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Figure 1: The figure shows a test example with a single person. It demonstrates that our system tracks the pose as the person enters the room and even

when he is fully occluded behind the wall. Top: Images captured by a camera colocated with the radio sensor, and presented here for visual reference.

Middle: Keypoint confidence maps extracted from RF signals alone, without any visual input. Bottom: Skeleton parsed from keypoint confidence maps

showing that we can use RF signals to estimate the human pose even in the presence of full occlusion.

Abstract

This paper demonstrates accurate human pose estima-

tion through walls and occlusions. We leverage the fact that

wireless signals in the WiFi frequencies traverse walls and

reflect off the human body. We introduce a deep neural net-

work approach that parses such radio signals to estimate

2D poses. Since humans cannot annotate radio signals, we

use state-of-the-art vision model to provide cross-modal su-

pervision. Specifically, during training the system uses syn-

chronized wireless and visual inputs, extracts pose informa-

tion from the visual stream, and uses it to guide the training

process. Once trained, the network uses only the wireless

signal for pose estimation. We show that, when tested on

visible scenes, the radio-based system is almost as accu-

rate as the vision-based system used to train it. Yet, unlike

vision-based pose estimation, the radio-based system can

estimate 2D poses through walls despite never trained on

such scenarios. Demo videos are available at our website.

1. Introduction

Estimating the human pose is an important task in

computer vision with applications in surveillance, activ-

ity recognition, gaming, etc. The problem is defined as

generating 2D skeletal representations of the joints on the

arms and legs, and keypoints on the torso and head. It has

recently witnessed major advances and significant perfor-

mance improvements [30, 27, 28, 46, 31, 20, 10, 16, 33, 12,

47, 37, 45, 13]. However, as in any camera-based recogni-

tion task, occlusion remains a fundamental challenge. Past

work deals with occlusion by hallucinating the occluded

body parts based on the visible ones. Yet, since the human

body is deformable, such hallucinations are prone to errors.

Further, this approach becomes infeasible when the person

is fully occluded, behind a wall or in a different room.

This paper presents a fundamentally different approach

to deal with occlusions in pose estimation, and potentially

other visual recognition tasks. While visible light is eas-

ily blocked by walls and opaque objects, radio frequency

(RF) signals in the WiFi range can traverse such occlusions.

Further, they reflect off the human body, providing an op-

portunity to track people through walls. Recent advances

in wireless systems have leveraged those properties to de-

tect people [5] and track their walking speed through oc-

clusions [19]. Past systems however are quite coarse: they

either track only one limb at any time [5, 4], or generate a

static and coarse description of the body, where body-parts

observed at different time are collapsed into one frame [4].

Use of wireless signals to produce a detailed and accurate
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description of the pose, similar to that achieved by a state-

of-the-art computer vision system, has remained intractable.

In this paper, we introduce RF-Pose, a neural network

system that parses wireless signals and extracts accurate 2D

human poses, even when the people are occluded or be-

hind a wall. RF-Pose transmits a low power wireless sig-

nal (1000 times lower power than WiFi) and observes its

reflections from the environment. Using only the radio re-

flections as input, it estimates the human skeleton. Fig. 1

shows an example output of RF-Pose tracking a person as

he enters a room, becomes partially visible through a win-

dow, and then walks behind the wall. The RGB images in

the top row show the sequence of events and the occlusions

the person goes through; the middle row shows the confi-

dence maps of the human keypoints extracted by RF-Pose;

and the third row shows the resulting skeletons. Note how

our pose estimator tracks the person even when he is fully

occluded behind a wall. While this example shows a single

person, RF-Pose works with multiple people in the scene,

just as a state-of-art vision system would.

The design and training of our network present different

challenges from vision-based pose estimation. In particu-

lar, there is no labeled data for this task. It is also infeasible

for humans to annotate radio signals with keypoints. To ad-

dress this problem, we use cross-modal supervision. During

training, we attach a web camera to our wireless sensor, and

synchronize the the wireless and visual streams. We extract

pose information from the visual stream and use it as a su-

pervisory signal for the wireless stream. Once the system

is trained, it only uses the radio signal as input. The result

is a system that is capable of estimating human pose using

wireless signals only, without requiring human annotation

as supervision. Interestingly, the RF-based model learns to

perform pose estimation even when the people are fully oc-

cluded or in a different room. It does so despite it has never

seen such examples during training.

