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Abstract

Despite the remarkable progress in action recognition

over the past several years, existing methods remain limited

in efficiency and effectiveness. The methods treating ap-

pearance and motion as separate streams are usually sub-

ject to the cost of optical flow computation, while those re-

lying on 3D convolution on the original video frames of-

ten yield inferior performance in practice. In this paper,

we propose a new ConvNet architecture for video repre-

sentation learning, which can derive disentangled compo-

nents of dynamics purely from raw video frames, without the

need of optical flow estimation. Particularly, the learned

representation comprises three components for represent-

ing static appearance, apparent motion, and appearance

changes. We introduce 3D pooling, cost volume processing,

and warped feature differences, respectively for extracting

the three components above. These modules are incorpo-

rated as three branches in our unified network, which share

the underlying features and are learned jointly in an end-to-

end manner. On two large datasets, UCF101 [22] and Ki-

netics [16], our method obtained competitive performances

with high efficiency, using only the RGB frame sequence as

input.

1. Introduction

In recent years, action recognition in videos has received

increasing attention from the vision community [25, 21, 23,

3], due to its great potential value in real-world applications.

A distinctive aspect of the video-based action recognition

task is that the dynamics, i.e. the temporal change in the

visual content, plays a crucial role. Whether the dynamics

can be effectively represented and utilized, to a large ex-

tent, determines the performance of an action recognition

method. A key goal of this work is to explore an efficient

and effective way to capture the dynamics in videos.

Since the introduction of deep networks to this area,
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Figure 1. Illustration of disentangling components of dynamics.

From the low-level visual feature maps, we derive three compo-

nents, i.e., static appearance (left), apparent motion (center), and

appearance changes (right) and combine the high-level feature rep-

resentation extracted thereon for action recognition.

two different categories of methods have emerged for video

modeling. The first category of methods rely on a com-

bination of multiple input modalities, e.g. appearance and

motion, to represent videos. The two-stream convnet [21],

a seminal work of this category, combines RGB images and

optical flows for video-based recognition. A key advantage

of this category lies in its strong performance. Many state-

of-the-art frameworks [9, 29, 35, 38] can be considered as

variants of this paradigm. Yet, the methods in this category

are subject to a significant limitation, that is, the reliance on

optical flows to represent motion, which are often expen-
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sive to compute. The models for estimating optical flows

are often learned separately, driven by an objective unre-

lated to recognition. Such issues motivate us to question the

necessity of explicitly computing optical flows for action

recognition. The second category of methods [13, 23, 3, 18]

attempt to derive a unified representation directly from the

sequence of frames through 3D convolution. While this ap-

proach seems to be more elegant, it currently yields inferior

performance when using only original video frames.

The discussion above suggests that the separation of ap-

pearance, motion, and even other components entangled in

a video may be the key to achieve high performance. How-

ever, the conventional way, which relies on an optical flow

estimator to separate the motion channel, is limited in both

efficiency (computing optical flows is costly) and effective-

ness (optical flows are not tailored to discrimination). In

this work, we aim to move beyond such limitations and de-

velop an approach that is free from optical flow computa-

tion, while still enjoying the strong performance of two-

stream style modeling.

Towards this goal, we develop a new ConvNet architec-

ture to learn video representation for action recognition.

This model can derive disentangled components purely

from video frames without using optical flows. Specifically,

we consider a video as a combination of short-term dynam-

ics and long-term temporal structures. We focus on mod-

eling the former, while using TSN [30], an efficient frame-

work for long-term video modeling, to take care of the lat-

ter. As shown in Figure 1, we consider three components

for short-term representation, static appearance, apparent

motion, and appearance changes. Given a video, our net-

work first computes common low-level features from the

sequence of frames through several layers of convolution.

Thereon, it disentangles the aforementioned components

via three branches, which respectively use 3D pooling to

extract static appearance, cost volume processing to capture

apparent motion, and a novel scheme to express appearance

changes via warped feature differences. These modules are

integrated into a unified network to make the final predic-

tions and are learned jointly in an end-to-end fashion.

