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Abstract

Convolutional neural networks have gained a remark-

able success in computer vision. However, most usable net-

work architectures are hand-crafted and usually require ex-

pertise and elaborate design. In this paper, we provide a

block-wise network generation pipeline called BlockQNN

which automatically builds high-performance networks us-

ing the Q-Learning paradigm with epsilon-greedy explo-

ration strategy. The optimal network block is constructed by

the learning agent which is trained sequentially to choose

component layers. We stack the block to construct the whole

auto-generated network. To accelerate the generation pro-

cess, we also propose a distributed asynchronous frame-

work and an early stop strategy. The block-wise genera-

tion brings unique advantages: (1) it performs competitive

results in comparison to the hand-crafted state-of-the-art

networks on image classification, additionally, the best net-

work generated by BlockQNN achieves 3.54% top-1 error

rate on CIFAR-10 which beats all existing auto-generate

networks. (2) in the meanwhile, it offers tremendous re-

duction of the search space in designing networks which

only spends 3 days with 32 GPUs, and (3) moreover, it has

strong generalizability that the network built on CIFAR also

performs well on a larger-scale ImageNet dataset.

1. Introduction

During the last decades, Convolutional Neural Networks

(CNNs) have shown remarkable potentials almost in ev-

ery field in the computer vision society [17]. For exam-

ple, thanks to the network evolution from AlexNet [16],

VGG [25], Inception [30] to ResNet [10], the top-5 per-

formance on ImageNet challenge steadily increases from

83.6% to 96.43%. However, as the performance gain

usually requires an increasing network capacity, a high-

performance network architecture generally possesses a

∗The work was done when the first author interns at SenseTime.

tremendous number of possible configurations about the

number of layers, hyperparameters in each layer and type

of each layer. It is hence infeasible for manually exhaus-

tive search, and the design of successful hand-crafted net-

works heavily rely on expert knowledge and experience.

Therefore, constructing the network in a smart and auto-

matic manner remains an open problem.

Although some recent works have attempted computer-

aided or automated network design [2, 37], there are sev-

eral challenges still unsolved: (1) Modern neural networks

always consist of hundreds of convolutional layers, each

of which has numerous options in type and hyperparame-

ters. It makes a huge search space and heavy computational

costs for network generation. (2) One typically designed

network is usually limited on a specific dataset or task, and

thus is hard to transfer to other tasks or generalize to another

dataset with different input data sizes. In this paper, we pro-

vide a solution to the aforementioned challenges by a novel

fast Q-learning framework, called BlockQNN, to automati-

cally design the network architecture, as shown in Fig. 1.

Particularly, to make the network generation efficient

and generalizable, we introduce the block-wise network

generation, i.e., we construct the network architecture as a

flexible stack of personalized blocks rather tedious per-layer

network piling. Indeed, most modern CNN architectures

such as Inception [30, 14, 31] and ResNet Series [10, 11]

are assembled as the stack of basic block structures. For

example, the inception and residual blocks shown in Fig. 1

are repeatedly concatenated to construct the entire network.

With such kind of block-wise network architecture, the

generated network owns a powerful generalization to other

task domains or different datasets.

In comparison to previous methods like NAS [37] and

MetaQNN [2], as depicted in Fig. 1, we present a more

readily and elegant model generation method that specif-

ically designed for block-wise generation. Motivated by

the unsupervised reinforcement learning paradigm, we em-

ploy the well-known Q-learning [33] with experience re-

play [19] and epsilon-greedy strategy [21] to effectively and
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Figure 1. The proposed BlockQNN (right in red box) compared with the hand-crafted networks marked in yellow and the existing auto-

generated networks in green. Automatically generating the plain networks [2, 37] marked in blue need large computational costs on

searching optimal layer types and hyperparameters for each single layer, while the block-wise network heavily reduces the cost to search

structures only for one block. The entire network is then constructed by stacking the generated blocks. Similar block concept has been

demonstrated its superiority in hand-crafted networks, such as inception-block and residue-block marked in red.

efficiently search the optimal block structure. The network

block is constructed by the learning agent which is trained

sequentiality to choose component layers. Afterwards we

stack the block to construct the whole auto-generated net-

work. Moreover, we propose an early stop strategy to en-

able efficient search with fast convergence. A novel reward

function is designed to ensure the accuracy of the early

stopped network having positive correlation with the con-

verged network. We can pick up good blocks in reduced

training time using this property. With this acceleration

strategy, we can construct a Q-learning agent to learn the

optimal block-wise network structures for a given task with

limited resources (e.g. few GPUs or short time period). The

generated architectures are thus succinct and have powerful

generalization ability compared to the networks generated

by the other automatic network generation methods.

