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Abstract

We motivate and present Ring loss, a simple and elegant

feature normalization approach for deep networks designed

to augment standard loss functions such as Softmax. We

argue that deep feature normalization is an important as-

pect of supervised classification problems where we require

the model to represent each class in a multi-class problem

equally well. The direct approach to feature normaliza-

tion through the hard normalization operation results in a

non-convex formulation. Instead, Ring loss applies soft nor-

malization, where it gradually learns to constrain the norm

to the scaled unit circle while preserving convexity leading

to more robust features. We apply Ring loss to large-scale

face recognition problems and present results on LFW, the

challenging protocols of IJB-A Janus, Janus CS3 (a super-

set of IJB-A Janus), Celebrity Frontal-Profile (CFP) and

MegaFace with 1 million distractors. Ring loss outperforms

strong baselines, matches state-of-the-art performance on

IJB-A Janus and outperforms all other results on the chal-

lenging Janus CS3 thereby achieving state-of-the-art. We

also outperform strong baselines in handling extremely low

resolution face matching.

1. Introduction

Deep learning has demonstrated impressive performance

on a variety of tasks. Arguably the most important task, that

of supervised classification, has led to many advancements.

Notably, the use of deeper structures [21, 23, 7] and more

powerful loss functions [6, 19, 26, 24, 15] have resulted

in far more robust feature representations. There has also

been more attention on obtaining better-behaved gradients

through normalization of batches or weights [9, 1, 18].

One of the most important practical applications of deep

networks with supervised classification is face recognition.

Robust face recognition poses a huge challenge in the form of

very large number of classes with relatively few samples per

class for training with significant nuisance transformations.

A good understanding of the challenges in this task results
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(a) Features trained using Softmax

R

(b) Features trained using Ring loss

Figure 1: Sample MNIST features trained using (a) Softmax and (b) Ring

loss on top of Softmax. Ring loss uses a convex norm constraint to gradually

enforce normalization of features to a learned norm value R. This results in

features of equal length while mitigating classification margin imbalance

between classes. Softmax achieves 98.97 % accuracy on MNIST, whereas

Ring loss achieves 99.34 % demonstrating the superior performance of the

network learned normalized features.

in a better understanding of the core problems in supervised

classification, and in general representation learning. How-

ever, despite the impressive attention on face recognition

tasks over the past few years, there are still many gaps to-

wards such an understanding. Notably, the need and practice

of feature normalization. Normalization of features has re-

cently been discovered to provide significant improvement in

performance which implicitly results in a cosine embedding

[17, 25]. However, direct normalization in deep networks

explored in these works results in a non-convex formulation

resulting in local minima generated by the loss function it-

self. It is important to preserve convexity in loss functions

for more effective minimization of the loss given that the

network optimization itself is non-convex. In a separate

thrust of work, cosine similarity has also been very recently

explored for supervised classification [16, 4]. Nonetheless, a

concrete justification and principled motivation for the need

for normalizing the features itself is also lacking.

Contributions. In this work, we propose Ring loss, a

simple and elegant approach to normalize all sample fea-

tures through a convex augmentation of the primary loss

function (such as Softmax). The value of the target norm is

also learnt during training. Thus, the only hyperparameter

in Ring loss is the loss weight w.r.t to the primary loss func-
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Figure 2: (a) A simple case of binary classification. The shaded regions (yellow, green) denote the classification margin (for class 1 and 2). (b) Angular

classification margin for θ1 for different δ = cos θ2.

tion. We provide an analytical justification illustrating the

benefits of feature normalization and thereby cosine feature

embeddings. Feature matching during testing in face recog-

nition is typically done through cosine distance creating a

gap between testing and training protocols which do not

utilize normalization. The incorporation of Ring loss dur-

ing training eliminates this gap. Ring loss is differentiable

that allows for seamless and simple integration into deep

architectures trained using gradient based methods. We find

that Ring loss provides consistent improvements over a large

range of its hyperparameter when compared to other base-

lines in normalization and indeed other losses proposed for

face recognition in general. Interestingly, we also find that

Ring loss helps in being robust to lower resolutions through

the norm constraint.