Overall, the key contribution of this work is a unified net-

work architecture for learning video representation. This ar-

chitecture is distinguished in three aspects: 1) It can obtain

disentangled components directly from raw video frames

to effectively represent short-term dynamics. This proce-

dure is free from optical flow computation or other exter-

nal modules. 2) It is both efficient – the computation of

all components can share underlying features, and effec-

tive – separated modeling of different components results

in high performance. 3) On two public benchmarks for ac-

tion recognition, UCF101 [22] and Kinetics [16], it obtains

improved performance compared to state-of-the-art meth-

ods, using only RGB sequences as input, while having high

runtime efficiency.

2. Related Work

We now briefly review previous efforts in understanding

the video contents. Specifically, we will discuss 1) works

on using convolutional networks for action recognition; 2)

the two-stream ConvNet method and its variants; 3) other

efforts in harnessing motion information for action recogni-

tion.

Convolutional networks for action recognition. Deep

convolutional neural networks based models have seen wide

applications in action recognition [15, 21, 23] and have

gradually surpassed the performance of traditional meth-

ods [25, 26, 17]. Beyond simply classifying videos by

aggregating frame-based prediction [15], a set of methods

have been proposed to use 3D convolutions and directly

model the dynamics in video frames [13, 23]. While ap-

pearing elegant, one possible limitation of these methods is

that they mix the modeling of visual appearance and content

changes in the 3D convolution operations. Thus their per-

formance was inferior to traditional methods. Two-stream

ConvNet based methods were introduced later to mitigate

this issue by separating the modeling of appearance and

temporal changes [21, 33, 9, 30]. These methods rely on

dense optical flow estimation provided by external tools to

represent short-term motion information. They achieved

much better performance and successfully surpassed the tra-

ditional methods in terms of recognition performance. Re-

cently, a hybrid of 3D convolution and two-stream ConvNet

was proposed in [24, 3] and achieved competitive results on

large-scale datasets [16]. But these methods are still limited

by the heavy computation of optical flow. Another line of

research investigate how to utilize long term temporal in-

formation to help action recognition [30, 5, 7] and temporal

action detection [37, 28]. They have shown that end-to-end

learning of action recognition models with the help of long

term information can benefit the recognition performance.

Motion representation. Motion information is the key fac-

tor that differentiates video-based action recognition from

image-based object recognition. Many works have been

dedicated to exploring different design of motion represen-

tations for action recognition [25, 21, 32, 36]. Conventional

approaches [6, 25, 26] used hand-crafted features of trajec-

tories which are based on optical flow. More recent convo-

lutional networks treat a stack of optical flow as input di-

rectly. The most widely used optical flow method for action

recognition is TV-L1 [34]. It is computed by minimizing an

energy function defined over the whole displacement field,

which prohibits it from end-to-end training. In [31], Xu et.

al. proposed to construct a four-dimensional cost volume to

get a semi-dense correspondence map. The final result was

obtained by refinement and interpolation. Most of the state-

of-the-art optical flow estimation approaches [1, 19, 31]
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Figure 2. Overview of the proposed network architecture. Given a consecutive frame sequence, the model first produces some low-level

feature maps which are then fed into three branches, namely static appearance (upper), apparent motion (middle), and appearance change

(bottom). These branches compute their corresponding high-level feature and make predictions respectively. At the end, these predictions

are combined to be the final prediction.

are prohibitive for action recognition applications due to

the high computational cost. FlowNet [8, 11] is a family

of CNN-based optical flow prediction methods for general

purpose. It introduced a correlation layer to predict optical

flow from inter-frame correlation. However, a larger net-

work (FlowNet 2.0) cascaded with several subnetworks is

required for good estimation, which at the same time brings

much computation. Zhu et. al. proposed a fully convolu-

tional network called MotionNet in [38] to produce optical

flow by next frame prediction. The learned optical flow was

then plugged into the two-stream network.

