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Abstract

Dense video captioning aims to generate text descrip-

tions for all events in an untrimmed video. This involves

both detecting and describing events. Therefore, all previ-

ous methods on dense video captioning tackle this problem

by building two models, i.e. an event proposal and a cap-

tioning model, for these two sub-problems. The models are

either trained separately or in alternation. This prevents di-

rect influence of the language description to the event pro-

posal, which is important for generating accurate descrip-

tions. To address this problem, we propose an end-to-end

transformer model for dense video captioning. The encoder

encodes the video into appropriate representations. The

proposal decoder decodes from the encoding with different

anchors to form video event proposals. The captioning de-

coder employs a masking network to restrict its attention to

the proposal event over the encoding feature. This mask-

ing network converts the event proposal to a differentiable

mask, which ensures the consistency between the proposal

and captioning during training. In addition, our model em-

ploys a self-attention mechanism, which enables the use of

efficient non-recurrent structure during encoding and leads

to performance improvements. We demonstrate the effec-

tiveness of this end-to-end model on ActivityNet Captions

and YouCookII datasets, where we achieved 10.12 and 6.58

METEOR score, respectively.

1. Introduction

Video has become an important source for humans to

learn and acquire knowledge (e.g. video lectures, making

sandwiches [20], changing tires [1]). Video content con-

sumes high cognitive bandwidth, and thus is slow for hu-

mans to digest. Although the visual signal itself can some-
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Figure 1. Dense video captioning is to localize (temporal) events

from a video, which are then described with natural language sen-

tences. We leverage temporal convolutional networks and self-

attention mechanisms for precise event proposal generation and

captioning.

times disambiguate certain semantics, one way to make

video content more easily and rapidly understood by hu-

mans is to compress it in a way that retains the seman-

tics. This is particularly important given the massive

amount of video being produced everyday. Video sum-

marization [41] is one way of doing this, but it loses the

language components of the video, which are particularly

important in instructional videos. Dense video caption-

ing [19]—describing events in the video with descriptive

natural language—is another way of achieving this com-

pression while retaining the language components.

Dense video captioning can be decomposed into two

parts: event detection and event description. Existing meth-

ods tackle these two sub-problems using event proposal and

captioning modules, and exploit two ways to combine them

for dense video captioning. One way is to train the two
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modules independently and generate descriptions for the

best event proposals with the best captioning model [12].

The other way is to alternate training [19] between the

two modules, i.e., alternate between i) training the pro-

posal module only and ii) training the captioning module on

the positive event proposals while fine-tuning the proposal

module. However, in either case, the language information

cannot have direct impacts on the event proposal.

Intuitively, the video event segments and language are

closely related and the language information should be able

to help localize events in the video. To this end, we pro-

pose an encoder-decoder based end-to-end model for doing

dense video captioning (see Fig. 1). The encoder encodes

the video frames (features) into the proper representation.

The proposal decoder then decodes this representation with

different anchors to form event proposals, i.e., start and end

time of the event, and a confidence score. The captioning

decoder then decodes the proposal specific representation

using a masking network, which converts the event proposal

into a differentiable mask. This continuous mask enables

both the proposal and captioning decoder to be trained con-

sistently, i.e. the proposal module now learns to adjust its

prediction based on the quality of the generated caption. In

other words, the language information from caption now is

able to guide the visual model to generate more plausible

proposals. In contrast to the existing methods where the

proposal module solves a class-agnostic binary classifica-

tion problem regardless the details in the video content, our

model enforces the consistency between the content in the

proposed video segment and the semantic information in the

language description.

Another challenge for dense video captioning, and more

broadly for sequence modeling tasks, is the need to learn a

representation that is capable of capturing long term depen-

dencies. Recurrent Neural Networks (RNN) are possible

solutions to this problem, however, learning such represen-

tation is still difficult [23]. Self-attention [21, 24, 29] al-

lows for an attention mechanism within a module and is a

potential way to learn this long-range dependence. In self-

attention the higher layer in the same module is able to at-

tend to all states below it. This made the length of the paths

of states from the higher layer to all states in the lower layer

to be one, and thus facilitates more effective learning. The

shorter path length facilitates learning these dependencies

because larger gradients can now pass to all states. Trans-

former [29] implements a fast self-attention mechanism and

has demonstrated its effectiveness in machine translation.