Beyond cross-modal supervision, the design of

RF-Pose accounts for the intrinsic features of RF signals

including low spatial resolution, specularity of the human

body at RF frequencies that traverse walls, and differences

in representation and perspective between RF signals and

the supervisory visual stream.

We train and test RF-Pose using data collected in pub-

lic environments around our campus. The dataset has hun-

dreds of different people performing diverse indoor activ-

ities: walking, sitting, taking stairs, waiting for elevators,

opening doors, talking to friends, etc. We test and train

on different environments to ensure the network generalizes

to new scenes. We manually label 2000 RGB images and

use them to test both the vision system and RF-Pose. The

results show that on visible scenes, RF-Pose has an aver-

age precision (AP) of 62.4 whereas the vision-based system

used to train it has an AP of 68.8. For through-wall scenes,

RF-Pose has an AP of 58.1 whereas the vision-based system

fails completely.

We also show that the skeleton learned from RF signals

extracts identifying features of the people and their style of

moving. We run an experiment where we have 100 people

perform free walking, and train a vanilla-CNN classifier to

identify each person using a 2-second clip of the RF-based

skeleton. By simply observing how the RF-based skeleton

moves, the classifier can identify the person with an accu-

racy over 83% in both visible and through wall scenarios.

2. Related Work

(a) Computer Vision: Human pose estimation from RGB

images generally falls into two main categories: Top-down

and bottom-up methods. Top-down methods [16, 14, 29,

15] first detect each people in the image, and then apply

a single-person pose estimator to each people to extract

keypoints. Bottom-up methods [10, 31, 20], on the other

hand, first detect all keypoints in the image, then use post-

processing to associate the keypoints belonging to the same

person. We build on this literature and adopt a bottom-up

approach, but differ in that we learn poses from RF sig-

nals. While some prior papers use sensors other than con-

ventional cameras, such as RGB-D sensors [50] and Vicon

[35], unlike RF signals, those data inputs still suffer from

occlusions by walls and other opaque structures.

In terms of modeling, our work is related to cross-modal

and multi-modal learning that explores matching different

modalities or delivering complementary information across

modalities [8, 11, 36, 34]. In particular, our approach

falls under cross-modal teacher-student networks [8], which

transfer knowledge learned in one data modality to another.

While past work only transfers category-level discrimina-

tive knowledge, our network transfers richer knowledge on

dense keypoint confidence maps.

(b) Wireless Systems: Recent years have witnessed much

interest in localizing people and tracking their motion using

wireless signals. The literature can be classified into two

categories. The first category operates at very high frequen-

cies (e.g., millimeter wave or terahertz) [3]. These can ac-

curately image the surface of the human body (as in airport

security scanners), but do not penetrate walls and furniture.

The second category uses lower frequencies, around a

few GHz, and hence can track people through walls and

occlusions. Such through-wall tracking systems can be di-

vided into: device-based and device-free. Device-based

tracking systems localize people using the signal gener-

ated by some wireless device they carry. For example, one

can track a person using the WiFi signal from their cell-

phone [44, 24, 40]. Since the tracking is performed on

the device not the person, one can track different body-

parts by attaching different radio devices to each of them.
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On the other hand, device-free wireless tracking systems

do not require the tracked person to wear sensors on their

body. They work by analyzing the radio signal reflected

off the person’s body. However, device-free systems typi-

cally have low spatial resolution and cannot localize mul-

tiple body parts simultaneously. Different papers either lo-

calize the whole body [5, 23], monitor the person’s walking

speed [43, 19], track the chest motion to extract breathing

and heartbeats [6, 51, 52], or track the arm motion to iden-

tify a particular gesture [32, 26]. The closest to our work is

a system called RF-Capture which creates a coarse descrip-

tion of the human body behind a wall by collapsing multiple

body parts detected at different points in time [4]. None of

the past work however is capable of estimating the human

pose or simultaneously localizing its various keypoints.

Finally, some prior papers have explored human identifi-

cation using wireless signals [49, 43, 18]. Past work, how-

ever, is highly restrictive in how the person has to move, and

cannot identify people from free-form walking.