Due to the expensive computation, optical flow is usually

calculated in advance and then stored in hard drives, which

increases the burden of storage. Motivated by this, efforts

have been made to find good alternatives. Zhang et. al.

proposed to use motion vector [35], which can be obtained

directly from compressed videos without extra calculation.

However, motion vector is noisy and lacks fine structure.

Wang et. al. found in [30] that the difference between ad-

jacent RGB frames, namely RGB-diff, can be used instead

to substitute optical flow at the cost of performance degra-

dation. In [4, 2], alternative motion representations have

been introduced by collapsing the information from multi-

ple frames into a single image.

3. Method

Our primary goal in this work is to develop an eff-

cient and effective representation of short-term dynamics

in videos. This representation can work with various high-

level models for capturing long-term temporal structures,

e.g. TSN [30] and LSTM [7], to completely model a video.

Towards this goal, we take a systematic perspective and

consider the dynamics as a compound of three key compo-

nents: 1) static appearance – the overall scene appearance,

which is usually stable over time, 2) apparent motion – the

changes due to the movement of objects or the camera, and

3) appearance changes – the inherent changes in the ap-

pearance caused by other factors.

3.1. Overall Architecture

We design a unified convolutional network that can dis-

entangle the three components outlined above purely based

on an input sequence of frames. Figure 2 shows the over-

all architecture of our design. Specifically, given a short

video clip in the form of a frame sequence, the network first

produces low-level feature maps with 64 channels for indi-

vidual frames via several convolution layers. The low-level

feature maps mainly capture the primitive visual elements

and thus can be shared by all components as the common

foundation for further processing. Subsequently, these fea-

tures are fed to three branches, each of which is devised

to characterize a component. These branches will com-

pute the component-specific high-level features and then

make classification predictions respectively. At the end, the

component-specific predictions would be combined into the

final prediction by average.

The detailed design of the architecture follows BN-

Inception [12]. Technical details of the architecture are pro-

vided in the supplemental materials. In what follows, we
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Figure 3. An illustration of the static appearance branch with 2D

convolution, spatial 2D pooling and temporal 1D pooling.

will introduce the three component-specific branches with

details, as well as how the components are fused.

3.2. The Static Appearance Branch

The first branch is to derive a representation of the

static appearance of the observed scene. In mainstream

architectures, e.g. two-stream ConvNet [21] and its vari-

ants [7, 27, 30], the appearance features are typically com-

puted per frame and thus are sensitive to nuances like mo-

tion blur and sudden camera movement. This issue can

be effectively mitigated by selecting the highest responses

across neighboring frames.

Following this idea, we incorporate both convolution

layers and temporal pooling layers in this branch. The for-

mer is for extracting visual patterns (like in a typical CNN),

while the latter is for stabilizing the features across neigh-

boring frames. Figure 3 shows the structure of this branch.

Given a sequence of frame-wise low-level features, this

branch gradually distill the appearance feature by iteratively

applying 2D convolution, spatial 2D pooling, and temporal

1D pooling. Here, the combination of a spatial pooling layer

followed by temporal pooling layer essentially constitutes

a 3D pooling operation that pools activations over spatio-

temporal neighborhoods. Along the iterations, both the spa-

tial and temporal resolutions of the feature maps are grad-

ually reduced, while the number of channels is increased.

Over multiple iterations, the input feature maps with 64
channels will be turned into a single 1024-dimensional fea-

ture vector, which serves as the representation of the static

appearance component.

Note that the 3D convolution introduced in previous

work [23] also allows the features to be fused both spatially

and temporally. However, for capturing static appearance,

our design of 2D convolution followed by 3D pooling is

more suitable for two reasons: 1) The purpose of this com-

ponent is to capture the features that are stable over time but

not to account for the dynamics. Our design offers enough

expressive power to capture appearance patterns, but in a

much lower cost. 2) 3D convolution layers, due to their sig-

nificantly larger parameters, often take more samples and

iterations to train. In our design, 3D pooling is parameter-

free, while the 2D convolution layers can be readily trans-

ferred from the CNNs pretrained on image data.
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Figure 4. An illustration of cost volume construction. Note that

the cost volume Ct is a four-dimension tensor.