Unlike traditional sequential models, transformer does not

require unrolling across time, and therefore trains and tests

much faster as compared to RNN based models. We employ

transformer in both the encoder and decoder of our model.

Our main contributions are twofold. First, we propose

an end-to-end model for doing dense video captioning. A

differentiable masking scheme is proposed to ensure the

consistency between proposal and captioning module dur-

ing training. Second, we employ self-attention: a scheme

that facilitates the learning of long-range dependencies to

do dense video captioning. To the best of our knowledge,

our model is the first one that does not use a RNN-based

model for doing dense video captioning. In addition, we

achieve competitive results on ActivityNet Captions [19]

and YouCookII [42] datasets.

2. Related Work

Image and Video Captioning. In contrast to earlier video

captioning papers, which are based on models like hidden

Markov models and ontologies [39, 6], recent work on cap-

tioning is dominated by deep neural network-based meth-

ods [32, 34, 37, 43, 36, 26]. Generally, they use Convolu-

tional Neural Networks (CNNs) [28, 15] for encoding video

frames, followed by a recurrent language decoder, e.g.,

Long Short-Term Memory [17]. They vary mainly based

on frame encoding, e.g., via mean-pooling [31, 10], recur-

rent nets [7, 30], and attention mechanisms [35, 22, 10].

The attention mechanism was initially proposed for ma-

chine translation [3] and has achieved top performance in

various language generation tasks, either as temporal atten-

tion [35], semantic attention [10] or both [22]. Our work

falls into the first of the three types. In addition to using

cross-module attention, we apply self-attention [29] within

each module.

Temporal Action Proposals. Temporal action proposals

(TAP) aim to temporally localize action-agnostic propos-

als in a long untrimmed video. Existing methods formu-

late TAP as a binary classification problem and differ in

how the proposals are proposed and discriminated from the

background. Shuo et al. [27] propose and classify pro-

posal candidates directly over video frames in a sliding win-

dow fashion, which is computationally expensive. More re-

cently, inspired by the anchoring mechanism from object

detection [25], two types of methods have been proposed—

explicit anchoring [11, 42] and implicit anchoring [8, 4].

In the former case, each anchor is an encoding of the vi-

sual features between the anchor temporal boundaries and

is classfied as action or background. In implicit anchor-

ing, recurrent networks encode the video sequence and, at

each anchor center, multiple anchors with various sizes are

proposed based on the same visual feature. So far, ex-

plicit anchoring methods accompanied with location regres-

sion yield better performance [11]. Our proposal module is

based upon Zhou et al. [42], which is designed to detect long

complicated events rather than actions. We further improve

the framework with a temporal convolutional proposal net-

work and self-attention based context encoding.

Dense Video Captioning. The video paragraph caption-

ing method proposed by Yu et al. [40] generates sentence

8740



descriptions for temporally localized video events. How-

ever, the temporal locations of each event are provided be-

forehand. Das et al. [6] generates dense captions over the

entire video using sparse object stitching, but their work re-

lies on a top-down ontology for the actual description and

is not data-driven like the recent captioning methods. The

most similar work to ours is Krishna et al. [19] who intro-

duce a dense video captioning model that learns to propose

the event locations and caption each event with a sentence.

However, they combine the proposal and the captioning

modules through co-training and are not able to take ad-

vantage of language to benefit the event proposal [16]. To

this end, we propose an end-to-end framework for doing

dense video captioning that is able to produce proposal and

description simultaneously. Also, our work directly incor-

porates the semantics from captions to the proposal module.