The proposed block-wise network generation brings a

few advantages as follows:
• Effective. The automatically generated networks

present comparable performances to those of hand-

crafted networks with human expertise. The proposed

method is also superior to the existing works and

achieves a state-of-the-art performance on CIFAR-10
with 3.54% error rate.

• Efficient. We are the first to consider block-wise

setup in automatic network generation. Companied

with the proposed early stop strategy, the proposed

method results in a fast search process. The network

generation for CIFAR task reaches convergence with

only 32 GPUs in 3 days, which is much more efficient

than that by NAS [37] with 800 GPUs in 28 days.
• Transferable. It offers surprisingly superior transfer-

able ability that the network generated for CIFAR can

be transferred to ImageNet with little modification but

still achieve outstanding performance.

2. Related Work

Early works, from 1980s, have made efforts on automat-

ing neural network design which often searched good archi-

tecture by the genetic algorithm or other evolutionary algo-

rithms [24, 27, 26, 28, 23, 7, 34]. Nevertheless, these works,

to our best knowledge, cannot perform competitively com-

pared with hand-crafted networks. Recent works, i.e. Neu-

ral Architecture Search (NAS) [37] and MetaQNN [2],

adopted reinforcement learning to automatically search a

good network architecture. Although they can yield good

performance on small datasets such as CIFAR-10, CIFAR-

100, the direct use of MetaQNN or NAS for architecture

design on big datasets like ImageNet [6] is computationally

expensive via searching in a huge space. Besides, the net-

work generated by this kind of methods is task-specific or

dataset-specific, that is, it cannot been well transferred to

other tasks nor datasets with different input data sizes. For

example, the network designed for CIFAR-10 cannot been

generalized to ImageNet.

Instead, our approach is aimed to design network block

architecture by an efficient search method with a dis-

tributed asynchronous Q-learning framework as well as an

early-stop strategy. The block design conception follows

the modern convolutional neural networks such as Incep-

tion [30, 14, 31] and Resnet [10, 11]. The inception-based

networks construct the inception blocks via a hand-

crafted multi-level feature extractor strategy by computing

1× 1, 3× 3, and 5× 5 convolutions, while the Resnet uses

residue blocks with shortcut connection to make it

easier to represent the identity mapping which allows a very

deep network. The blocks automatically generated by our

approach have similar structures such as some blocks con-

tain short cut connections and inception-like multi-branch

combination. We will discuss the details in Section 5.1.
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Name Index Type Kernel Size Pred1 Pred2

Convolution T 1 1, 3, 5 K 0

Max Pooling T 2 1, 3 K 0

Average Pooling T 3 1, 3 K 0

Identity T 4 0 K 0

Elemental Add T 5 0 K K

Concat T 6 0 K K

Terminal T 7 0 0 0

Table 1. Network Structure Code Space. The space contains seven

types of commonly used layers. Layer index stands for the posi-

tion of the current layer in a block, the range of the parameters is

set to be T = {1, 2, 3, ...max layer index}. Three kinds of ker-

nel sizes are considered for convolution layer and two sizes for

pooling layer. Pred1 and Pred2 refer to the predecessor parame-

ters which is used to represent the index of layers predecessor, the

allowed range is K = {1, 2, ..., current layer index − 1}

Codes = [(1,4,0,0,0), (2,1,1,1,0), (3,1,3,2,0),
(4,1,1,1,0), (5,1,5,4,0), (6,6,0,3,5),

(7,2,3,1,0), (8,1,1,7,0), (9,6,0,6,8),

(10,7,0,0,0)]

Codes = [(1,4,0,0,0), (2,1,3,1,0), 
(3,1,3,2,0), (4,5,0,1,3),

(5,7,0,0,0)]
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Figure 2. Representative block exemplars with their Network

structure codes (NSC) respectively: the block with multi-branch

connections (left) and the block with shortcut connections (right).