3.3. The Apparent Motion Branch

Generally, apparent motion refers to the spatial displace-

ment of feature points in video frames. Previous works on

action recognition [21, 27, 30] have repeatedly shown the

significance of the motion information. In those works,

the apparent motion is usually represented by dense opti-

cal flow fields. However, as mentioned, the computation

of optical flows is expensive and often requires an external

module.

In designing the branch for apparent motion, we explore

an alternative way, that is, to directly base the motion repre-

sentation on cost volume. Note that cost volumes have been

widely used in low-level vision tasks, e.g. optical flow esti-

mation [31], as an intermediate facility. To our best knowl-

edge, this is the first time that cost volumes are directly used

for motion representation in an action recognition model.

Cost volume construction. We construct cost volumes

on top of the low-level feature maps between consecutive

frames. Given a pair of feature maps Ft and Ft+1, we can

construct a cost volume Ct ∈ R
H×W×(2∆H+1)×(2∆W+1)

by matching each point with its neighbors in a window of

the size (2∆H + 1) × (2∆W + 1). Elements in the cost

volume Ct are the matching similarities. Particularly, in

our construction, Ct(i, j, δi, δj) is the cosine similarity be-

tween ft(i, j) and ft+1(i + δi, j + δj), which are respec-

tively the low-level feature vectors at location (i, j) and

(i+ δi, j + δj).

FlowNet [8] also adopts a similar construction for the

correlation layer. Our formulation, however, differs essen-

tially in two ways: 1) The elements of the correlation maps

in FlowNet are unnormalized dot products between feature

vectors instead of cosine similarity. 2) The correlation maps

in FlowNet are combined with appearance feature maps

when fed to the next layer as input. Such differences suggest

that the construction in FlowNet preserves more appearance

information, while our construction focuses on motion in-

formation, which will be further strengthened in the next

step, namely cost volume processing.

6569



Cost volume processing. On top of a cost volume Ct,

we will further derive a lower dimensional representation to

capture the motion information more concisely. A natural

way is to compute a point-wise motion field by associating

the feature points in one frame to those in the next, using a

winner-take-all (WTA) assignment as in [31]. However, we

argue that this way does not necessarily result in a sufficient

characterization of the motion. On a low-resolution feature

map (instead of a high-resolution image), a considerable

portion of the displacements are sub-pixel. Hence, hard cor-

respondence between feature points may lead to erroneous

estimates. Moreover, as efficiency is a key goal in our de-

sign, it is undesirable to introduce heavy post-processing

stages to refine the estimates. We will show in an ablative

study that the representation derived from hard assignment

yields inferior performance (see Sec. 4).

Instead, we propose a method based on soft assign-

ment. Specifically, we introduce a displacement map Vt ∈

R
H×W×2 to capture the motion from time t to t + 1. To

simplify the notation, we omit the time index t in the fol-

lowing discussion. In this map, each location (i, j) is as-

sociated with a 2-dimensional vector vi,j = (vyi,j , v
x
i,j) that

represents the displacement at that location. Particularly,

vyi,j and vxi,j respectively represent the displacement along

vertical and horizontal directions. We compute the displace-

ment map Vt as follows:

vyi,j =

∆H∑

δi=−∆H

ρy(i,j)(δi) · δi,

vxi,j =

∆W∑

δj=−∆W

ρx(i,j)(δj) · δj. (1)

Here, the coefficients ρy(i,j) and ρx(i,j) are determined based

on the cost volume as

ρy(i,j)(δi) =

∑
δj′ exp(ci,j(δi, δj

′)/τ)
∑

δi′

∑
δj′ exp(ci,j(δi

′, δj′)/τ)
,

ρx(i,j)(δj) =

∑
δi′ exp(ci,j(δi

′, δj)/τ)∑
δi′

∑
δj′ exp(ci,j(δi

′, δj′)/τ)
. (2)

Here, ci,j(δi, δj) = Ct(i, j, δi, δj). This computation can

be understood as computing the expected displacement at

each point based on a distribution over correspondences.