2. Ring loss: Convex Feature Normalization

2.1. Intuition and Motivation.

There have been recent studies on the use of norm con-

straints right before the Softmax loss [25, 17]. However,

the formulations investigated are non-convex in the feature

representations leading to difficulties in optimization. Fur-

ther, there is a need for better understanding of the benefits

of normalization itself. Wang et.al. [25] argue that the

‘radial’ nature of the Softmax features is not a useful prop-

erty, thereby cosine similarity should be preferred leading

to normalized features. A concrete reason was, however,

not provided. Ranjan et.al. [17] show that the Softmax

loss encodes the quality of the data (images) into the norm

thereby deviating from the ultimate objective of learning a

good representation purely for classification.1 Therefore for

better classification, normalization forces the network to be

invariant to such details. This is certainly not the entire story

and in fact overlooks some key properties of feature normal-

ization. We now motivate Ring loss with three arguments. 1)

1We in fact, find in our pilot study that the Softmax features also encode

the ‘difficulty’ of the class.

We show that the norm constraint is beneficial to maintain a

balance between the angular classification margins of multi-

ple classes. 2) It removes the disconnect between training

and testing metrics. 3) It minimizes test errors due to angular

variation due to low norm features.

The Angular Classification Margin Imbalance. Con-

sider a binary classification task with two feature vectors

x1 and x2 from class 1 and 2 respectively, extracted using

some model (possibly a deep network). Let the classifica-

tion weight vector for class 1 and 2 be w1, w2 respectively

(potentially Softmax). An example arrangement is shown in

Fig. 2(a). Then in general, in order for the class 1 vector w1

to pick x1 and not x2 for correct classification, we require

wT
1 x1 > wT

1 x2 ) kx1k2 cos θ1 > kx2k2 cos θ2
2. Here, θ1

and θ2 are the angles between the weight vector w1 (class 1

vector only) and x1, x2 respectively3. We call the feasible set

(range for θ1) for this inequality to hold as the angular classi-

fication margin. Note that it is also a function of θ2. Setting
kx2k2

kx1k2

= r, we observe r > 0 and that for correct classifica-

tion, we need cos θ1 > r cos θ2 ) θ1 < cos−1(r cos θ2)
since cos θ is a decreasing function between [−1, 1] for

θ 2 [0, π]. This inequality needs to hold true for any θ2.

Fixing cos θ2 = δ, we have θ1 < cos−1(rδ). From the

domain constraints of cos−1, we have −1  rδ  1 )
−1
δ

 r  1
δ

. Combining this inequality with r > 0, we

have 0 < r  1
|δ| ) kx2k2  1

δ
kx1k2 8δ 2 (0 1]. For our

purposes it suffices to only look at the case δ > 0 since the

δ < 0 doesn’t change the inequality −1  rδ  1 and is

more interesting.

Discussion on the angular classification margin. We

plot the upper bound on θ1 (i.e. cos−1(r cos θ2)) for a range

of δ ([0.1, 1]) and the corresponding range of r. Fig. 2(b)

showcases the plot. Consider δ = 0.1 which implies that

2Although, it is more common to in turn investigate competition between

two weight vectors to classify a single sample, we find that this alternate

perspective provide some novel and interesting insights.
3Note that this reasoning is applicable to any loss function trying to

enforce this inequality in some form.
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Figure 3: Ring loss Visualizations: (a), (b) and (c) show the final convergence of the samples (for varying λ). The blue-green dots are the samples before

the gradient update and the red dots are the same samples after the update. The dotted blue vector is the target class direction. λ = 0 fails to converge and

does not constrain the norm whereas λ = 10 takes very small steps towards Softmax gradients. A good balance is achieved at λ = 1. In our large scale

experiments, a large range of λ achieves this balance.

the sample x2 has a large angular distance from w1 (about

85◦). This case is favorable in general since one would ex-

pect a lower probability of x2 being classified to class 1.

However, we see that as r increases (difference in norm of

x1, x2), the classification margin for x1 decreases from 90◦

to eventually 0◦. In other terms, as the norm of x2 increases

w.r.t x1, the angular margin for x1 to be classified correctly

while rejecting x2 by w1, decreases. The difference in norm

(r > 1) therefore will have an adverse effect during training

by effectively enforcing smaller angular classification mar-

gins for classes with smaller norm samples. This also leads

to lop-sided classification margins for multiple classes due

to the difference in class norms as can be seen in Fig. 1(a).

This effect is only magnified as δ increases (or the sample x2

comes closer to w1). Fig. 2(b) shows that the angular classi-

fication margin decreases much more rapidly as δ increases.