Another bunch of related works include hyper-parameter

optimization [3], meta-learning [32] and learning to learn

methods [12, 1]. However, the goal of these works is to

use meta-data to improve the performance of the existing

algorithms, such as finding the optimal learning rate of op-

timization methods or the optimal number of hidden layers

to construct the network. In this paper, we focus on learn-

ing the entire topological architecture of network blocks to

improve the performance.

3. Methodology

3.1. Convolutional Neural Network Blocks

The modern CNNs, e.g. Inception and Resnet, are de-

signed by stacking several blocks each of which shares

similar structure but with different weights and filter num-

bers to construct the network. With the block-wise design,

the network can not only achieves high performance but
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Figure 3. Auto-generated networks on CIFAR-10 (left) and Im-

ageNet (right). Each network starts with a few convolution lay-

ers to learn low-level features, and followed by multiple repeated

blocks with several pooling layers inserted to downsample.

also has powerful generalization ability to different datasets

and tasks. Unlike previous research on automating neural

network design which generate the entire network directly,

we aim at designing the block structure.

As a CNN contains a feed-forward computation proce-

dure, we represent it by a directed acyclic graph (DAG),

where each node corresponds to a layer in the CNN while

directed edges stand for data flow from one layer to another.

To turn such a graph into a uniform representation, we pro-

pose a novel layer representation called Network Structure

Code (NSC), as shown in Table 2. Each block is then de-

picted by a set of 5-D NSC vectors. In NSC, the first three

numbers stand for the layer index, operation type and kernel

size. The last two are predecessor parameters which refer

to the position of a layer’s predecessor layer in structure

codes. The second predecessor (Pred2) is set for the layer

owns two predecessors, and for the layer with only one pre-

decessor, Pred2 will be set to zero. This design is motivated

by the current powerful hand-crafted networks like Incep-

tion and Resnet which own their special block structures.

This kind of block structure shares similar properties such

as containing more complex connections, e.g. shortcut con-

nections or multi-branch connections, than the simple con-

nections of the plain network like AlexNet. Thus, the pro-

posed NSC can encode complexity architectures as shown

in Fig. 2. In addition, all of the layer without successor in

the block are concatenated together to provide the final out-

put. Note that each convolution operation, same as the dec-

laration in Resnet [11], refers to a Pre-activation Convolu-

tional Cell (PCC) with three components, i.e. ReLU, Con-

volution and Batch Normalization. This results in a smaller
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Figure 4. Q-learning process illustration. (a) The state transition process by different action choices. The block structure in (b) is generated

by the red solid line in (a). (c) The flow chart of the Q-learning procedure.

searching space than that with three components separate

search, and hence with the PCC, we can get better initial-

ization for searching and generating optimal block structure

with a quick training process.

Based on the above defined blocks, we construct

the complete network by stacking these block structures

sequentially which turn a common plain network into

its counterpart block version. Two representative auto-

generated networks on CIFAR and ImageNet tasks are

shown in Fig. 3. There is no down-sampling operation

within each block. We perform down-sampling directly

by the pooling layer. If the size of feature map is halved

by pooling operation, the block’s weights will be doubled.

The architecture for ImageNet contains more pooling layers

than that for CIFAR because of their different input sizes,

i.e. 224× 224 for ImageNet and 32× 32 for CIFAR. More

importantly, the blocks can be repeated any N times to

fulfill different demands, and even place the blocks in other

manner, such as inserting the block into the Network-in-

Network [20] framework or setting short cut connection be-

tween different blocks.

3.2. Designing Network Blocks With QLearning

Albeit we squeeze the search space of the entire network

design by focusing on constructing network blocks, there

is still a large amount of possible structures to seek. There-

fore, we employ reinforcement learning rather than random

sampling for automatic design. Our method is based on Q-

learning, a kind of reinforcement learning, which concerns

how an agent ought to take actions so as to maximize the

cumulative reward. The Q-learning model consists of an

agent, states and a set of actions.

In this paper, the state s ∈ S represents the status of

the current layer which is defined as a Network Structure

Code (NSC) claimed in Section 3.1, i.e. 5-D vector {layer

index, layer type, kernel size, pred1, pred2}. The action

a ∈ A is the decision for the next successive layer. Thanks

to the defined NSC set with a limited number of choices,

both the state and action space are thus finite and discrete

to ensure a relatively small searching space. The state tran-

sition process (st, a(st)) → (st+1) is shown in Fig. 4(a),

where t refers to the current layer. The block example in

Fig. 4(b) is generated by the red solid lines in Fig. 4(a). The

learning agent is given the task of sequentially picking NSC

of a block. The structure of block can be considered as an

action selection trajectory τa1:T
, i.e. a sequence of NSCs.

