positive

sensitive score maps into k2 cells and copying each cell’s

content from the corresponding k2 maps. This step gener-

ates a fixed-size (28 × 28) per-ROI foreground probability

map.

However, this strategy still has several limitations: first,

it only runs on square sliding windows; second, it ignores

object category information and is limited to object gener-

ate object segment proposals. We extend this approach in

two aspects to seamlessly integrate it into the object detec-

tion network. First, we extend its k2 score maps to k2 ∗ C
score maps, where C indicates the category number. In

this way, the individual segmentation module for each cat-

egory is optimized. Second, we employ generic object pro-

posals [38] to replace the square sliding windows and the

position-sensitive ROI pooling layer in [9] on the propos-

als. During training, a sigmoid layer is applied on each cat-

egory of the per-ROI score maps to generate the instance

foreground probability maps.

Segmentation Loss Our approach estimate a correspond-

ing pseudo mask for each object instance. For a ROI that

has intersection-over-union (IOU) larger than 0.5 with a

ground-truth object, we define a per-pixel sigmoid cross-

entropy loss on the ROI’s foreground probability map, with

respect to current pseudo mask of the object that is regarded

as a hidden ground truth mask. We call this term 2D mask

loss.

Since the pseudo masks are quite noisy, it may damage

our network if directly using it as the supervision. Since

each ground truth bounding box tightly encloses the object,

this implies that for a horizontal or vertical scan line in the

box, at least one pixel on the line should be foreground.

On the other hand, all pixels outside of the box should be

background. Accordingly, we define a 1D box loss term for

each ROI. Specifically, the predicted foreground mask of

each ROI is projected to two 1-d vectors along the horizon-

tal and vertical directions, respectively, by applying a max

operation on all values of a scan line. For each position on

the 1-d vector, it is denoted as foreground when its corre-

sponding line is inside the box. Otherwise, it is denoted

as background. The 1D loss term summarizes the sigmoid

cross-entropy loss on all positions of the 1-d vectors. Note

that a similar 1D loss idea has also been utilized in Loc-

Net [17] for bounding box regression. In this work, we use

it for object segmentation.

In summary, by combining the 2D mask loss and 1D box

loss, the segmentation loss in Eq. (1) is computed by

Lseg = L2D(M(Θ)|Mpseudo) + L1D(M(Θ)|Bgt). (2)
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Object Detection with Top-down Segmentation Feed-

back For the detection sub-network, we use the state-of-

the-art Fast(er) R-CNN [18, 38]. It applies a ROI pooling

layer for each ROI on the feature maps to obtain per-ROI

feature maps, and then applies fully connected (FC) layers

to output detection results.

In the common multi-task setting, the two sub-networks

do not interact and only use the separate optimization tar-

get. However, the object segmentation and detection tasks

are highly correlated to each other and the sub-networks

also share similar structures, we connect the two so that

the segmentation network provides top-down feedback in-

formation for detection network.

The feedback from segmentation consists of the global

feedback and the instance feedback (the two red dotted

arrows in Figure 1). In terms of the global level, the

k2 ∗ C position-sensitive score maps in the segmentation

sub-network (before ROI pooling) encode the segmentation

information on the whole image. They are of the same spa-

tial dimension of the shared convolutional feature maps but

different feature channels, in general. A 1×1 convolutional

layer is applied on the score maps to change its channel

number to match that of the shared feature maps. The two

sets of maps are then element-wisely summed to produce

the “rectified” global feature maps for the object detection

sub-network.

In terms of instance level, the instance segmentation

masks (i.e., per-ROI score maps) encode the specific pixel-

wise characteristics of each object instances. As shown in

Figure 1, after the ROI pooling step in both sub-networks,

the per-ROI instance segmentation score maps from the seg-

mentation branch are passed through a 1 × 1 convolutional

layer and max pooling layer to obtain feature maps with the

same dimension as the per-ROI feature maps of the detec-

tion branch. The score maps from two branches are then

summed to produce the “rectified” instance feature maps.

Afterwards, several fully connected (FC) layers are used

to generate the object classification scores and bounding

box regression results, in the same way as Fast RCNN [18].