The temperature coefficient τ controls the concentration of

the distribution. When τ → 0, the probability mass will be

concentrated on the point with highest similarity, and this

scheme reduces to winner-take-all assignment. The compu-

tation of ρy(i,j) and ρx(i,j) can be accomplished by softmax

transforms along the vertical and horizontal dimensions.

With these assignment weights, the displacement map Vt

can be obtained by 2D convolution.

After obtaining the displacement maps, we feed the maps

as input feature maps to the subsequent convolution layers

in this branch for high-level feature extraction. The result is

a 1024-dimensional feature vector representing the appar-

ent motion information of the input frame sequence. The

parameters in this branch are end-to-end trained together

with other branches using video action labels.

3.4. The Appearance Change Branch

Not all changes observed in a video can be explained by

apparent motion. Other factors such as the inherent changes

of an object’s appearance or the variation in illumination

may also cause changes in video frames. In previous work,

such changes are often simply captured by the differences

between consecutive frames, e.g. RGB-Diff [30]. This way,

however, will mix the appearance changes with apparent

motion, thus going against our desire to disentangle them

into different components. In this work, we take a differ-

ent approach. Given a pair of feature maps from consecu-

tive frames Ft and Ft+1, we first warp Ft according to Vt,

the estimated motion field from the apparent motion branch,

resulting in a warped feature map as F
′

t+1 = W(Ft,Vt).
The warping is done with bilinear interpolation. The fea-

tures at those locations whose source points are outside the

image domain are set to zeros. Finally, we compute the

difference between the warped feature map F
′

t+1 and Ft+1

as Ft+1 − F
′

t+1. We call the resultant difference map as

warped differences, which are used as the representation of

the appearance changes.

The warped differences are fed into subsequent layers in

the similar manner of the displacement maps in the appar-

ent motion branch. We again achieve a 1024-dimensional

feature vector characterizing the appearance change infor-

mation to be fused into the final representation.

4. Experimental Results

To evaluate the proposed network architecture, we con-

duct action recognition experiments on two benchmark

datasets, with in-depth study of the components in the ar-

chitecture to verify our design principles. We also provide

visualization of the learned motion representation as a crit-

ical part of the final representation and discuss its relation-

ship with conventional optical flows.

4.1. Experimental Settings

Dataset. We conduct experiments on two action recogni-

tion benchmark datasets: UCF101 [22] and Kinetics [16].

The UCF101 dataset contains 13,320 videos divided into

101 action classes. The videos are collected from the Inter-

net. We follow the evaluation scheme of the THUMOS13

challenge [10] and adopt the three training/testing splits for

evaluation. The proportions of videos in the training and

testing sets are around 75% and 25%, respectively. For

this dataset, the top-1 action recognition accuracy is used as

the evaluation metric to compare different approaches. The
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Kinetics human action dataset [16] contains over 300,000

videos from 400 human action classes. The videos are col-

lected with textual queries on the YouTube website. Image

based CNN models are firstly used to roughly filter the neg-

ative samples. For each video a 10-second clip is extracted

and assigned a manually annotated category label. Due to

the inaccessibility of some videos on YouTube, our version

of the Kinetics dataset contains 240436, 19796 and 38685

clips in the training, validation, and testing subset, respec-

tively. On this dataset, we measure the action recognition

performance with respect to top-1 and top-5 recognition ac-

curacy.