3. RF Signals Acquisition and Properties

Our RF-based pose estimation relies on transmitting a

low power RF signal and receiving its reflections. To sep-

arate RF reflections from different objects, it is common to

use techniques like FMCW (Frequency Modulated Contin-

uous Wave) and antenna arrays [4]. FMCW separates RF

reflections based on the distance of the reflecting object,

whereas antenna arrays separate reflections based on their

spatial direction. In this paper, we introduce a radio similar

to [4], which generates an FMCW signal and has two an-

tenna arrays: vertical and horizontal (other radios are also

available [1, 2]). Thus, our input data takes the form of

two-dimensional heatmaps, one for each of the horizontal

and vertical antenna arrays. As shown in Fig. 2, the hori-

zontal heatmap is a projection of the signal reflections on a

plane parallel to the ground, whereas the vertical heatmap is

a projection of the reflected signals on a plane perpendicu-

lar to the ground (red refers to large values while blue refers

to small values). Note that since RF signals are complex

numbers, each pixel in this map has a real and imaginary

components. Our radio generates 30 pairs of heatmaps per

second.

It is important to note that RF signals have intrinsically

different properties than visual data, i.e., camera pixels.

• First, RF signals in the frequencies that traverse walls

have low spatial resolution, much lower than vision data.

The resolution is typically tens of centimeters [5, 2, 4],

and is defined by the bandwidth of the FMCW signal and

the aperture of the antenna array. In particular, our radio

has a depth resolution about 10 cm, and its antenna ar-

rays have vertical and horizontal angular resolution of 15

degrees.

x

y

z

Figure 2: RF heatmaps and an RGB image recorded at the same time.

• Second, the human body is specular in the frequency

range that traverse walls [9]. RF specularity is a physical

phenomenon that occurs when the wavelength is larger

than the roughness of the surface. In this case, the object

acts like a reflector - i.e., a mirror - as opposed to a scat-

terer. The wavelength of our radio is about 5cm and hence

humans act as reflectors. Depending on the orientation

of the surface of each limb, the signal may be reflected

towards our sensor or away from it. Thus, in contrast

to camera systems where any snapshot shows all unoc-

cluded key-points, in radio systems, a single snapshot has

information about a subset of the limbs and misses limbs

and body parts whose orientation at that time deflects the

signal away from the sensor.

• Third, the wireless data has a different representation

(complex numbers) and different perspectives (horizon-

tal and vertical projections) from a camera.

The above properties have implications for pose estima-

tion, and need to be taken into account in designing a neural

network to extract poses from RF signals.

4. Method

Our model, illustrated in Fig. 3, follows a teacher-student

design. The top pipeline in the figure shows the teacher net-

work, which provides cross-modal supervision; the bottom

pipeline shows the student network, which performs RF-

based pose estimation.

4.1. CrossModal Supervision

One challenge of estimating human pose from RF sig-

nals is the the lack of labelled data. Annotating human pose

by looking at RF signals (e.g., Fig. 2) is almost impossi-

ble. We address this challenge by leveraging the presence

of well established vision models that are trained to predict

human pose in images [25, 7].

We design a cross-modal teacher-student network that

transfers the visual knowledge of human pose using syn-

chronized images and RF signals as a bridge. Consider a

synchronized pair of image and RF signals (I,R), where
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Figure 3: Our teacher-student network model used in RF-Pose. The upper pipeline provides training supervision, whereas the bottom pipeline learns to

extract human pose using only RF heatmaps.

R denotes the combination of the vertical and horizontal

heatmaps, and I the corresponding image in Fig. 2. The

teacher network T(·) takes the images I as input and pre-

dicts keypoint confidence maps as T(I). These predicted

maps T(I) provide cross-modal supervision for the student

network S(·), which learns to predict keypoint confidence

maps from the RF signals. In this paper, we adopt the 2D

pose estimation network in [10] as the teacher network. The

student network learns to predict 14 keypoint confidence

maps corresponding to the following anatomical parts of the

human body: head, neck, shoulders, elbows, wrists, hips,

knees and ankles.

