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Abstract

In this paper, we propose a novel weakly supervised

model, Multi-scale Anchored Transformer Network (MAT-

N), to accurately localize free-form textual phrases with on-

ly image-level supervision. The proposed MATN takes re-

gion proposals as localization anchors, and learns a multi-

scale correspondence network to continuously search for

phrase regions referring to the anchors. In this way, MATN

can exploit useful cues from these anchors to reliably rea-

son about locations of the regions described by the phrases

given only image-level supervision. Through differentiable

sampling on image spatial feature maps, MATN introduces

a novel training objective to simultaneously minimize a con-

trastive reconstruction loss between different phrases from

a single image and a set of triplet losses among multiple

images with similar phrases. Superior to existing region

proposal based methods, MATN searches for the optimal

bounding box over the entire feature map instead of select-

ing a sub-optimal one from discrete region proposals. We

evaluate MATN on the Flickr30K Entities and ReferItGame

datasets. The experimental results show that MATN signifi-

cantly outperforms the state-of-the-art methods.

1. Introduction

Textual phrase localization in images is a very challeng-

ing problem and has attracted extensive attention in recent

years [21, 27, 11, 28, 22, 16, 4]. It plays an important role in

text based image retrieval, human-robot interaction and vi-

sual question answering. Unlike object detection over sev-

eral semantic classes, phrase localization aims to find the

image region corresponding to a specified free-form textual

phrase about the image content.

Most of existing phrase localization methods solve this

problem through selecting regions from finite pre-computed

region proposals (e.g., Selective Search [26] and Edge Box-

es [38]). The performance of those methods thus heavi-

ly depends on the quality of the region proposals. How-
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Figure 1. Main idea of the proposed Multi-scale Anchored Trans-

former Network (MATN). Using only image-level supervision,

MATN performs continuous search over the entire spatial feature

map by taking region proposals as anchors to offer more accu-

rate phrase localization. This is different from existing weakly

supervised methods that only perform selection over these finite

discrete region proposals and also different from region proposal

network (RPN) based methods that need bounding box annotations

of phrases as supervised information.

ever, the region proposals generated heuristically are usu-

ally not accurate, which severely limits the performance.

As shown in Fig. 1, none of the candidate bounding boxes

from region proposals corresponds to the ground truth and

thus existing methods cannot accurately localize the phrase.

Although some methods rely on region proposal network

(RPN) to produce more accurate proposal bounding box-

es, such as [16, 4], they are fully supervised and require

bounding box annotations of phrases to learn RPN. Most of

image-sentence datasets, such as MSCOCO [17] and Flick-

r30K [35], also have no such location information about

phrases mentioned in the sentence. Manually annotating

location of each phrase is very time-consuming and labor

intensive, which hampers those fully-supervised methods

from being scalable to larger datasets.

To address these critical problems in phrase localiza-

tion, we propose a novel weakly supervised model, name-

ly Multi-scale Anchored Transformer Network (MATN)
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(Fig. 1), which can search over the entire spatial feature

map continuously to more accurately localize phrases us-

ing only image-level supervision. Inspired by the spatial

transformer module [12], MATN predicts affine transfor-

mation parameters of region for a phrase by establishing

multi-scale spatial correspondence between the phrase and

image feature maps. Furthermore, MATN takes region pro-

posals, such as Edge Boxes [38] that can be obtained very

cheaply, as spatial position regularization for anchoring the

prediction such that it can effectively alleviate the contam-

ination of complex image background for localization. To

optimize MATN, we propose a novel training strategy that

encourages MATN to minimize a contrastive reconstruc-

tion loss between different phrases from a single image to

produce more discriminative regions, and also minimize a

set of triplet losses among multiple images with the similar

phrases to explicitly leverage the shared knowledge across

images.

Our main contributions include the following four as-

pects. 1) A novel Multi-scale Anchored Transformer Net-

work is proposed to localize phrases in images without re-

quiring any region-level strong supervision. The model

can search for fine-grained bounding boxes continuously

over the spatial feature maps instead of selecting only from

bounding box candidates, thus offering appealing robust-

ness to errors in region proposals. 2) A new training strategy

is introduced that enables the model to learn to exploit the

discrimination of different phrases and shared knowledge

from similar images. 3) An anchored transformation is de-

veloped that exploits region proposals as a spatial position

constraint to facilitate searching new regions. 4) Our pro-

posed model boosts the benchmark of weakly supervised

phrase localization, achieving new state-of-the-art perfor-

mance on the Flickr30K Entities and ReferitGame datasets.