Implementation details. We use stochastic gradient de-

scent algorithm to train our neural network models. The

mini-batch size is set to 256 and the momentum is set to

0.9. On UCF101, we use a small initial learning rate of

0.001 for the static appearance branch, and decrease by 1
10

every 1,500 iterations. The training procedure stops after

4500 iterations. For the motion branch and the appearance

change branch, we use a larger learning rate of 0.005, which

is decreased by a factor of 1
10 after 10,000 and 16,000 iter-

ations. The training stops after 18,000 iterations. On Kinet-

ics, a learning rate initialized with 0.01 is decreased by 1
10

every 40,000 iterations. The whole procedure takes 110,000

iterations. We use gradient clipping of 20 to avoid explod-

ing gradient at early stage. All the experiments are run on

the Caffe toolbox [14]. To facilitate convergence, we fol-

low the practices introduced in [30]: (1) cross-modality

pre-training: the weights of all branches are initialized with

ImageNet [20] pre-trained BNInception [12]; (2) regular-

ization techniques including partial BN (for the experiments

in UCF101 only), and an additional dropout layer after the

global_pool layer. For more details on other design pa-

rameters of the network architecture, please refer to the sup-

plementary materials.

4.2. Ablation Study

We justify the performance of our proposed design by

conducting an ablation study. Also, we hope this study

would provide useful insights for future design of video rep-

resentations. Particularly, we first evaluate the recognition

performance when separately using each branch for action

recognition. Then, as discussed in Sec. 1, we investigate

whether the learning of short term dynamics representation

discussed in this work can benefit from jointly learning with

long term information. Finally we analyze the choices of

fusing representations from branches. All experiments in

this ablation study are performed on the split 1 of UCF101

dataset.

Modeling static appearance with 3D pooling. To verify

the effect of stabilization for 3D pooling, we first compare

the 3D-Pool architecture with original single-frame 2D spa-

tial ConvNet using RGB frames as input. From Table 1, we

Method # frames Accuracy

2DConv+2DPool 1 84.5%

3DConv [3] 64 84.5%

2DConv+3DPool (late pool) 8 85.9%

2DConv+3DPool (gradual pool) 8 86.5%

Table 1. Comparison of the network architectures for the static

appearance branch on the UCF101 split 1. In the lower half, we

compare two schemes for adding 3D pooling into the network.

# of frames 1 2 4 8 16

Accuracy 84.5% 85.4% 85.6% 86.8% 87.4%

Table 2. Recognition accuracy with different frame numbers on

the UCF101 split 1.

can see that the insertion of temporal pooling improves the

single-frame model by 2%, which is a significant gain for

UCF101. By increasing the number of input frames, con-

sistent improvement can be clearly observed in Table 2. In

the following experiments, the number is set to be 8 to strike

a balance between performance and runtime cost since pro-

cessing more than 8 frames provides marginal performance

gain while linearly increasing the processing time for one

input.

When only trained on the UCF101 dataset, our model

also achieves a better result than the I3D model with

RGB input [3]. This observation demonstrates that with

parameter-free 3D pooling operation, our method can be

more data efficient on smaller scale dataset like UCF101.

To assess the effect of inserting 3D pooling operations

after different layers, we experiment with two types of

pooling strategies: (1) Late 3DPool, which only has one

global temporal pooling after the network produces its fi-

nal features. In other words, the temporal dimension is

preserved and only fused in the highest level. (2) Grad-

ual 3DPool, which is to do temporal pooling after pool2,

inception3c, and inception4e. The results are

shown in the lower half of Table 1. Gradual 3DPool per-

forms better than Late 3DPool. This suggests that introduc-

ing 3D pooling operations with small window sizes but at

multiple positions can help better preserve the appearance

information and produce better feature representations.

Modeling apparent motion with cost volume processing.