The training objective of the student network S(·) is to

minimize the difference between its prediction S(R) and

the teacher network’s prediction T(I):

min
S

∑

(I,R)

L(T(I),S(R)) (1)

We define the loss as the summation of binary cross entropy

loss for each pixel in the confidence maps:

L(T,S) = −

∑

c

∑

i,j

S
c
ij logT

c
ij + (1− S

c

ij) log (1−T
c
ij),

where Tc
ij and S

c
ij are the confidence scores for the (i, j)-th

pixel on the confidence map c.

4.2. Keypoint Detection from RF Signals

The design of our student network has to take into ac-

count the properties of RF signals. As mentioned earlier, the

human body is specular in the RF range of interest. Hence,

we cannot estimate the human pose from a single RF frame

( a single pair of horizontal and vertical heatmaps) because

the frame may be missing certain limbs tough they are not

occluded. Further, RF signals have low spatial resolution.

Hence, it will be difficult to pinpoint the location of a key-

point using a single RF frame. To deal with these issues,

we make the network learn to aggregate information from

multiple snapshots of RF heatmaps so that it can capture

different limbs and model the dynamics of body movement.

Thus, instead of taking a single frame as input, we make the

network look at sequences of frames. For each sequence,

the network outputs keypoint confidence maps as the num-

ber of frames in the input – i.e., while the network looks at

a clip of multiple RF frames at a time, it still outputs a pose

estimate for every frame in the input.

We also want the network to be invariant to translations

in both space and time so that it can generalize from visible

scenes to through-wall scenarios. Therefore, we use spatio-

temoral convolutions [22, 39, 42] as basic building blocks

for the student networks.

Finally, the student network needs to transform the in-

formation from the views of RF heatmaps to the view of

the camera in the teacher network (see Fig. 2). To do so,

the model has to first learn a representation of the informa-

tion in the RF signal that is not encoded in original spatial

space, then decode that representation into keypoints in the

view of the camera. Thus, as shown in Fig. 3, our student

network has: 1) two RF encoding networks Eh(·) and Ev(·)
for horizontal and vertical heatmap streams, and 2) a pose

decoding network D(·) that takes a channel-wise concate-

nation of horizontal and vertical RF encodings as input and

predicts keypoint confidence maps. The RF encoding net-

works uses strided convolutional networks to remove spa-

tial dimensions [48, 41] in order to summarize information

from the original views. The pose decoding network then

uses fractionally strided convolutional networks to decode

keypoints in the camera’s view.

47359



4.3. Implementation and Training

RF encoding network. Each encoding network takes 100

frames (3.3 seconds) of RF heatmap as input. The RF en-

coding network uses 10 layers of 9× 5× 5 spatio-temporal

convolutions with 1 × 2 × 2 strides on spatial dimensions

every other layer. We use batch normalization [21] followed

by the ReLU activation functions after every layer.

Pose decoding network. We combine spatio-temporal con-

volutions with fractionally strided convolutions to decode

the pose. The decoding network has 4 layers of 3 × 6 × 6
with fractionally stride of 1× 1

2×
1
2 , except the last layer has

one of 1× 1
4 ×

1
4 . We use Parametric ReLu [17] after each

layer, except for the output layer, where we use sigmoid.

Training Details. We represent a complex-valued RF

heatmap by two real-valued channels that store the real and

imaginary parts. We use a batch size of 24. Our networks

are implemented in PyTorch.

4.4. Keypoint Association

The student network generates confidence maps for all

keypoints of all people in the scene. We map the keypoints

to skeletons as follows. We first perform non-maximum

suppression on the keypoint confidence maps to obtain dis-

crete peaks of keypoint candidates. To associate keypoints

of different persons, we use the relaxation method proposed

by Cao et al. [10] and we use Euclidean distance for the

weight of two candidates. Note that we perform association

on a frame-by-frame basis based on the learned keypoint

confidence maps. More advanced association methods are

possible, but outside the scope of this paper.

5. Dataset

We collected synchronized wireless and vision data. We

attached a web camera to our RF sensor and synchronized

the images and the RF data with an average synchronization

error of 7 milliseconds.

We conducted more than 50 hours of data collection ex-

periments from 50 different environments (see Fig. 4), in-

cluding different buildings around our campus. The envi-

ronments span offices, cafeteria, lecture and seminar rooms,

stairs, and walking corridors. People performed natural ev-

eryday activities without any interference from our side.