2. Related Work

Phrase Localization/Grounding. Several works have

studied the textual phrase localization/grounding. [23] in-

troduced visual phrases and a multiple detection decod-

ing algorithm that considers properties of interacting ob-

jects in different levels of abstraction, which is the earliest

work about phrase localization. Recently, [21] presented

a region-to-phrase dataset, namely Flickr30K Entities, and

gave a baseline by using a CCA model to learn a shared se-

mantic space that associates phrases to image regions. [27]

proposed a two-branch neural network to learn joint em-

beddings of image regions and phrases. [36] formulated the

top-down attention of a CNN classifier as a probabilistic

Winner-Take-ALL process and utilized an excitation back-

prop scheme to pass along top-down signals downwards

in the network hierarchy. [34] found a bounding box of a

phrase by minimizing an energy function through iterative-

ly decomposing an output space. [32] generated spatial at-

tention masks of phrases by exploiting linguistic structure,

which is different from that our method produces bounding

boxes. [22], whose work is most related with ours, pro-

posed to ground a phrase by using a soft attention model

to weight feature vectors of region proposals for phrase re-

construction. In contrast to [22], our method is based on a

fine-grained searching instead of discretely selecting.

Weakly Supervised Object Localization. This task

aims to use only image level labels to detect objects in im-

ages without object bounding box annotations [37]. Simi-

lar study also exists in semantic segmentation [29, 30, 31].

[5] followed a multiple-instance learning approach that it-

eratively trains the detector and infers the object locations

in the positive training images. [3] modified a pretrained

deep convolutional neural network to operate at the lev-

el of image regions, which performs region selection and

classification simultaneously. [13] addressed this problem

by introducing two types of context-aware guidance mod-

els that leverage their surrounding context regions to im-

prove localization. Although these works do not use ground

truth bounding boxes for training either, they only consid-

er a limited object class set, such as dog, cat and person.

By contrast, our method can handle any form phrases in the

training and test process.

Image Captioning. Image captioning focuses on the w-

hole image and produces its textual description. [6] devel-

oped a recurrent convolutional model for large-scale visual

learning which is end-to-end trainable and successfully ap-

plied to image captioning. [14] used a deep multi-modal

embedding model for bidirectional retrieval of images and

sentences and learnt a common space for fragments of im-

ages and sentences. Like [11], phrase localization can be

implemented through applying the image captioning meth-

ods to image regions and computing scores on phrases.

Visual Attention. Our model utilizes a differentiable

attention mechanism which is extended from spatial trans-

former [12]. In [12], a spatial differentiable transformation

is applied to a feature map during the forward pass of the

convolutional neural network to allow the spatial manip-

ulation of data within the network. There exist different

attention mechanisms which are proposed for computer vi-

sion tasks. [33] introduced a spatial attention based mod-

el including both soft and hard attentions, which automati-

cally learns to attend to salient objects while predicting the

corresponding words in the caption. [20] jointly predicted

the next caption word and the corresponding region at each

time-step given the RNN state.

3. The Proposed Model

Given an image and a textual phrase, our goal is to search

for the region corresponding to the specified phrase over

the spatial feature map of the image. Fig. 2 illustrates the

framework of our proposed MATN. A base convolutional
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Figure 2. Framework of the proposed Multi-scale Anchored Transformer Network. It consists of a multi-scale correspondence network and

an anchor constraint induced from a set of region proposals. A contrastive reconstruction loss of different phrases and a set of triplet losses

among similar images are devised to train the model by differentiable feature map sampling. More details on each component are given in

the texts and illustrated in following figures.

neural network (CNN) is used to obtain the spatial feature

map. Then a multi-scale correspondence network (MCN)

is introduced to estimate affine transformation parameters

of region under an anchor constraint induced from region

proposals. By differentiable sampling [12] over the spatial

feature map, a contrastive reconstruction loss of different

phrases associated with an image and a set of triplet loss-

es computed w.r.t. multiple images with similar phrases are

used to train the proposed MATN. We now proceed to ex-

plain each component of MATN in details.