However, r < 1 leads to a larger margin and seems to be

beneficial for classifying class 1 (as compared to r > 1).

One might argue that this suggests that the r < 1 should

be enforced for better performance. However, note that the

same reasoning applies correspondingly to class 2, where

we want to classify x2 to w2 while rejecting x1. This creates

a trade off between performance on class 1 versus class 2

based on r which also directly scales to multi-class problems.

In typical recognition applications such as face recognition,

this is not desirable. Ideally, we would want to represent all

classes equally well. Setting r = 1 or constraining the norms

of the samples from both classes to be the same ensures this.

Effects of Softmax on the norm of MNIST features.

We qualitatively observe the effects of vanilla Softmax on

the norm of the features (and thereby classification margin)

on MNIST in Fig. 1(a). We see that digits 3, 6 and 8 have

large norm features which are typically the classes that are

harder to distinguish between. Therefore, we observe r < 1
for these three ‘difficult’ classes (w.r.t to the other ‘easier’

classes) thereby providing a larger angular classification

margin to the three classes. On the other hand, digits 1,

9 and 7 have lower norm corresponding to r > 1 w.r.t to

the other classes, since the model can afford to decrease

the margin for these ‘easy’ classes as a trade off. We also

observe that arguably most easily distinguishable class, digit

1, has the lowest norm thereby the highest r. On the other

hand, Fig. 1(b) showcases the features learned using Softmax

augmented with our proposed Ring loss, which forces the

network to learn feature normalization through a convex

formulation thereby mitigating this imbalance in angular

classification margins.

Regularizing Softmax loss with the norm constraint.

The ideal training scenario for a system testing under the

cosine metric would be where all features pointing in the

same direction have the same loss. However, this is not true

for the most commonly used loss function, Softmax and

its variants (FC layer combined with the softmax function

and the cross-entropy loss). Assuming that the weights are

normalized, i.e. kwkk = 1, the Softmax loss for feature

vector F(xi) can be expressed as (for the correct class yi):

LSM = − log
expwkF(xi)

PK
k0=1 expwk0F(xi)

F (1)

= − log
exp kF(xi)k cos θki

PK
k0=1 exp kF(xi)k cos θk0i

(2)

Clearly, despite having the same direction, two features

with different norms have different losses. From this perspec-

tive, the straightforward solution to regularize the loss and

remove the influence of the norm is to normalize the features

before Softmax as explored in l2-constrained Softmax [17].

However, this approach is effectively a projection method,

i.e. it calculates the loss as if the features are normalized to

the same scale, while the actual network does not learn to

normalize features.

The need for features normalization in feature space.

As an illustration, consider the training and testing set fea-

tures trained by vanilla Softmax, of the digit 8 from MNIST

in Fig. 4. Fig. 4(a) shows that at the end of training, the

features are well behaved with a large variation in the norm

of the features with a few samples with low norm. However,

Fig. 4(b) shows that that the features for the test samples

are much more erratic. There is a similar variation in norm

but now most of the low norm features have huge variation

in angle. Indeed, variation in samples for lower norm fea-

tures translates to a larger variation in angle than the same
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Figure 4: MNIST features for digit 8 trained using vanilla Softmax loss.

for higher norm samples features. This translates to higher

errors in classification under the cosine metric (as is com-

mon in face recognition). This is yet another motivation to

normalize features during training. Forcing the network to

learn to normalize the features helps to mitigate this prob-

lem during test wherein the network learns to work in the

normalized feature space. A related motivation to feature

normalization was proposed by Ranjan et.al. [17] wherein

it was argued that low resolution of an image results in a

low norm feature leading to test errors. Their solution to

project (not implicitly learn) the feature to the scaled unit

hypersphere was also aimed at handling low resolution. We

find in our large scale experiment with low resolution im-

ages (see Exp. 6 Fig. 8) that soft normalization by Ring loss

achieves better results. In fact hard projection method by

l2-constrained Softmax [17] performs worse than Softmax

for a downsampling factor of 64.

Incorporating the norm constraint as a convex prob-

lem. Identifying the need to normalize the sample features

from the network, we now formulate the problem. We define

LS as the primary loss function (for instance Softmax loss).

Assuming that F provides deep features for a sample x as

F(x), we would like to minimize the loss subject to the

normalization constraint as follows,

minLS(F(x)) s.t. kF(x)k2 = R (3)

Here, R is the scale constant that we would like the features

to be normalized to. This is the exact formulation recently

studied and implemented by [17, 25]. Note that this problem

is non-convex in F(x) since the set of feasible solutions

is itself non-convex due to the norm equality constraint.