Their activities include walking, jogging, sitting, reading,

using mobile phones and laptops, eating, etc. Our data in-

cludes hundreds of different people of varying ages. The

maximum and average number of people in a single frame

are 14 and 1.64, respectively. A data frame can also be

empty, i.e., it does not include any person. Partial occlu-

sions, where parts of the human body are hidden due to fur-

niture and building amenities, are also present. Legs and

arms are the most occluded parts.

Figure 4: Different environments in the dataset.

To evaluate the performance of our model on through-

wall scenes, we build a mobile camera system that has 8

cameras to provide ground truth when the people are fully

occluded. After calibrating the camera system, we construct

3D poses of people and project them on the view of the cam-

era colocated with RF sensor. The maximum and average

number of people in each frame in the through-wall testing

set are 3 and 1.41, respectively. This through-wall data was

only for testing and was not used to train the model.

6. Experiments

RF-Pose is trained with 70% of the data from visible

scenes, and tested with the remaining 30% of the data from

visible scenes and all the data from through-wall scenarios.

We make sure that the training data and test data are from

different environments.

6.1. Setup

Evaluation Metrics: Motivated by the COCO keypoints

evaluation [25] and as is common in past work [10, 29, 16],

we evaluate the performance of our model using the average

precision over different object keypoint similarity (OKS).

We also report AP50 and AP75, which denote the average

precision when OKS is 0.5 and 0.75, and are treated as loose

and strict match of human pose, respectively. We also report

AP, which is the mean average precision over 10 different

OKS thresholds ranging from 0.5 to 0.95.

Baseline: For visible and partially occluded scenes, we

compare RF-Pose with OpenPose [10], a state-of-the-art

vision-based model, that also acts as the teacher network.

Ground Truth: For visible scenes, we manually annotate

human poses using the images captured by the camera colo-

cated with our RF sensor. For through-wall scenarios where

the colocated camera cannot see people in the other room,

we use the eight-camera system described in 5 to provide

ground truth. We annotate the images captured by all eight

cameras to build 3D human poses and project them on the
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Methods
Visible scenes Through-walls

AP AP50 AP75 AP AP50 AP75

RF-Pose 62.4 93.3 70.7 58.1 85.0 66.1

OpenPose[10] 68.8 77.8 72.6 - - -

Table 1: Average precision in visible and through-wall scenarios.

0.5 0.6 0.7 0.8 0.9 1.0

OKS

0.0

0.2

0.4

0.6

0.8

1.0

A
P
(%

)

AP at Different OKS

RFPose

OpenPose

Figure 5: Average precision at different OKS values.

Methods Hea Nec Sho Elb Wri Hip Kne Ank

RF-Pose 75.5 68.2 62.2 56.1 51.9 74.2 63.4 54.7

OpenPose[10] 73.0 67.1 70.8 64.5 61.5 71.4 68.4 68.3

Table 2: Average precision of different keypoints in visible scenes.

view of the camera colocated with the radio. We annotate

1000 randomly sampled images from the visible-scene test

set and another 1000 examples from the through-wall data.

6.2. MultiPerson Pose Estimation Results

We compare human poses obtained via RF signals with

the corresponding poses obtained using vision data. Ta-

ble 1 shows the performance of RF-Pose and the baseline

when tested on both visible scenes and through-wall sce-

narios. The table shows that, when tested on visible scenes,

RF-Pose is almost as good as the vision-based OpenPose

that was used to train it. Further, when tested on through-

wall scenarios, RF-Pose can achieve good pose estimation

while the vision-based baseline completely fail due to oc-

clusion.

The performance of RF-Pose on through-wall scenarios

can be surprising because the system did not see such ex-

amples during training. However, from the perspective of

radio signals, a wall simply attenuates the signal power, but

maintains the signal structure. Since our model is space in-

variant, it is able to identify a person behind a wall as similar

to the examples it has seen in the space in front of a wall.

An interesting aspect in Table 1 is that RF-Pose outper-

forms OpenPose for AP50, and becomes worse at AP75.

To further explore this aspect, we plot in Fig. 5 the av-

erage precision as a function of OKS values. The figure

shows that at low OKS values (< 0.7), our model outper-

forms the vision baseline. This is because RF-Pose predicts

less false alarm than the vision-based solution, which can

generate fictitious skeletons if the scene has a poster of a

person, or a human reflection in a glass window or mirror.