3.1. Multiscale Correspondence Network

The purpose of multi-scale correspondence network is

to establish correspondence between phrases and image re-

gions, laying foundations for the following exact phrase lo-

calization. As mentioned in the Related Work section, s-

patial transformer [12] is a differentiable module that can

be inserted into convolutional architectures to learn spatial

transformation over feature maps. However, the original s-

patial transformer only produces transformation parameters

for region sampling, and thus cannot be applied for phrase

localization which needs to predict the region associated

with the phrase.

As shown in Fig. 3, we introduce a new multi-scale cor-

respondence network (MCN) to learn regional transforma-

tion parameters through computing the correlation scores

between the phrase and the spatial feature map of the image.

To build such a correspondence network, given an input im-

age of size W × H , we first use the base CNN to obtain

its feature map of size W ′ × H ′ × C. Such a feature map

encodes appearance of the image and preserves valuable s-

patial information. We also add several extra convolution-

al layers on the input feature map to account for multiple

scales to capture wider context information (see the Imple-

mentation section for the specific layer configuration). Giv-

en an input phrase with T words, we represent each word

in the phrase as a one-hot vector and embed it into a lower

dimensional feature vector by a fully connected layer. Then

we use a Long-Short Term Memory (LSTM) network [10]

to encode the embedded word sequence and use the hidden

state hT at the time step T as a feature representation of the

phrase.

To obtain the correspondence map between the phrase

and the spatial feature map, we tile and separately con-

catenate the phrase representation hT to the feature vector

hi,j,s at each scale s and spatial location (i, j) of the feature

map giving a local descriptor for this location. Then taking

the concatenated feature as the input, we compute the cor-

respondence map zs containing correlation scores {zi,j,s}
through a two-layer fully connected network

zi,j,s = σ(W2σ(W1[hT ;hi,j,s])), (1)

where σ is the ReLU function. This is implemented as two

1×1 convolutional layers with stride 1 in practice. The cor-
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Figure 3. Architecture of multi-scale correspondence network (M-

CN). The spatial correspondence maps of multiple scales capture

the correlation between the phrase and objects of different sizes.

respondence maps zs of multiple scales then respectively go

through a liner regression layer and are added up to produce

the affine transformation parameters θ = (sx, sy, tx, ty),
where (sx, sy) and (tx, ty) represent respectively scale and

translation along x-axis and y-axis. Finally, through differ-

entiable sampling, the transformation parameters θ are ap-

plied on the spatial feature map to obtain the feature map of

the corresponding region. The form of the affine transfor-

mation is given by

(

xi,j

yi,j

)

=

(

sx 0 tx

0 sy ty

)







xr
i,j

yri,j

1






, (2)

where (xr
i,j , y

r
i,j) is the coordinate of spatial location (i, j)

of the region feature map, and similarly (xi,j , yi,j) is the co-

ordinate in the input feature map which defines the sample

point. All coordinates are normalized and belong to [−1, 1]
when within the spatial bounds of feature maps.

3.2. Anchor Constraint with Region Proposals

One straightforward approach for localizing phrases is

to employ the attention mechanism to learn the MCN de-

scribed above. However, it is hard to guarantee that the pre-

diction of the network converges to the desired region due to

distracting factors presented in natural images like multiple

objects and complex scenes. It is worth noting that region

proposals, such as Edge Boxes [38], provide useful cues for

the network to localize regions with high objectness. Thus

we consider exploiting region proposals to gain additional

spatial position guidance to alleviate the difficulties caused

by scarce supervision information.