We model the layer selection process as a Markov Decision

Process with the assumption that a well-performing layer in

one block should also perform well in another block [2]. To

find the optimal architecture, we ask our agent to maximize

its expected reward over all possible trajectories, denoted

by Rτ ,

Rτ = EP (τa1:T
)[R], (1)

where the R is the cumulative reward. For this maximiza-

tion problem, it is usually to use recursive Bellman Equation

to optimality. Given a state st ∈ S, and subsequent action

a ∈ A(st), we define the maximum total expected reward

to be Q∗(st, a) which is known as Q-value of state-action

pair. The recursive Bellman Equation then can be written as

Q∗(st, a) = Est+1|st,a[Er|st,a,st+1
[r|st, a, st+1]

+γ max
a′∈A(st+1))

Q∗(st+1, a
′)]. (2)

An empirical assumption to solve the above quantity is

to formulate it as an iterative update:

Q(sT , a) =0 (3)

Q(sT−1, aT ) =(1− α)Q(sT−1, aT ) + αrT (4)

Q(st, a) =(1− α)Q(st, a)

+α[rt + γmax
a′

Q(st+1, a
′)], t ∈ {1, 2, ...T − 2}, (5)

where α is the learning rate which determines how the

newly acquired information overrides the old information,

γ is the discount factor which measures the importance of

future rewards. rt denotes the intermediate reward observed

for the current state st and sT refers to final state, i.e. termi-

nal layers. rT is the validation accuracy of corresponding
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Figure 5. Comparison results of Q-learning with and without the

shaped intermediate reward rt. By taking our shaped reward, the

learning process convergent faster than that without shaped reward

start from the same exploration.

network trained convergence on training set for aT , i.e. ac-

tion to final state. Since the reward rt cannot be explicitly

measured in our task, we use reward shaping [22] to speed

up training. The shaped intermediate reward is defined as:

rt =
rT

T
. (6)

Previous works [2] ignore these rewards in the iterative

process, i.e. set them to zero, which may cause a slow con-

vergence in the beginning. This is known as the temporal

credit assignment problem which makes RL time consum-

ing [29]. In this case, the Q-value of sT is much higher than

others in early stage of training and thus leads the agent pre-

fer to stop searching at the very beginning, i.e. tend to build

small block with fewer layers. We show a comparison result

in Fig. 5, the learning process of the agent with our shaped

reward rt convergent much faster than previous method.

We summarize the learning procedure in Fig. 4(c). The

agent first samples a set of structure codes to build the

block architecture, based on which the entire network is

constructed by stacking these blocks sequentially. We then

train the generated network on a certain task, and the vali-

dation accuracy is regarded as the reward to update the Q-

value. Afterwards, the agent picks another set of structure

codes to get a better block structure.

3.3. Early Stop Strategy

Introducing block-wise generation indeed increases

the efficiency. However, it is still time consuming to com-

plete the search process. To further accelerate the learn-

ing process, we introduce an early stop strategy. As we all

know, early stopping training process might result in a poor

accuracy. Fig. 6 shows an example, where the early-stop ac-

curacy in yellow line is much lower than the final accuracy

in orange line, which means that some good blocks unfor-

tunately perform worse than bad blocks when stop training

early. In the meanwhile, we notice that the FLOPs and den-

sity of the corresponding blocks have a negative correlation
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Figure 6. The performance of early stop training is poorer than the

final accuracy of a complete training. With the help of FLOPs and

Density, it squeezes the gap between the redefined reward function

and the final accuracy.

with the final accuracy. Thus, we redefine the reward func-

tion as

reward = ACCEarlyStop − µ log(FLOPs)

−ρ log(Density), (7)

where FLOPs [8] refer to an estimation of computational

complexity of the block, and Density is the edge number

divided by the dot number in DAG of the block. There are

two hyperparameters, µ and ρ, to balance the weights of

FLOPs and Density. With the redefined reward function,

the reward is more relevant to the final accuracy.