In contrast, at high OKS values (> 0.75), the performance

of RF-Pose degrades fast, and becomes worse than vision-

based approaches. This is due to the intrinsic low spatial

resolution of RF signals which prevents them from pin-

pointing the exact location of the keypoints. The ability of

RF-Pose to exactly locate the keypoints is further hampered

by imperfect synchronization between the RF heatmaps and

the ground truth images.

Next, we zoom in on the various keypoints and com-

pare their performance. Table 2 shows the average pre-

cision of RF-Pose and the baseline in localizing different

body parts including head, right and left shoulders, elbows,

wrists, hips, knees, and ankles. The results indicate that RF

signals are highly accurate at localizing the head and torso

(neck and hips) but less accurate in localizing limbs. This is

expected because the amount of RF reflections depends on

the size of the body part. Thus, RF-Pose is better at captur-

ing the head and torso, which have large reflective areas and

relatively slow motion in comparison to the limbs. As for

why RF-Pose outperforms OpenPose on some of the key-

points, this is due to the RF-based model operating over a

clip of a few seconds, whereas the OpenPose baseline oper-

ates on individual images.

Finally, we show a few test skeletons to provide a qual-

itative perspective. Fig. 6 shows sample RF-based skele-

tons from our test dataset, and compares them to the cor-

responding RBG images and OpenPose skeletons. The fig-

ure demonstrates RF-Pose performs well in different envi-

ronments with different people doing a variety of everyday

activities. Fig. 7 illustrates the difference in errors between

RF-Pose and vision-based solutions. It shows that the errors

in vision-based systems are typically due to partial occlu-

sions, bad lighting 1, or confusing a poster or wall-picture

as a person. In contrast, errors in RF-Pose happen when

a person is occluded by a metallic structure (e.g., a metal-

lic cabinet in Fig. 7(b)) which blocks RF signals, or when

people are too close and hence the low resolution RF signal

fails to track all of them.

6.3. Model Analysis

We use guided back-propagation [38] to visualize the

gradient with respect to the input RF signal, and leverage

the information to provide insight into our model.

Which part of the RF heatmap does RF-Pose focus on?

Fig. 8 presents an example where one person is walking in

front of the wall while another person is hidden behind it.

Fig. 8(c) shows the raw horizontal heatmap. The two large

boxes are the rescaled versions of the smaller boxes and

zoom in on the two people in the figure. The red patch

indicated by the marker is the wall, and the other patches

are multipath effects and other objects. The gradient in

Fig. 8(d) shows that RF-Pose has learned to focus its at-

1Images with bad lighting are excluded during training and testing.
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Figure 6: Pose estimation on different activities and environments. First row: Images captured by a web camera (shown as a visual reference). Second

row: Pose estimation by our model using RF signals only and without any visual input. Third row: Pose estimation using OpenPose based on images from

the first row.

(a) Failure examples of OpenPose due to occlusioin, posters, and bad lighting. (b) Failure examples of ours due to metal and crowd.

Figure 7: Common failure examples. First row: Images captured by a web camera (shown as a visual reference). Second row: Pose estimation by our

model using RF signals only and without any visual input. Third row: Pose estimation using OpenPose based on images from the first row.

(a) RGB image (b) Parsed poses

wall

(c) Horizontal Heatmap (d) Gradients

Figure 8: Attention of the model across space

tention on the two people in the scene and ignore the wall,

other objects, and multipath.

How does RF-Pose deal with specularity? Due to the

specularity of the human body, some body parts may not re-

flect much RF signals towards our sensor, and hence may be

RKnee

RAnkle

RShoulder

LWrist

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

LElbow

t1 t2 t3 t4

Figure 9: Activation of different keypoints over time.

de-emphasized or missing in some heatmaps, even though

they are not occluded. RF-Pose deals with this issue by tak-

ing as input a sequences of RF frames (i.e., a video clip RF

heatmaps). To show the benefit of processing sequences of
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−1.0 −0.5 0.0 0.5 1.0

Time (s)

Figure 10: Contribution of the neighbor

to the current frame.