Approaches which use standard SGD while ignoring this

critical point would not be providing feasible solutions to this

problem thereby, the network F would not learn to output

normalized features. Indeed, the features obtained using this

straightforward approach are not normalized as was found

in Fig. 3b in [17] compared to our approach (Fig. 1(b)). One

naive approach to get around this problem would be to relax

the norm equality constraint to an inequality. This objective

will now be convex, however it does not necessarily enforce

equal norm features. In order to incorporate the formulation

as a convex constraint, the following form is directly useful

as we find below.
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Figure 5: Ring loss improves MNIST testing accuracy across all classes

by reducing inter-class norm variance. Norm Ratio is the ratio between

average class norm and average norm of all features.

2.2. Ring loss

Ring loss Definition. Ring loss LR is defined as

LR =
λ

2m

m
X

i=1

(kF(xi)k2 −R)2 (4)

where F(xi) is the deep network feature for the sample xi.

Here, R is the target norm value which is also learned and λ

is the loss weight enforcing a trade-off between the primary

loss function. m is the batch-size. The square on the norm

difference helps the network to take larger steps when the

norm of a sample is too far off from R leading to faster

convergence. The corresponding gradients are as follows.

∂LR

∂R
= −

λ

m

m
X

i=1

(kF(xi)k2 −R) (5)

∂LR

∂F(xi)
=

λ

m

✓

1−
R

kF(xi)k2

◆

F(xi) (6)

Ring loss (LR) can be used along with any other loss

function such as Softmax or large-margin Softmax [14]. The

loss encourages norm of samples being value R (a learned

parameter) rather than explicit enforcing through a hard

normalization operation. This approach provides informed

gradients towards a better minimum which helps the network

to satisfy the normalization constraint. The network there-

fore, learns to normalize the features using model weights

themselves (rather than needing an explicit non-convex nor-

malization operation as in [17], or batch normalization [9]).

In contrast and in connection, batch normalization [9] en-

forces the scaled normal distribution for each element in the

feature independently. This does not constrain the overall

norm of the feature to be equal across all samples and neither

addresses the class imbalance problem. As shown in Fig. 5,

Ring loss stabilizes the feature norm across all classes, and,

in turn, rectifies the classification imbalance for Softmax to

perform better overall.

Ring loss Convergence Visualizations. To illustrate the

effect of the Softmax loss augmented with the enforced

soft-normalization, we conduct some analytical simulations.

We generate a 2D mesh of points from (−1.5, 1.5) in

x,y-axis. We then compute the gradients of Ring loss

(R = 1) assuming the dottef blue vertical line (see Fig. 3)
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Figure 6: ROC curves on the CFP Frontal vs. Profile verification protocol.

For all Figures and Tables, SM denotes Softmax, SF denotes SphereFace

[14],l2-Cons SM denotes [17], + CL denotes Center Loss augmentation

[26] and finally + R denotes Ring loss augmentation. Numbers in bracket

denote value of hyperparameter (loss weight), i.e. α for [17], λ for Center

loss and Ring loss.

as the target class and update each point with a fixed step

size for 20 steps. We run the simulation for λ = {0, 1, 10}.

Note that λ = 0 represents pure Softmax. Fig. 3 depicts the

results of these simulations. Sub-figures (a), (b) and (c) in

Fig. 3 show the initial points on the mesh grid (light green)

and the final updated points (red). For pure Softmax (λ = 0),

we see that the updates increases norm of the samples and

moreover they do not converge. For a reasonable loss weight

of λ = 1, Ring loss gradients can help the updated points

converge much faster in the same number of iterations. For

heavily weighted Ring loss with λ = 10, we see that the

gradients force the samples to a unit norm since R was set

to 1 while overpowering Softmax gradients. These figures

suggest that there exists a trade off enforced by λ between

the Softmax loss LS and the normalization loss. We observe

similar trade-offs in our experiments.

3. Experimental Validation

We benchmark Ring loss on large scale face recognition

tasks while augmenting two loss functions. The first one is

the ubiquitous Softmax, and the second being a successful

variant of Large-margin Softmax [15] called SphereFace

[14]. We present results on five large-scale benchmarks

of LFW [8], IARPA Janus Benchmark IJB-A [11], Janus

Challenge Set 3 (CS3) dataset (which is a super set of the

IJB-A Janus dataset), Celebrities Frontal-Profile (CFP) [20]

and finally the MegaFace dataset [10]. We also present

results of Ring loss augmented Softmax features on low

resolution images from Janus CS3 to showcase resolution

robust face matching.