Concretely, given a set of region proposals {rn}
N
n=1 for

the target image, we introduce an anchor constraint induced

from the spatial position of {rn}
N
n=1 to regularize the re-

gression for the transformation parameter θ. Specifically,

we take {rn}
N
n=1 as N anchors and enforce the predicted

bounding box to be close to its nearest anchor. Here we

only allow one of the anchors to affect the parameters re-

gression because considering all of them at the same time

would result in a meaningless average position over region

proposals. Therefore, we define the anchor-based regular-

ization term as

Ranchor =

∥

∥

∥

∥

∥

θ − argmin
p∈{p(rn)}N

n=1

‖p− θ‖
2
2

∥

∥

∥

∥

∥

2

2

, (3)

where p(rn) is the transformation parameter converted

from the position of the region proposal rn with center

(xn, yn), width wn, and height hn by

p(rn) =

[

wn

W
,
hn

H
,
2xn

W
− 1 +

wn

W
,
2yn
H

− 1 +
hn

H

]

.

(4)

Eqn. (3) can be seen as a soft constraint which enables MCN

to focus on several possible regions containing the object

described by the phrase. That is, the predicted bounding

box is not necessarily one of the region proposals but can

be located at a better position around them. Here the region

proposals behave like anchors to keep the predicted position

not far away from them.

Compared with selecting from discrete bounding box

candidates, our model can explore more regions because it

performs localization over the entire spatial feature map and

meanwhile incorporates the prior position information from

the bounding box candidates, i.e., region proposals. In the

case that the ground truth is partially or even entirely un-

covered by these bounding box candidates, it is impossible

to predict correctly for the region-selection based methods.

In contrast, MATN is able to address the problem through

refining the positions of these candidates based on differen-

tiable transformation and anchor constraint.

3.3. Learning by Discrimination and Similarity

To train the proposed MATN, we first introduce a con-

trastive reconstruction loss consisting of two parts. One is

to encourage the feature map h sampled by the predicted

transformation parameters θ to be able to reconstruct the

input phrase, and the other is to suppress the reconstruction

of a different phrase from the same image for h. In this

way, the model can learn to predict a discriminative region

for the specified phrase. Similar to the phrase encoding,

we use LSTM to model the distribution of the reconstructed
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Figure 4. A set of triplet losses computed w.r.t. images with similar

phrases. It is used to enforce regions predicted by MATN to be

closer to each other than regions sampled randomly in a feature

space.

phrase. Then the loss is defined as the difference between

the negative log likelihoods of the pair of phrases:

Lrecon = −

T
∑

t=1

logPt(wt|h) + λ

T
∑

t=1

logPt(w
diff
t |h),

(5)

where wt and wdiff
t are the tth word in the input phrase

and a different phrase respectively, and λ controls the effect

of the contrastive term. To measure the semantic similarity

between phrases, we compute their cosine distance based

on the word2vec model [19]. Here we simply use the bag-

of-words to encode words in a phrase, i.e., pooling all the

word vectors via sum to a phrase vector. Then a threshold

of cosine distance is set to determine whether two phrase

are similar or not.

Although the phrase reconstruction provides useful su-

pervision information in the absence of strong region-level

supervision, only using the semantic information of phras-

es from a single image to train MATN to learn the corre-

sponding spatial transformation is insufficient due to com-

plex content of natural images. Inspired by the objec-

t co-localization [25, 2], we consider leveraging the shared

knowledge across multiple images with similar phrases to

jointly optimize MATN. That is, these images should con-

tain the common or similar object. As illustrated in Fig. 4,

given a set of images containing objects described by simi-

lar phrases, e.g., “a small black dog”, “a black dog” and “a

black and white dog”, we propose to train MATN to make

sure regions of those images predicted by MATN are closer

to each other than regions sampled randomly in a feature s-

pace. To this end, we first use the transformation parameters

θ obtained by MCN and a random θ
rand to sample regions

from the spatial feature map and feed the sampled regional

feature maps into a two-layer fully connected network f(.)

to obtain feature vectors of the image regions. Then a set of

triplet losses is computed by

Ltriplet =
1

N(N − 1)

N
∑

n=1

∑

m 6=n

[

||f(hn)− f(hm)||22

− ||f(hn)− f(hrand
m )||22 + ρ

]

+
, (6)

where N is the image number of the set, [.]+ = max(0, .),
h and hrand are the feature maps of predicted and random

regions respectively, and ρ is a margin parameter (simply

set to 1 here). The similarity between phrases is also mea-

sured by the cosine distance of their word2vec vectors. Here

a subset of region proposals of an image is selected further

as the anchors to speed up the convergence of the model,

which only contains region proposals which are visually

similar with those of other images in the set because dis-

similar proposals obviously are not the ground truth.