The detection loss in Eq. (1) includes the classification soft-

max loss and bounding box regression loss for all ROIs,

Ldet = Lcls(B(Θ)|Bgt) + Lreg(B(Θ)|Bgt). (3)

Training Given the estimated pseudo masks Mpseudo in

each step, the instance-level segmentation network and ob-

ject detection network are optimized by stochastic gradient

descent, using image centric sampling [18]. In each mini-

batch, two training images are randomly sampled. The loss

gradients from Eq. (1) are back propagated to update all the

network parameters jointly.

3.2. Pseudo Mask Refinement

Accurate pseudo mask is the key to bridge the object de-

tection and instance-level segmentation networks. The es-

timated pseudo masks directly from the segmentation net-

work are usually noisy and blurred. More importantly, as

the pixels are considered individually by the convolutional

network, the informative interactions between pixels are not

fully exploited, such as the smoothness constraint used in

traditional image and object segmentation.

In this work, we explore a graphical model to refine

the pseudo mask estimation, which jointly incorporates the

current mask probabilities from the instance-level segmen-

tation network, the low level image appearance cues and

the ground-truth bounding box information. The graphical

model is defined on a graph constructed by the super-pixels

generated by [13] for each object instance. For each graph,

a vertex denotes a super-pixel while an edge is defined over

neighboring super-pixels. Note that in this step the spa-

tial range of the pseudo mask is enlarged by 20% from the

ground truth bounding box, in order to include more bound-

ary areas and thus improve segmentation quality.

Formally, for all super-pixels {xi} in the pseudo mask

under consideration, we estimate their binary labels {yi},

where yi = 1 indicates foreground, and 0 for back-

ground. Similar to the traditional object segmentation ap-

proaches [3, 39], we define a global objective function in

the form of

∑

i

U(yi) +
∑

i,j

V (yi, yj). (4)

Unary Term. The unary term U(yi) measures the like-

lihood of the super pixel xi being foreground. It considers

both the foreground probabilities from the network and the

ground truth bounding box bgt, defined as

U(yi) =



















0 if yi = 0 and xi /∈ bgt

∞ if yi = 1 and xi /∈ bgt

−log(1− probfg(xi)) if yi = 0 and xi ∈ bgt

−log(probfg(xi)) if yi = 1 and xi ∈ bgt.
(5)

The first two cases ensure that xi is background when

it is outside the ground truth bounding box. The last two

cases directly adopt the results from the current network es-

timation when xi is inside, where log(probfg(xi)) is sim-

ply the summation of the pixel-wise log probability of all

pixels in the super-pixel xi. To obtain a pixel’s foreground

probability, firstly we only consider the probability of the

ground truth object category as the foreground probability.

Secondly, the segmentation sub-network outputs all ROIs’

mask probability maps. To obtain the foreground probabil-

ity on a single ground truth object, we find all ROIs with
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method w/ seg. loss w/ mask refinement w/ global feedback w/ instance feedback VGG-16 ResNet-50 ResNet-101

ION [1] 75.6

CRAFT [46] 75.7

HyperNet [29] 76.3

RON [28] 75.4

Faster-RCNN [38] 73.2 74.9 76.4

Ours (a) 74.5 78.1 79.4

Ours (b) X 74.9 78.2 79.6

Ours (c) X X 75.7 78.6 79.9

Ours (d) X X X 76.0 78.7 80.0

Ours (e) X X X 76.2 78.9 80.4

Ours (f) iter. 1 X X X X 75.9 78.9 80.1

Ours (g) iter. 2 X X X X 76.4 79.2 80.4

Ours (h) iter. 3 X X X X 77.0 79.6 80.7

Table 1. Object detection results on VOC 2007 test training on the union set of VOC 2007, VOC 2012 train and validation dataset

IoU larger than 0.5 with the ground-truth object, and av-

erage their foreground probabilities together as the fore-

ground probabilities for the object.

Pairwise Term. The pair-wise binary term V (yi, yj)
considers the local smoothness constraints, defined on all

neighboring super pixels. It uses the low level image cues

similarly as in [3, 39]. If the neighboring super-pixels are

similar in appearance, the cost of assigning them different

labels should be high. Otherwise, the cost is low.