Implementation Details. For all the experiments in this

paper, we usethe ResNet 64 (Res64) layer architecture from

Liu et. al. [14]. For Center loss, we utilized the code repos-

itory online and used the best hyperparameter setting re-

ported4. The l2-constrained Softmax loss was implemented

follwing [17] by integrating a normalization and scaling

layer5 before the last fully-connected layer. For experiments

with L-softmax [15] and SphereFace [14], we used the pub-

licly available Caffe implementation. The Resnet 64 layer

(Res64) architecture results in a feature dimension of 512 (at

the fc5 layer), which is used for matching using the cosine

distance. Ring loss and Center loss are both applied on this

feature i.e. to the output of the fc5 layer. All models were

trained on the MS-Celeb 1M dataset [5]. The dataset was

cleaned to remove potential outliers within each class and

also noisy classes before training. To clean the dataset we

used a pretrained model to extract features from the MS-

Celeb 1M dataset. Then, classes that had variance in the

MSE, between the sample features and the mean feature of

that class, above a certain threshold were discarded. Fol-

lowing this, from the filtered classes, images that have their

MSE error between their feature vector and the class mean

feature vector higher than a threshold are discarded. After

this procedure, we are left with about 31,000 identities and

about 3.5 million images. The learning rate was initialized

to 0.1 and then decreased by a factor of 10 at 80K and 150K

iterations for a total of 165K iterations. All models evaluated

were the 165K iteration model6.

Preprocessing. All faces were detected and aligned using

[27] which provided landmarks for the two eye centers, nose

and mouth corners (5 points). Since MS-Celeb1M, IJB-A

Janus and Janus CS3 have harder faces we use a robust

detector i.e. CMS-RCNN [29] to detect faces and a fast

landmarker that is robust to pose [2]. The faces were then

aligned using a similarity transformation and were cropped

to 112⇥ 96 in the RGB format. The pixel level activations

were normalized by subtracting 127.5 and then dividing by

128. For failed detections, the training set images are ignored.

In the case of testing, ground truth landmarks were used from

the corresponding dataset.

Exp 1. Testing Benchmark: LFW. The LFW [8]

database contains about 13,000 images for about 1680 sub-

jects with a total of 6,000 defined matches. The primary

nuisance transformations are illumination, pose, color jit-

tering and age. As the field has progressed, LFW has been

considered to be saturated and prone to spurious minor vari-

ances in performance (in the last % of accuracy) owing to

the small size of the protocol. Small differences in accuracy

on this protocol do not accurately reflect the generalizing

4see https://github.com/ydwen/caffe-face.git
5see https://github.com/craftGBD/caffe-GBD. In our ex-

periments, for α = 50 the gradients exploded due the relatively deep Res64

architecture and learning α initialized at 30 did not converge.
6For all Tables, results reported after double horizontal lines are from

models trained during our study. The results above the lines reported directly

from the paper as cited.
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Figure 7: ROC curves on the (a) IJB-A Janus 1:1 verification protocol and the (b) Janus CS3 1:1 verification protocol. For all Figures and Tables, SM denotes

Softmax, SF denotes SphereFace [14],l2-Cons SM denotes [17], + CL denotes Center Loss augmentation [26] and finally + R denotes Ring loss augmentation.

Numbers in bracket denote value of hyperparameter (loss weight), i.e. α for [17], λ for Center loss and Ring loss.

capabilities of a high performing model. Nonetheless, as a

benchmark, we report performance on this dataset.

Results: LFW. Table 1 showcases the results on the LFW

protocol. We find that for Softmax (SM + R), Ring loss nor-

malization seems to significantly improve performance (up

from 98.47% to 99.52% using Ring loss with λ = 0.01). We

find similar trends while using Ring loss with SphereFace.

The LFW accuracy of SphereFace improves from 99.47%

to 99.50%. We note that since even our baselines are high

performing, there is a lot of variance in the results owing to

the small size of the LFW protocol (just 6000 matches com-

pared to about 8 million matches in the Janus CS3 protocol

which shows clearer trends). Indeed we find clearer trends

with MegaFace, IJB-A and CS3 all of which are orders of

magnitude larger protocols.