Finally, the objective function of MATN is given by

L = Ltriplet + αLrecon + βRanchor, (7)

where α and β are weighting parameters. It can be op-

timized by the standard back-propagation algorithm in an

end-to-end way as all the terms are differentiable.

Applying MATN for inference is straightforward. Firstly

MCN takes features of both the testing image and phrase as

inputs to predict affine transformation parameters θ. Then

the bounding box of the phrase can be obtained by apply-

ing Eqn. (2) to the image, where the anchor constraint can

be removed because the prior position information has been

learned by MCN. Thus our model is more efficient for in-

ference compared with previous methods, such as [22] and

[36], because it gets rid of generating region proposals.

4. Experiments

We test the proposed MATN on two challenging image-

sentence datasets for phrase localization, i.e., Flickr30K En-

tities [21] and ReferItGame [15]. We present quantitative

evaluations in terms of accuracy against different IoU (In-

tersection over Union) thresholds, and compare our model

with the state-of-the-art weakly supervised phrase localiza-

tion methods, i.e., GroundeR [22] and c-MWP [36]. We

also compare with other recent methods including the im-

age captioning methods, i.e., Deep Fragments [14] and LR-

CN [6], and the object classification method, i.e., CAFFE-

7K [9], which can be applied to phrase localization and also

do not need the bounding box annotations of the phrases for

training.

4.1. Datasets

The Flickr30k Entities dataset [21] is an extension of the

Flickr30K dataset [35]. It associates captions of 31K im-

ages with 276K manually annotated bounding boxes and
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Table 1. Accuracy (IoU > 0.5) of phrase localization on the Flick-

r30k Entities dataset.

Methods Accuracy (IoU > 0.5)

Deep Fragments [14] 21.78

c-MWP (MCG) [36] 26.20

c-MWP (EB) [36] 27.00

GroundeR (VGG-CLS) [22] 24.66

GroundeR (VGG-DET) [22] 28.94

Ours: MATN-SC-RE 31.15

Ours: MATN-RE 32.61

Ours: MATN 33.10

thus makes the evaluation of phrase localization available.

Similar to [22], we divide the dataset into three subsets,

1,000 images for validation, 1,000 for testing and the re-

maining images for training. Following [21], if multiple

ground truth bounding boxes correspond to a single phrase

(e.g., a group of people), we use the union of the boxes to

represent the phrase. The ReferItGame dataset [15] contain-

s 20K images and 120K annotated descriptions collected in

a two player game for image regions obtained from the seg-

mentation regions in the SAIAPR-12 dataset [7]. We use

the same dataset split with [22], i.e., 10K images for test-

ing, 1,000 for validation and the rest for training.

4.2. Implementation Details

In our experiments, we adopt the VGG-16 network [24]

as our base network. MCN has the same architecture as con-

v5 3, fc7 and conv8 2 in the SSD network [18]. All input

images are resized to 480×480. Similar to [22], the CNN

parts are pretrained for the task of object detection on PAS-

CAL [8] and fixed in the training process. We generate 100

region proposals for each image using Edge Boxes [38] to

obtain the anchor constraint. To measure the visual similar-

ity between region proposals, we compute the normalized

L2 distances of their feature vectors, and select region pro-

posals with top-K smallest distances as anchors. K is 20

for Flickr30K Entities and 50 for ReferItGame. For those

images with unique phrases, we only use the contrastive re-

construction loss.

For the language model, the dimension of the embedding

vector is 512 and the size of the LSTM memory is 512 for

both phrase encoding and decoding. The word2vec model

is trained on part of Google News dataset (about 100 billion

words) and contains 300-dimensional vectors for 3 million

words and phrases. The threshold of the cosine distance is

set to 0.9 and 0.8 respectively for the judgment of similar

and different phrases.