With this early stop strategy and small searching space of

network blocks, it just costs 3 days to complete the search-

ing process with only 32 GPUs, which is superior to that

of [37], spends 28 days with 800 GPUs to achieve the same

performance.

4. Framework and Training Details

4.1. Distributed Asynchronous Framework

To speed up the learning of agent, we use a distributed

asynchronous framework as illustrated in Fig. 7. It consists

of three parts: master node, controller node and compute

nodes. The agent first samples a batch of block structures in

master node. Afterwards, we store them in a controller node

which uses the block structures to build the entire networks

and allocates these networks to compute nodes. It can be

regarded as a simplified parameter-server [5, 18]. Specif-

ically, the network is trained in parallel on each of com-

pute nodes and returns the validation accuracy as reward by

controller nodes to update agent. With this framework, we

can generate network efficiently on multiple machines with

multiple GPUs.
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Figure 7. The distributed asynchronous framework. It contains

three parts: master node, controller node and compute nodes.

ǫ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Iters 95 7 7 7 10 10 10 10 10 12

Table 2. Epsilon Schedules. The number of iteration the agent

trains at each epsilon(ǫ) state.

4.2. Training Details

Epsilon-greedy Strategy. The agent is trained using Q-

learning with experience replay [19] and epsilon-greedy

strategy [21]. With epsilon-greedy strategy, the random ac-

tion is taken with probability ǫ and the greedy action is cho-

sen with probability 1− ǫ. We decrease epsilon from 1.0 to

0.1 following the epsilon schedule as shown in Table 2 such

that the agent can transform smoothly from exploration to

exploitation. We find that the result goes better with a longer

exploration, since the searching scope would become larger

and the agent can see more block structures in the random

exploration period.

Experience Replay. Following [2], we employ a replay

memory to store the validation accuracy and block descrip-

tion after each iteration. Within a given interval, i.e. each

training iteration, the agent samples 64 blocks with their

corresponding validation accuracies from the memory and

updates Q-value 64 times.

BlockQNN Generation.

In the Q-learning update process, the learning rate α is

set to 0.01 and the discount factor γ is 1. We set the hy-

perparameters µ and ρ in the redefined reward function as 1
and 8, respectively. The agent samples 64 sets of NSC vec-

tors at a time to compose a mini-batch and the maximum

layer index for a block is set to 23. We train the agent with

178 iterations, i.e. sampling 11, 392 blocks in total.

During the block searching phase, the compute nodes

train each generated network for a fixed 12 epochs on

CIFAR-100 using the early top strategy as described in Sec-

tion 3.3. CIFAR-100 contains 60, 000 samples with 100
classes which are divided into training and test set with the

ratio of 5 : 1. We train the network without any data aug-

mentation procedure. The batch size is set to 256. We

use Adam optimizer [15] with β1 = 0.9, β2 = 0.999,

ε = 10−8. The initial learning rate is set to 0.001 and is

reduced with a factor of 0.2 every 5 epochs. All weights are

initialized as in [9]. If the training result after the first epoch

is worse than the random guess, we reduce the learning rate

by a factor of 0.4 and restart training, with a maximum of 3
times for restart-operations.

After obtaining one optimal block structure, we build

the whole network with stacked blocks and train the net-

work until converging to get the validation accuracy as the

criterion to pick the best network. In this phase, we aug-

ment data with randomly cropping the images with size of

32 × 32 and horizontal flipping. All models use the SGD

optimizer with momentum rate set to 0.9 and weight decay

set to 0.0005. We start with a learning rate of 0.1 and train

the models for 300 epochs, reducing the learning rate in the

150-th and 225-th epoch. The batch size is set to 128 and

all weights are initialized with MSRA initialization [9].

Transferable BlockQNN. We also evaluate the transfer-

ability of the best auto-generated block structure searched

on CIFAR-100 to a smaller dataset, CIFAR-10, with only

10 classes and a larger dataset, ImageNet, containing 1.2M

images with 1000 classes. All the experimental settings are

the same as those on the CIFAR-100 stated above. The

training is conducted with a mini-batch size of 256 where

each image has data augmentation of randomly cropping

and flipping, and is optimized with SGD strategy. The ini-

tial learning rate, weight decay and momentum are set as

0.1, 0.0001 and 0.9, respectively. We divide the learning

rate by 10 twice, at the 30-th and 60-th epochs. The net-

work is trained with a total of 90 epochs. We evaluate the

accuracy on the test images with center crop.