Exp 2. Testing Benchmark: IJB-A Janus. IJB-A [11]

is a challenging dataset which consists of 500 subjects with

extreme pose, expression and illumination with a total of

25,813 images. Each subject is described by a template

instead of a single image. This allows for score fusion

techniques to be developed. The setting is suited for ap-

plications which have multiple sources of images/video

frames. We report results on the 1:1 template matching

protocol containing 10 splits with about 12,000 pair-wise

template matches each resulting in a total of 117,420 tem-

plate matches. The template matching score for two tem-

plates Ti, Tj is determined by using the following formula,

S(Ti, Tj) =
PK

γ=1

P
ta2Ti,tb2Tj

s(ta,tb) exp γs(ta,tb)
P

ta2Ti,tb2Tj
exp γs(ta,tb)

where

s(ta.tb) is the cosine similarity score between images ta, tb
and K = 8.

Results: IJB-A Janus. Table. 3 and Fig. 7(a) present

these results. We see that Softmax + Ring loss (0.001) out-

performs Softmax by a large margin, particularly 60.52% ver-

ification rate compared to 78.41% verification at 10−5 FAR.

Further, it outperforms Center loss [26] (46.01%) and l2-

constrained Softmax (73.29%) [17]. Although SphereFace

performs better than Softmax + Ring loss, an augmentation

by Ring loss boosts SphereFace’s performance from 78.52%

to 82.41% verification rate for λ = 0.01. This matches

the state-of-the-art reported in [17] which uses a 101-layer

ResNext architecture despite our system using a much shal-

lower 64-layer ResNet architecture. The effect of high λ

akin to the effects simulated in Fig. 3 show in this setting

for λ = 0.03 for SphereFace augmentation. We observe this

trade-off in Janus CS3, CFP and MegaFace results as well.

Nonetheless, we notice that Ring loss augmentation provides

consistent improvements over a large range of λ for both

Softmax and Sphereface. This is in sharp contrast with l2-

constrained Softmax whose performance varies significantly

with α rendering it difficult to optimize. In fact for α = 10,

it performs worse than Softmax.

Exp 3. Testing Benchmark: Janus CS3. The Janus

CS3 dataset is a super set of the IARPA IJB-A dataset. It

contains about 11,876 still images and 55,372 video frames

from 7,094 videos. For the CS3 1:1 template verification

protocol there are a total of 1,871 subjects and 12,590 tem-

plates. The CS3 template verification protocol has over 8

million template matches which amounts to an extremely

large number of template verifications. There are about

1,870 templates in the gallery and about 10,700 templates in

the probe. The CS3 protocol being a super set of IJB-A, has

a large number of extremely challenging images and faces.

The challenging conditions range from extreme illumination,

extreme pose to significant occlusion. For sample images,

please refer to Fig. 4 and Fig. 10 in [12], Fig. 1 and Fig. 6

in [3]. Since the protocol is template matching, we utilize

the same template score fusion technique we utilize in the

IJB-A results with K = 2.

Results: Janus CS3. Table. 4 and Fig. 7(b) showcases
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SM
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SM + CL (0.008)

SM + R (0.01)

(e) Downsampling 64x

Figure 8: ROC curves for the downsampling experiment on Janus CS3. Ring loss (SM + R λ = 0.01) learns the most robust features, whereas l2-constrained

Softmax (l2-Cons SM α = 30) [17] performs poorly (worse than the baseline Softmax) at very high downsampling factor of 64x.

our results on the CS3 dataset. We report verification rates

(VR) at 10−3 through 10−6 FAR. We find that our Ring loss

augmented Softmax model outperforms the previous best

reported results on the CS3 dataset. Recall that the Softmax

+ Ring loss model (SM + R) was trained only on a subset of

the MS-Celeb dataset and achieves a VR of 74.56% at 10−4

FAR. This is in contrast to Lin et. al. who train on MS-Celeb

plus CASIA-WebFace (an additional 0.5 million images)

and achieve 72.52 %. Further, we find that even though our

baseline Sphereface Res64 model outperforms the previous

state-of-the-art, our Ring loss augmented Sphereface model

outperforms all other models to achieve high a VR of 82.74

% at 10−4 FAR. At very low FAR of 10−6 our SF + R model

achieves VR 35.18 % which to the best of our knowledge is

the state-of-the-art on the challenging Janus CS3. In accor-

dance with the results on IJB-A Janus, Ring loss provides

consistent improvements over large ranges of λ whereas l2-

constrained Softmax exhibits significant variation w.r.t. to

its hyperparameter.