We use both color and texture information to measure

the similarity as in [33]. For a super-pixel xi, its color his-

togram hc(xi) is built on the RGB color space using 25 bins

for each channel. The texture histogram ht(xi) is built on

the gradients at the horizontal and vertical orientations with

10 bins for each. The pair-wise binary term is defined as

V (yi, yj) =[yi 6= yj ]
{

−
‖hc(xi)− hc(xj)‖

2
2

δ2c

−
‖ht(xi)− ht(xj)‖

2
2

δ2t

}

,

(6)

where [·] is 1 or 0 if the subsequent argument is true/false.

δc and δt are set as 5 and 10, respectively.

The objective function in Eq. (4) is minimized by graph

cut solver [2], for the pseudo mask of each object instance

in each image. The resulting binary labels {yi} define the

refined binary pseudo masks Mpseudo, which are then used

as supervision signals to train the network in next iteration

(Algorithm 1).Some exemplar predicted pseudo masks of

object instances are illustrated in Figure 2.

4. Experiments

4.1. Implementation and Training Details

Our experiments are based on Caffe [25] and public

Faster-RCNN code [38]. For simplicity, the region pro-

posal network (RPN) is trained once and the obtained ob-

ject proposals are fixed. We evaluate the performance

of the proposed PAD using three state-of-the-art network

structures: VGG-16 [43], ResNet-50 [24] and ResNet-

101 [24]. We use the publicly available pre-trained model

on ILSVRC2012 [40] to initialize all network parameters.

Each mini-batch contains 2 randomly selected images,

and we sample 64 region proposals per image leading to

128 ROIs for each network updating step. After training

the baseline Faster R-CNN model [38] with OHEM [42]

using the above settings, we actually obtain better accuracy

than that reported in the original Faster R-CNN [38], as also

revealed in Table 1 .

We run SGD for 80k iterations with learning rate 0.001

and 40k iterations with learning rate 0.0001. The iteration

number T in Algorithm 1 is set as 3 since no further perfor-

mance increase is observed.

4.2. Ablation study on VOC 2007

Table 1 compares different strategies and variants in our

proposed approach, as well as the results from representa-

tive state-of-the-art works as reference. Following the pro-

tocol in [18], all models are trained on the union set of VOC

2007 [12] trainval and VOC 2012 trainval, and are evalu-

ated on VOC 2007 test set. We evaluate results using VGG-

16 [44], ResNet-50 [24], and ResNet-101 models.

We start from the baseline where no pseudo mask is

used (Table 1(a)). This is equivalent to our faster R-CNN

implementation, which sets a strong and clean baseline.

It achieves 74.5%, 78.1%, and 79.4% mAP scores by us-

ing VGG-16, ResNet-50, and ResNet-101 models, respec-

tively. We then evaluate the naive pseudo mask baseline

(Table 1(b)). This is equivalent to a simple multi-task base-

line with coarse pseudo masks. It obtains slightly higher

accuracies than (a). It indicates that multi-task learning is

slightly helpful but limited, as pseudo mask quality is very
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Method Train mAP

HyperNet [29] 07++12 71.4

RON [28] 07+12 73.0

CRAFT [46] 07++12 71.3

MR-CNN [16] 07++12 73.9

Faster-RCNN(VGG16) [38] 07++12 70.4

Faster-RCNN(ResNet100) 07++12 73.8

PAD (VGG-16) 07+12 74.4

PAD (ResNet-101) 07+12 79.5

Table 2. Detection results on VOC 2012 test. 07+12: 07 trainval +

12 trainval, 07++12: 07 trainvaltest + 12 trainval.

poor.

To evaluate iterative mask refinement, we report the re-

sults of our variant that does not use the mask feedback

for object detection network, as Table 1(c). It differs from

Table 1(b) in that the iterative mask refinement is used.

After three iterations, the mAP scores are 75.7%, 78.6%,

and 79.9%, respectively, which are 1.2%, 0.5%, and 0.5%

higher than Table 1(a). It verifies that our approach is capa-

ble of generating more reasonable pseudo masks.

Furthermore, after performing the top-down segmenta-

tion feedback, the detection performance can be further

improved by comparing the results of Table 1(h) and Ta-

ble 1(c). As shown in Table 1(f), Table 1(g) and Table 1(h),

the detection performance improve steadily over iterations.