Our framework is implemented under the PyTorch sci-

entific computing platform. We use the CUDA backend

and cuDNN accelerated library in our implementation for

high-performance GPU acceleration. Our experiments are

carried out on 32 NVIDIA TitanX GPUs and took about 3
days to complete searching.

5. Results

5.1. Block Searching Analysis

Fig. 8(a) provides early stop accuracies over 178 batches

on CIFAR-100, each of which is averaged over 64 auto-

generated block-wise network candidates within in each

mini-batch. After random exploration, the early stop ac-

curacy grows steadily till converges. The mean accuracy

within the period of random exploration is 56% while fi-

nally achieves 65% in the last stage with ǫ = 0.1. We

choose top-100 block candidates and train their respective

networks to verify the best block structure. We show top-

2 block structures in Fig. 8(b-c), denoted as Block-QNN-

A and Block-QNN-B. As shown in Fig. 8(a), both top-2
blocks are found in the final stage of the Q-learning pro-
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The red line refers to searching with PCC, i.e. combination of

ReLU, Conv and BN. The blue stands for separate searching with

ReLU, BN and Conv. The red line is better than blue from the

beginning with a big gap.

cess, which proves the effectiveness of the proposed method

in searching optimal block structures rather than randomly

searching a large amount of models. Furthermore, we ob-

serve that the generated blocks share similar properties with

those state-of-the-art hand-crafted networks. For example,

Block-QNN-A and Block-QNN-B contain short-cut con-

nections and multi-branch structures which have been man-

ually designed in residual-based and inception-based net-

works. Compared to other auto-generated methods, the net-

works generated by our approach are more elegant and can

automatically and effectively reveal the beneficial proper-

ties for optimal network structure.

To squeeze the searching space, as stated in Section 3.1,

we define a Pre-activation Convolutional Cell (PCC) con-

sists of three components, i.e. ReLU, convolution and

batch normalization (BN). We show the superiority of the

PCC, searching a combination of three components, in

Fig. 9, compared to the separate search of each component.

Searching the three components separately is more likely to

Method Depth Para C-10 C-100

VGG [25] - 7.25 -

ResNet [10] 110 1.7M 6.61 -

Wide ResNet [36] 28 36.5M 4.17 20.5

ResNet (pre-activation) [11] 1001 10.2M 4.62 22.71

DenseNet (k = 12) [13] 40 1.0M 5.24 24.42

DenseNet (k = 12) [13] 100 7.0M 4.10 20.20

DenseNet (k = 24) [13] 100 27.2M 3.74 19.25

DenseNet-BC (k = 40) [13] 190 25.6M 3.46 17.18

MetaQNN (ensemble) [2] - - 7.32 -

MetaQNN (top model) [2] - 11.2M 6.92 27.14

NAS v1 [37] 15 4.2M 5.50 -

NAS v2 [37] 20 2.5M 6.01 -

NAS v3 [37] 39 7.1M 4.47 -

NAS v3 more filters [37] 39 37.4M 3.65 -

Block-QNN-A, N=4 25 - 3.60 18.64

Block-QNN-B, N=4 37 - 3.80 18.72

Block-QNN-S, N=2 19 6.1M 4.38 20.65

Block-QNN-S more filters 22 39.8M 3.54 18.06

Table 3. Block-QNN’s results (error rate) compare with state-of-

the-art methods on CIFAR-10 (C-10) and CIFAR-100 (C-100)

dataset.

generate “bad” blocks and also needs more searching space

and time to pursue “good” blocks.

5.2. Results on CIFAR

Due to the small size of images (i.e. 32× 32) in CIFAR,

we set block stack number as N = 4. We compare our

generated best architectures with the state-of-the-art hand-

crafted networks or auto-generated networks in Table 3.

Comparison with hand-crafted networks - It shows that our

Block-QNN networks outperform most hand-crafted net-

works. The DenseNet-BC [13] uses additional 1 × 1 con-

volutions in each composite function and compressive tran-
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sition layer to reduce parameters and improve performance,

which is not adopted in our design. Our performance can

be further improved by using this prior knowledge.