Stochastic gradient descent with RMSProp is used to op-

timize the network parameters. The learning rate is 0.0001,

the RMS decay is 0.99 and the weight decay is 0.0005. At

each iteration, we choose 4 images to construct a set of

triplet losses. We set λ = 0.5 for the contrastive term. The

weighting parameters α and β are set to 0.1 and 0.5, respec-

tively. All the hyperparameters are obtained according to

the evaluation on the validation sets.

4.3. Results

We report the phrase localization results in terms of ac-

curacy, i.e., the percentage of phrases correctly matched

with regions. Here the predicted region for each phrase is

deemed correct if the region overlaps with the ground truth

bounding box with an IoU larger than a threshold.

4.3.1 Ablation Study

We first evaluate the contributions of some key components

in our MATN model in Table 1 and 3 by examining sev-

eral variants including (1) only using single scale and the

general reconstruction loss (MATN-SC-RE) and (2) using

multi-scale but without the contrastive reconstruction loss

(MATN-RE). As one can see that MATN-RE performs bet-

ter than MATN-SC-RE because multi-scale correspondence

maps can capture the correlation of the phrase and object-

s of different sizes. Through encouraging the predicted re-

gion to be less relevant to other phrases, MATN outperforms

MATN-RE because the predicted bounding boxes tend to be

more discriminative for the input phrase.

Note that the objective function (7) contains three com-

ponents: contrastive reconstruction loss of different phras-

es, triplet loss sampled from similar images and anchor con-

straint. For the two losses, we have tried to train the model

using only one of them, but it did not converge because nat-

ural images contain multiple objects and complex scenes,

and any one of the losses cannot individually provide suf-

ficient guidance for the transformer network. Similarly, as

described in Sect. 3.2, anchor constraint is also a key com-

ponent. It cannot be removed, otherwise training of the

model would not converge.

4.3.2 Flickr30k Entities

On the Flickr30k Entities dataset, we compare the proposed

MATN with GroundeR [22], c-MWP [36] and Deep Frag-

ments [14]. GroundeR and c-MWP are the state-of-the-art

weakly supervised phrase localization methods. GroundeR

(VGG-CLS) is pretrained for the image classification on

ImageNet and GroundeR (VGG-DET) is pretrained for the

object detection on PascalVOC. c-MWP (MCG) and c-

MWP (EB) use MCG [1] and Edge Boxes respectively to

generate region proposals. Deep Fragments is a recent im-

age captioning method, which is trained on Flickr30k and

evaluated with the ground truth phrases and bounding box-

es of Flickr30k Entities. Here we use its result reported

in [22].
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Table 2. Accuracy (IoU > 0.5) of phrase localization for different phrase types on the Flickr30k Entities dataset.

Methods People Clothing Body parts Animals Vehicles Instruments Scene Other

GroundeR (VGG-CLS) [22] 36.01 9.54 0.76 24.13 32.50 15.43 37.00 13.43

GroundeR (VGG-DET) [22] 44.32 9.02 0.96 46.91 46.00 19.14 28.23 16.98

MATN 54.71 13.38 2.87 58.21 45.04 19.48 21.97 17.02

An older man in a white jacket works at a stand 

featuring a wide variety of colorful food.

The small brown dog is amidst the potted 

plants and fallen leaves.

Single man in blue rowing a boat 

across a river.

(a)

(b)

Figure 5. Qualitative results of (a) GroundeR (VGG-DET) and (b) MATN on the Flickr30K Entities dataset. Each phrase of a sentence is

localized in an image using different color boxes (best viewed in color).

Table 3. Accuracy (IoU > 0.5) of phrase localization on the Refer-

ItGame dataset.

Methods Accuracy (IoU > 0.5)

LRCN [6] 8.59

CAFFE-7K [9] 10.38

GroundeR (VGG) [22] 10.69

GroundeR (VGG-SPAT) [22] 10.70

Ours: MATN-SC-RE 12.13

Ours: MATN-RE 13.30

Ours: MATN 13.61

Table 1 reports the accuracy of phrase localization for

these methods under the condition of IoU > 0.5. We can

see that our proposed MATN achieves the best performance

and surpasses all the state-of-the-arts (i.e., GroundR and c-

MWP) with a large margin (> 4.0%). It demonstrates ef-

fectiveness of searching over the entire spatial feature map

by referring to the anchors from region proposals, which

can find fine-grained bounding boxes compared with these

region-selection based methods. Table 2 shows the accura-

cy of phrase localization for different types of phrases. It is

worth noting that our results are better than other methods

for most phrase types, especially for “People” and “Animal-

s”. As for the phrase type “Scene”, it usually contains entire

images, thus GroundeR (VGG-CLS), which uses the VG-

G classification network trained on entire images, is more

suitable to handle this phrase type. Fig. 5 presents some

qualitative results compared with GroundeR (VGG-DET)