Here we explore the design choices of cost volume con-

struction. We leverage the low-level feature map after the

conv1 layer in the base network, and vary the stride of

convolution. We also experiment with different assignment

methods. The performance of these settings is illustrated

in Table 3. First we find the displacement map produced

by the soft assignment method is better than the hard as-

signment, denoted as “WTA”. Also the higher resolution of

the input feature map leads to better quality of the motion

representation.
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Method Accuracy FPS

TV-L1 [34] 92.0% 15

FlowNet [8] 86.8% 52

FlowNet 2.0 [11] 90.4% 8

MotionNet [38] 87.5% 120

Hidden Two-Stream [38] 89.8% 120

Cost volume + WTA 86.4% -

Disp. Map (112× 112) 88.2% 190

Disp. Map (224× 224) 89.6% 53

Table 3. Comparison of accuracy and efficiency between different

motion representations on UCF101 split 1.

Warping method Input Accuracy

No warping RGB 84.0%

No warping Feature 84.8%

TV-L1 warping RGB 85.1%

Disp. Map warping RGB 80.0%

Table 4. Comparison between different warping strategies and

warped inputs.

Branch w/o TSN w/ TSN

Static Appearance 86.5% 87.3%

Displacement Map 80.8% 83.4%

Full model 89.5% 91.2%

Table 5. Comparison between settings with and without long term

information in the learning. The experiments are conducted on

UCF101 split 1.

Static App. Motion App. change Accuracy

TV-L1 Disp. Map RGB-Diff Warped-Diff

X X 94.0%

X X X 93.8%

X X X 94.1%

X X 91.2%

X X X 91.5%

X X X 91.3%

Table 6. The comparison of results by fusion from different

branches. The results are reported on UCF101 split 1.

We also compare with other optical flow based two-

stream approaches in terms of both recognition accuracy

and running efficiency. The results are summarized in Ta-

ble 3. Runtime speed is tested on the server using one

NVIDIA TITAN X GPU. The results show that our model

is much faster than traditional optical flow based methods.

It also shows that our approach can achieve competitive or

even superior results with optical flow based methods such

as FlowNet 2.0 [11] and MotionNet in [38] with a FPS as

high as 190.

Modeling appearance changes. We study different set-

tings of warped differences in Table 4. We observe that

RGB difference warped by TV-L1 achieves higher results

than naive RGB difference. This verifies our hypothesis that

motion and appearance change should be decoupled. Then

we use the motion field estimated by the cost volume for

the guidance of warping. In experiments we find although

the cost volume motion field is noisy, it can still help pro-

duce reasonable result for the warping. Further in the fol-

lowing discussion of representation fusion, we will show

that such representation provides complementary informa-

tion and contributes to improved recognition accuracy.

Combination with learning long-term dynamics Here

we perform a series of experiments to compare the set-

tings with or without long-term modeling techniques such

as TSN [30]. The results are summarized in Table 5. We ob-

serve that long term information still benefits the learning of

short term representations. This also conforms our idea of

dividing video contents into short term dynamics and long

term temporal structures. In the following experiments the

models are all trained with TSN [30].

Fusing representation from branches. Due to the cur-

rent disentangling design, we are able to investigate the

contribution of each branch to the final recognition perfor-

mance and the choice of different branch combinations. The

results are shown in Table 6. We first combine only the

static appearance and apparent motion branches. Then we

add the warped difference based appearance branch. For

comparison, we also experiment with using non-warped

RGB difference for input. The results suggest that: 1)

The best performance is achieved when combining all three

branches, which corroborates our disentangling of the com-

ponents. 2) The warped difference can also help improve

the performance of traditional optical flow based methods,

showing the validity of the appearance change component.

3) Currently, although the proposed architecture is much

faster than the traditional optical flow based method, there

is still a performance gap in terms of accuracy.

4.3. Comparison with the StateoftheArt

We compare the action recognition performance of our

approach with other state-of-the-art methods that take RGB

frames as input. The results on UCF101 and Kinetics are

shown in Table 7 and Table 8 respectively. First we notice

that our model achieves comparable or superior results on

these benchmark datasets. When trained and tested on the

UCF101 dataset, our model outperforms previous models

by a healthy margin. On the Kinetics dataset, our model

outperforms the heavy 3D convolution based models while

remaining very efficient.