Comparison with auto-generated networks - Our approach

achieves a significant improvement to the MetaQNN [2],

and even better than NAS’s best model (i.e. NASv3 more

filters) [37] proposed by Google brain which needs an ex-

pensive costs on time and GPU resources. As shown in Ta-

ble 4, NAS trains the whole system on 800 GPUs in 28

days while we only need 32 GPUs in 3 days to get state-

of-the-art performance.

Transfer block from CIFAR-100 to CIFAR-10 - We trans-

fer the top blocks learned from CIFAR-100 to CIFAR-10
dataset, all experiment settings are the same. As shown

in Table 3, the blocks can also achieve state-of-the-art re-

sults on CIFAR-10 dataset with 3.60% error rate that proved

Block-QNN networks have powerful transferable ability.

Analysis on network parameters - The networks generated

by our method might be complex with a large amount of pa-

rameters since we do not add any constraints during train-

ing. We further conduct an experiment on searching net-

works with limited parameters and adaptive block num-

bers. We set the maximal parameter number as 10M and

obtain an optimal block (i.e. Block-QNN-S) which outper-

forms NASv3 with less parameters, as shown in Fig. 8(d).

In addition, when involving more filters in each convolu-

tional layer (e.g. from [32,64,128] to [80,160,320]), we can

achieve even better result (3.54%).

5.3. Transfer to ImageNet

To demonstrate the generalizability of our approach, we

transfer the block structure learned from CIFAR to Ima-

geNet dataset.

For the ImageNet task, we set block repeat number

N = 3 and add more down sampling operation before

blocks, the filters for convolution layers in different level

blocks are [64,128,256,512]. We use the best blocks struc-

ture learned from CIFAR-100 directly without any fine-

tuning, and the generated network initialized with MSRA

initialization as same as above. The experimental results

are shown in Table 5. The network generated by our frame-

work can get competitive result compared with other human

designed models. The recently proposed methods such as

Xception [4] and ResNext [35] use special depth-wise con-

volution operation to reduce their total number of parame-

ters and to improve performance. In our work, we do not

use this new convolution operation, so it can’t be compared

fairly, and we will consider this in our future work to further

improve the performance.

As far as we known, most previous works of automatic

network generation did not report competitive result on

large scale image classification datasets. With the con-

Method Best Model on CIFAR10 GPUs Time(days)

MetaQNN [2] 6.92 10 10

NAS [37] 3.65 800 28

Our approach 3.54 32 3

Table 4. The required computing resource and time of our ap-

proach compare with other automatic designing network methods.

Method Input Size Depth Top-1 Top-5

VGG [25] 224x224 16 28.5 9.90

Inception V1 [30] 224x224 22 27.8 10.10

Inception V2 [14] 224x224 22 25.2 7.80

ResNet-50 [11] 224x224 50 24.7 7.80

ResNet-152 [11] 224x224 152 23.0 6.70

Xception(our test) [4] 224x224 36 23.6 7.10

ResNext-101(64x4d) [35] 224x224 101 20.4 5.30

Block-QNN-B, N=3 224x224 38 24.3 7.40

Block-QNN-S, N=3 224x224 38 22.6 6.46

Table 5. Block-QNN’s results (single-crop error rate) compare

with modern methods on ImageNet-1K Dataset.

ception of block learning, we can transfer our architecture

learned in small datasets to big dataset like ImageNet task

easily. In the future experiments, we will try to apply the

generated blocks in other tasks such as object detection and

semantic segmentation.

6. Conclusion

In this paper, we show how to efficiently design high per-

formance network blocks with Q-learning. We use a dis-

tributed asynchronous Q-learning framework and an early

stop strategy focusing on fast block structures searching.

We applied the framework to automatic block generation

for constructing good convolutional network. Our Block-

QNN networks outperform modern hand-crafted networks

as well as other auto-generated networks in image classi-

fication tasks. The best block structure which achieves a

state-of-the-art performance on CIFAR can be transfer to

the large-scale dataset ImageNet easily, and also yield a

competitive performance compared with best hand-crafted

networks. We show that searching with the block design

strategy can get more elegant and model explicable network

architectures. In the future, we will continue to improve the

proposed framework from different aspects, such as using

more powerful convolution layers and making the searching

process faster. We will also try to search blocks with lim-

ited FLOPs and conduct experiments on other tasks such as

detection or segmentation.
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