Our full model achieves mAP scores of 77.0%, 79.6%,

and 80.7% using different networks, respectively, which are

2.5%, 1.5%, and 1.3% higher than Table 1(a). To disentan-

gle the effectiveness of the global and instance feedbacks,

we block one of them respectively in Table 1(d) and Ta-

ble 1(e). We observe that both the feedbacks are effective

for boosting the object detection accuracy, and combining

them achieves the largest gain.

4.3. Detection Results on VOC 2012

The training data is the union of VOC 2007, VOC 2012

train and validation dataset, following [18]. As reported in

Table 2, our approach obtains 74.4% and 79.5% with VGG-

16 and ResNet-101, which are substantially better than cur-

rently leading methods.

4.4. Segmentation and Detection on VOC 2012 SDS

The Simultaneous Detection and Segmentation (SDS)

task is widely used to evaluate instance-aware segmenta-

tion methods [22, 8]. Following the protocols in [22, 8],

the model training and evaluation are performed on 5623

images from VOC 2012 train, and 5732 images from

VOC 2012 validation sets, respectively. The ground-truth

instance-level segmentation masks are provided by the addi-

method train w/ gt mask? mAPr (%) mAPb (%)

Faster R-CNN - 66.3

MNC [8] X 63.5 -

PAD w/ gt mask X 64.5 68.1

PAD w/ Grabcut mask 48.3 66.9

PAD w/o 1D box loss 49.1 66.9

PAD iter. 0 44.3 66.7

PAD iter. 1 52.1 67.0

PAD iter. 2 58.0 67.5

PAD 58.5 67.6

Table 3. Performance comparison on VOC 2012 SDS task.

tional annotations from [21]. The mask-level mAPr scores

and the box-level mAPb scores are employed as the evalu-

ation metrics for instance-level mask estimation and object

detection performance measure, respectively.

First, we report the upper-bound result of training the

PAD model using ground-truth object masks, i.e., PAD w/ gt

mask in Table 3). It achieves 68.1% mAPb and 64.5% mAPr.

We note that this “oracle” upper bound is strong. The seg-

mentib ation accuracy is even higher than the state-of-the-

art instance-aware segmentation method, MNC [8].

Second, we evaluate the superiority of alternative train-

ing for pseudo mask estimation and network. As shown

in Table 3, PAD obtains mAPb 67.6% and mAPr 58.5%,

which are slightly worse than the upper bound. The

instance-level object segmentation results steadily improve

with more iterative refinements (iter.1, iter.2). The itera-

tive improvement can be observed in Figure 2. Finally,

PAD w/ Grabcut mask shows the instance-level object segmenta-

tion results by using the pseudo masks obtained by Grabcut

method [39], which is a traditional state-of-the-art object

segmentation method. PAD w/o 1D box loss corresponds to re-

sults without using the 1D box loss as in Eq. 2. Their com-

parison with PAD in Table 3 demonstrate the effectiveness

of iterative graph cut refinement and 1D segmentation loss,

the key indigents of PAD. Examples for object detection and

segmentation are shown in Figure 3 and 4.

4.5. Complexity Analysis

On average, under ResNet-101, our Faster RCNN base-

line requires 1.5 sec to process each image, during training.

The PAD increases this to 1.9 sec. During testing, the base-

line requires 0.42 sec and the PAD 0.49 sec. Note that the

overall training time is non-trivially larger, due to the itera-

tive training, but this has no impact in testing. The learned

network is only slightly slower than the Faster RCNN. Re-

garding parameters (see Figure 1), the PAD has 3 additional

1× 1 conv layers (1 in InstanceFCN, 1 for global feedback,
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Figure 3. Example object detection results of our approach SDS validation set

Figure 4. Example object segmentation results of our approach on SDS validation set

1 for instance feedback). These add about 1M parameters.

For reference, VGG has 134M and ResNet-101 has 42M.

The increased capacity can be considered minor.

5. Conclusion

In this work, we present a novel Pseudo-mask Aug-

mented object Detection (PAD) model to facilitate object

detection with the instance-level segmentation information

that are only supervised by bounding box annotation. Start-

ing from the joint object detection and instance segmenta-

tion network, the proposed PAD recursively estimates the

pseudo ground-truth object masks from the instance-level

object segmentation network training, and then enhance the

detection network with a top-down segmentation feedback.
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