Since it is expected that the 3D convolution based meth-

ods benefit more from larger datasets, we also benchmarked

our method on UCF-101 using models pre-trained on Kinet-

ics. The improvement demonstrates that our method is also

able to scale with more training data.
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Method Pre-train Accuracy

C3D (1 nets) [23] Sports-1M 82.3%

C3D (3 nets) [23] Sports-1M 85.2%

Pseudo-3D ResNet [18] ImageNet+Sports-1M 88.6%

RGB-I3D [3] ImageNet 84.5%

RGB+EMV [35] ImageNet 86.4%

TSN (RGB) [30] ImageNet 85.7%

TSN (RGB+RGB-Diff) [30] ImageNet 91.0%

Ours ImageNet 91.8%

Ours ImageNet+Kinetics 95.9%

Table 7. Comparison with state-of-the-art on the UCF101 dataset.

We compare with other methods taking only RGB sequences as

input. The accuracy is averaged over three splits.

Method Accuracy(Top-1/Top-5)

Two-Stream (RGB) [16] 56.0% / 77.3%

3D-ConvNet [16] 56.1% / 79.5%

RGB-I3D [3] 68.4% / 88.0%

Ours 71.5% / 89.9%

Table 8. Comparison with state-of-the-art using only RGB frames

on the Kinetics dataset.

4.4. Runtime Analysis

To quantify the efficiency of our method, we test the run-

time speed for each of the proposed components and the

overall architecture using an NVIDIA TITAN X GPU. The

size of displacement map is 224 × 224. The runtime pro-

filing is summarized in Table 9. Note that the runtime for

the motion and appearance change branches is divided into

two parts: 1) the construction of displacement map takes

15.4 ms per frame and is shared between the two branches

and 2) the classification phase is individually executed by

the following subnetworks. The whole system can achieve

a real-time performance at over 40 FPS.

Branch Static App. Motion App. Change Overall

ms/frame 1.19 (15.4)+3.33 (15.4)+4.23 24.1

FPS 840 53 51 41

Table 9. Runtime analysis for the proposed individual components

and the overall architecture. Numbers in brackets indicate the time

cost for displacement map processing which is shared between

branches.

4.5. Visualization

In this section, we present a qualitative study by visualiz-

ing the intermediate results. As shown in Figure 5, the dis-

placement map contains much more noise than the optical

flow calculated by TV-L1 [34] because the optimization ob-

jective in TV-L1 includes a regularization term which favors

smoothness while in the cost-volume formulation we do not

enforce such constraint. However, the following classifica-

tion subnet is expected to filter out the distraction of noise.

We also compare the method between the naive RGB dif-

Image pair TV-L1 Disp. Map

TV-L1 WarpedRGB-Diff Disp. Map Warped

Image pair TV-L1 Disp. Map

TV-L1 WarpedRGB-Diff Disp. Map Warpeded

Figure 5. Visualization results of several representations. Upper

left: input image pair; Upper middle: optical flow produced by

TV-L1; Upper right: displacement map generated by cost volume.

Lower left: RGB-Diff; Lower middle: RGB-Diff warped by TV-

L1; Lower right: RGB-Diff warped by displacement map.

ference and the motion-warped RGB difference. Compared

with RGB difference, motion warped RGB difference fo-

cuses more on the change of apperance, reflected by the

more distinctive edges of moving objects. For more results

and further discussion, please refer to the supplementary

materials.

5. Conclusions

In this work, we propose a new network architecture for

deep learning based action recognition. The approach is

based on the idea of disentangling different components

in the dynamics within an input frame sequence, includ-

ing static appearance, apparent motion, and appearance

changes. We believe this work will provide a new perspec-

tive for action recognition by lifting the reliance on optical

flow in achieving good performance. The proposed net-

work does not need any optical flow for input or supervi-

sion and provides an unified and efficient representation for

the dynamics, which is verified by extensive experiments on

benchmark datasets.
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