Exp 4. Testing Benchmark: MegaFace. The recently

released MegaFace benchmark is extremely challenging

which defines matching with a gallery of about 1 million

distractors [10]. The aspect of face recognition that this

database test is discrimination in the presence of very large

number of distractors. The testing database contains two

sets of face images. The distractor set contains 1 million

distractor subjects (images). The target set contain 100K

images from 530 celebrities.

Result: MegaFace. Table. 2 showcases our results. Even

at this extremely large scale evaluation (evaluating Face-

Scrub against 1 million), the addition of Ring loss provides

significant improvement to the baseline approaches. The

identification rate (%) for Softmax upon the addition of

Ring loss (λ = 0.001) improves from 56.36% to a high

71.67% and for SphereFace it improves from 74.95% to

75.22% for a single patch model. This is higher than the

single patch model reported in the orginal Sphereface paper

(72.72% [14]). We outperform Center loss [26] augmenting

both Softmax (67.24%) and Sphereface (71.15%). We find

that though for MegaFace, l2-constrained Softmax [17] for

α = 30 achieves 72.22%, there is yet again significant varia-

Table 1: Accuracy (%) on LFW.

Method Training Data Accuracy (%)

FaceNet [19] 200M private 99.65

Deep-ID2+ [22] CelebFace+ 99.15

Range loss [28] WebFace 99.52

+Celeb1M(1.5M)

Baidu [13] 1.3M 99.77

Norm Face [25] WebFace 99.19

SM MS-Celeb 98.47

l2-Cons SM (30) [17] MS-Celeb 99.55

l2-Cons SM (20) [17] MS-Celeb 99.47

l2-Cons SM (10) [17] MS-Celeb 99.45

SM + CL [26] MS-Celeb 99.17

SF [14] MS-Celeb 99.47

SF + CL [26, 14] MS-Celeb 99.52

SM + R (0.01) MS-Celeb 99.52

SM + R (0.001) MS-Celeb 99.50

SM + R (0.0001) MS-Celeb 99.28

SF + R (0.03) MS-Celeb 99.48

SF + R (0.01) MS-Celeb 99.43

SF + R (0.001) MS-Celeb 99.42

SF + R (0.0001) MS-Celeb 99.50

tion in performance that occurs due to a change in the hyper

parameter α (66.20% for α = 10 to 72.22% for α = 30).

Ring loss hyper parameter (λ), as we find again, is more

easily tunable and manageable. This results in a smaller

variance in performance for both Softmax and SphereFace

augmentations.

Exp 5. Testing Benchmark: CFP Frontal vs. Profile.

Recently the CFP (Celebrities Frontal-Profile) dataset was

released to evaluate algorithms exclusively on frontal versus

profile matches [20]. This small dataset has about 7,000

pairs of matches defined with 3,500 same pairs and 3,500

not-same pairs for about 500 different subjects. For sample

images please refer to Fig. 1 of [20]. The dataset presents

a challenge since each of the probe images is almost en-

tirely profile thereby presenting extreme pose along with

illumination and expression challenges.

Result: CFP Frontal vs. Profile. Fig. 6 showcases the

ROC curves for this experiment whereas Table. 2 shows the
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Method Acc % (MegaFace) 10−3 (CFP)

SM 56.36 55.86

l2-Cons SM (30) [17] 72.22 82.14

l2-Cons SM (20) [17] 70.29 83.69

l2-Cons SM (10) [17] 66.20 76.77

SM + CL [26] 67.24 78.94

SF [14] 74.95 89.94

SF + CL [26, 14] 71.15 82.97

SM + R (0.01) 71.10 87.43

SM + R (0.001) 71.67 81.29

SM + R (0.0001) 69.41 76.30

SF + R (0.03) 73.05 86.23

SF + R (0.01) 74.93 90.94

SF + R (0.001) 75.22 87.69

SF + R (0.0001) 74.45 88.17

Table 2: Identification rates on MegaFace with 1 million distractors (Accu-

racy %) and Verification rates at 10−3 FAR for the CFP Frontal vs. Profile

protocol.