on the Flickr30K Entities dataset. We visualize each phrase

of a sentence in an image using different color boxes. It can

be observed that the bounding boxes predicted by MATN

are more precise than GroundeR (VGG-DET). The relative

large objects like“the small brown dog” can be localized

better than the small objects like “a white jacket ”, which is

consistent with the quantitative results in Table 2, because

there is no strong location constraint such as bounding box

annotations in the weakly supervised scenario.

4.3.3 ReferItGame

On the ReferItGame dataset, we compare the proposed

MATN with GroundeR, LRCN [6] and CAFFE-7K [9].
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mountains under sky guy on left people in red shirts dirt not green

goat in front grey hill the nongrassy area orange building in the back 

Figure 6. Qualitative results including correct examples (IoU > 0.5) and failure examples (IoU ≤ 0.5) on the ReferItGame dataset. Yellow

boxes indicate ground truths, red ones indicate correct results and blue ones indicate incorrect results (best viewed in color).

Table 4. Accuracy (IoU > 0.75) of phrase localization on the Flick-

r30k Entities and ReferItGame datasets.

Methods
Accuracy (IoU > 0.75)

Flickr30k Entities ReferItGame

GroundeR [22] 7.42 1.95

MATN 11.04 3.93

GroundeR (VGG) directly crops the regions on original im-

age pixels according to region proposals and extracts their

features using the VGG classification network. GroundeR

(VGG+SPAT) also uses additional spatial features. LRCN

is an image captioning model which is trained on MSCOCO

and used to score how likely the phrase is to be generated for

the proposal box. CAFFE-7K is a large scale object classifi-

er trained on ImageNet. It is used to predict a class for each

region proposal and construct a word bag to match with the

query phrase in a joint vector space. Both the methods are

unsupervised with respect to the bounding box annotations

of the phrases and we use the results reported in [22].

Table 3 reports the accuracy of phrase localization for

these methods with IoU > 0.5. Our method still significant-

ly outperforms other methods although this dataset is more

challenging than Flickr30k Entities due to fewer training

samples and more complicated text descriptions. Besides,

our model performs localization on top of a convolution-

al feature map shared by image regions. This makes our

model more efficient than other methods which need to pass

each image region through the deep model to obtain its own

feature map.

Fig. 6 shows qualitative results on the ReferItGame

dataset including success and failure cases. For the texts

containing relative position statements, such as “on left”,

our model cannot localize it accurately because it is ex-

tremely hard to learn spatial relationships in the weakly su-

pervised learning setting.

Furthermore, we report the accuracy with IoU > 0.75

on both the datasets in Table 4 to validate the effectiveness

of our fine-grained search. We compare with the sate-of-

the-art GroundeR (VGG-DET) on Flickr30k Entities and

GroundeR (VGG+SPAT) on ReferItGame. We can see that

MATN still gives better results because MATN can refine

the position of bounding box candidates over the spatial fea-

ture map thus can obtain good results even though under the

stricter evaluation condition.

5. Conclusion

This paper proposes a Multi-scale Anchored Trans-

former Network to localize free-form textual phrases in im-

ages without the bounding box supervised information. Ac-

cording to the correlation scores between LSTM feature

vectors of phrases and spatial feature maps of images, the

multi-scale correspondence network predicts affine trans-

formation parameters of phrase region under an anchor con-

straint induced from region proposals. The model is trained

by simultaneously minimizing a contrastive reconstruction

error between different phrases from a single image and

a set of triplet losses among multiple images with similar

phrases. Extensive experiments demonstrate that the pro-

posed method outperforms state-of-the-art weakly super-

vised phrase localization methods by a significant margin.
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