# RF frames AP

6 30.8

20 50.8

50 59.1

100 62.4

Table 3: Average precision

of pose estimation trained

on varying lengths of input

frames.

RF frames, we sum up the input gradient in all pixels in

the heatmaps to obtain activation per RF frame. We then

plot in Fig. 9 the activation as a function of time to visual-

ize the contribution of each frame to the estimation of var-

ious keypoints. The figure shows: that the activations of

the right knee (RKnee) and right ankle (RAnkle) are highly

correlated, and have peaks at time t1 and t2 when the per-

son is taking a step with her right leg. In contrast, her left

wrist (LWrist) gets activated after she raises her forearm at

t3, whereas her left elbow (LElbow) remains silent until t4
when she raises her backarm.

Fig. 9 shows that, for a single output frame, different RF

frames in the input sequence contribute differently to the

output keypoints. This emphasizes the need for using a se-

quence of RF frames at the input. But how many frames

should one use? Table 3 compares the model’s performance

for different sequence length at the input. The average pre-

cision is poor when the inout uses only 6 RF frames and

increases as the sequence length increases.

But how much temporal information does

RF-Pose need? Given a particular output frame, i,

we compute the contributions of each of the input frames

to it as a function of their time difference from i. To do

so, we back-propagate the loss of a single frame w.r.t. to

the RF heatmaps before it and after it, and sum up the

spatial dimensions. Fig. 10 shows the results, suggesting

that RF-Pose leverages RF heatmaps up to 1 second away

to estimate the current pose.

6.4. Identification Using RFBased Skeleton

We would like to show that the skeleton generated by

RF-Pose captures personalized features of the individuals

in the scene, and can be used by various recognition tasks.

Thus, we experiment with using the RF-based skeleton for

person identification.

We conduct person identification experiment with 100

people in two settings: visible environment, where the sub-

ject and RF device are in the same room, and through-wall

environment, where the RF device captures the person’s re-

flections through a wall. In each setting, every person walks

naturally and randomly inside the area covered by our RF

device, and we collect 8 and 2 minutes data separately for

training and testing. The skeleton heatmaps are extracted

by the model trained on our pose estimation dataset, which

never overlaps with the identification dataset. For each set-

ting, we train a 10-layer vanilla CNN to identify people

based on 50 consecutive frames of skeleton heatmaps.

Method
Visible scenes Through-walls

Top1 Top3 Top1 Top3

RF-Pose 83.4 96.1 84.4 96.3

Table 4: Top1 and top3 identification percent accuracy in visible and

through-wall settings.

Table 4 shows that RF-based skeleton identification can

reach 83.4% top1 accuracy in visiable scenes. Interestingly,

even when a wall blocks the device and our pose extractor

never sees these people and such environments during train-

ing, the extracted skeletons can still achieve 84.4% top1 ac-

curacy, showing its robustness and generalizability regard-

less of the wall. As for top3 accuracy, we achieve more than

96% in both settings, demonstrating that the extracted skele-

ton can preserve most of the discriminative information for

identification even though the pose extractor is never trained

or fine-tuned on the identification task.

7. Scope & Limitations

RF-Pose leverages RF signals to infer the human pose

through occlusions. However, RF signals and the solution

that we present herein have some limitations: First, the hu-

man body is opaque at the frequencies of interest – i.e., fre-

quencies that traverse walls. Hence, inter-person occlusion

is a limitation of the current system. Second, the operating

distance of a radio is dependent on its transmission power.

The radio we use in this paper works up to 40 feet. Fi-

nally, we have demonstrated that our extracted pose cap-

tures identifying features of the human body. However, our

identification experiments consider only one activity: walk-

ing. Exploring more sophisticated models and identifying

people in the wild while performing daily activities other

than walking is left for future work.

8. Conclusion

Occlusion is a fundamental problem in human pose esti-

mation and many other vision tasks. Instead of hallucinat-

ing missing body parts based on visible ones, we demon-

strate a solution that leverages radio signals to accurately

track the 2D human pose through walls and obstructions.

We believe this work opens up exciting research opportuni-

ties to transfer visual knowledge about people and environ-

ments to RF signals, providing a new sensing modality that

is intrinsically different from visible light and can augment

vision systems with powerful capabilities.
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