Method 10−5 10−4 10−3

l2-Cons SM* (101) [17] - 87.9 93.7

l2-Cons SM* (101x) [17] - 88.3 93.8

SM 60.52 69.69 83.10

l2-Cons SM (30) [17] 73.29 80.65 90.72

l2-Cons SM (20) [17] 67.63 76.88 89.89

l2-Cons SM (10) [17] 53.74 68.58 83.42

SM + CL [26] 46.01 74.10 88.32

SF [14] 78.52 88.0 93.24

SF + CL [26, 14] 72.35 81.11 89.26

SM + R (0.01) 72.53 79.1 90.8

SM + R (0.001) 78.41 85.0 91.5

SM + R (0.0001) 69.23 82.30 89.20

SF + R (0.03) 79.54 85.37 91.64

SF + R (0.01) 82.41 88.5 93.22

SF + R (0.001) 79.74 87.71 92.62

SF + R (0.0001) 80.13 86.34 92.57

Table 3: Verification % on the IJB-A Janus 1:1 verification protocol. l2-

Cons SM* indicates the result reported in [17] which uses a 101 layer

ResNet/ResNext architecture.

verification rates at 10−3 FAR. Ring loss (87.43%) provides

consistent and significant boost in performance over Soft-

max (55.86%). We find however, SphereFace required more

careful tuning of λ with λ = 0.01 (90.94%) outperforming

the baseline. Further, Softmax and Ring loss with λ = 0.01
significantly outperforms all runs for l2-constrained Softmax

[17] (83.69). Thus, Ring loss helps in providing higher veri-

fication rates while dealing with frontal to highly off-angle

matches thereby explicitly demonstrating robustness to pose

variation.

Exp 6. Low Resolution Experiments on Janus CS3.

Method 10−6 10−5 10−4 10−3

Bodla et. al. Final1 [3] - - 69.81 82.89

Bodla et. al. Final2 [3] - - 68.45 82.97

Lin et. al. [12] - - 72.52 83.55

SM 6.16 42.03 64.52 80.86

l2-Cons SM (30) [17] 24.47 52.32 73.36 87.46

l2-Cons SM (20) [17] 21.14 48.82 68.84 85.34

l2-Cons SM (10) [17] 13.28 36.08 57.80 78.36

SM + CL [26] 2.88 20.87 65.71 84.55

SF [14] 28.51 63.92 82.29 90.58

SF + CL [26, 14] 28.99 53.36 72.91 86.14

SM + R (0.01) 25.17 52.60 73.56 87.50

SM + R (0.001) 26.62 54.13 74.56 87.93

SM + R (0.0001) 17.35 50.65 71.06 85.48

SF + R (0.03) 27.27 56.84 76.97 88.75

SF + R (0.01) 35.18 65.02 82.74 90.99

SF + R (0.001) 32.19 63.13 81.62 90.17

SF + R (0.0001) 32.01 63.12 81.57 90.24

Table 4: Verification % on the Janus CS3 1:1 verification protocol.

One of the main motivations for l2-constrained Softmax was

to handle images with varying resolution. Low resolution

images were found to result in low norm features and vice

versa. Ranjan et.al. [17] argued normalization (through l2-

constrained Softmax) would help deal with this issue. In

order to test the efficacy of our alternate convex normaliza-

tion formulation towards handling low resolution faces, we

synthetically downsample Janus CS3 from an original size

of (112 ⇥ 96) by a factor of 4x, 16x, 25x, 36x and 64x re-

spectively (images were downsampled and resized back up

using bicubic interpolation in order to fit the model). We run

the Janus CS3 protocol and plot the ROC curves in Fig. 8.

We find that the Ring loss helps Softmax features be more ro-

bust to resolution. Though l2-constrained Softmax provides

improvement over Softmax, it’s performance is lower than

Ring loss. Further, at extremely high downsampling of 64x,

l2-constrained Softmax in fact performs worse than Softmax,

whereas Ring loss provides a clear improvement. Center

loss fails early on at 16x. We therefore find that our simple

convex soft normalization approach is more effective at ar-

resting performance drop due to resolution in accordance

with the motivation for as normalization presented in [17].

Conclusion. We motivate feature normalization in a prin-

cipled manner and develop an elegant, simple and straight

forward to implement convex approach towards that goal.

We find that Ring loss consistently provides significant im-

provements over a large range of the hyperparameter λ. Fur-

ther, it helps the network itself to learn normalization thereby

being robust to a large range of degradations.
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