3. Preliminary

In this section we introduce some background on Trans-

former [29], which is the building block for our model. We

start by introducing the scaled dot-product attention, which

is the foundation of transformer. Given a query qi ∈ R
d

from all T ′ queries, a set of keys kt ∈ R
d and values

vt ∈ R
d where t = 1, 2, ..., T , the scaled dot-product

attention outputs a weighted sum of values vt, where the

weights are determined by the dot-products of query q and

keys kt. In practice, we pack kt and vt into matricies

K = (k1, ..., kT ) and V = (v1, ..., vT ), respectively. The

attention output on query q is:

A(qi,K, V ) = V
exp

{

KT qi/
√
d
}

∑T
t=1 exp{kTt qi/

√
d}

(1)

The multi-head attention consists of H paralleled scaled

dot-product attention layers called “head”, where each

“head” is an independent dot-product attention. The atten-

tion output from multi-head attention is as below:

MA(qi,K, V ) = WO





head1
· · ·

headH



 (2)

headj = A(W q
j qi,W

K
j K,WV

j V ) (3)

where W q
j ,W

K
j ,WV

j ∈ R
d

H
×d are the independent head

projection matrices, j = 1, 2, ..., H , and WO ∈ R
d×d.

This formulation of attention is quite general, for exam-

ple when the query is the hidden states from the decoder,

and both the keys and values are all the encoder hidden

states, it represents the common cross-module attention.

Self-attention [29] is another case of multi-head attention

where the queries, keys and values are all from the same

hidden layer (see also in Fig. 2).
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Figure 2. Transformer with 1-layer encoder and 1-layer decoder.

Now we are ready to introduce Transformer model,

which is an encoder-decoder based model that is origi-

nally proposed for machine translation [29]. The building

block for Transformer is multi-head attention and a point-

wise feed-forward layer. The pointwise feed-forward layer

takes the input from multi-head attention layer, and fur-

ther transforms it through two linear projections with ReLU

activation. The feed-forward layer can also be viewed as

two convolution layers with kernel size one. The encoder

and decoder of Transformer is composed by multiple such

building blocks, and they have the same number of layers.

The decoder from each layer takes input from the encoder

of the same layer as well as the lower layer decoder out-

put. Self-attention is applied to both encoder and decoder.

Cross-module attention between encoder and decoder is

also applied. Note that the self-attention layer in the de-

coder can only attend to the current and previous positions

to preserve the auto-regressive property. Residual connec-

tion [15] is applied to all input and output layers. Addition-

ally, layer normalization [2] (LayerNorm) is applied to all

layers. Fig. 2 shows a one layered transformer.

4. End-to-End Dense Video Captioning

Our end-to-end model is composed of three parts: a

video encoder, a proposal decoder, and a captioning de-

coder that contains a mask prediction network to generate

text description from a given proposal. The video encoder

is composed of multiple self-attention layers. The proposal

decoder takes the visual features from the encoder and out-

puts event proposals. The mask prediction network takes

the proposal output and generates a differentiable mask for

a certain event proposal. To make the decoder caption the

current proposal, we then apply this mask by element-wise

multiplication between it, the input visual embedding and

all outputs from proposal encoder. In the following sec-

tions, we illustrate each component of our model in detail.
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4.1. Video Encoder

Each frame xt of the video X = {x1, . . . , xT } is first en-

coded to a continuous representation F 0 = {f0
1 , . . . , f

0
T }.

It is then fed forward to L encoding layers, where each layer

learns a representation F l+1 = V (F l) by taking input from

previous layer l,

V(F l) = Ψ(PF(Γ(F l)),Γ(F l)) (4)

Γ(F l) =





Ψ(MA(f l
1, F

l, F l), f l
1)

⊤

· · ·
Ψ(MA(f l

T , F
l, F l), f l

T )
⊤





⊤

(5)

Ψ(α, β) = LayerNorm(α+ β) (6)

PF(γ) = M l
2 max(0,M l

1γ + bl1) + bl2 (7)

where Ψ(·) represents the function that performs layer nor-

malization on the residual output, PF(·) denotes the 2-

layered feed-forward neural network with ReLU nonlinear-

ity for the first layer, M l
1, M l

2 are the weights for the feed-

forward layers, and bl1, bl2 are the biases. Notice the self-

attention used in eq. 5. At each time step t, f l
t is given as

the query to the attention layer and the output is the weight

sum of f l
t , t = 1, 2, ..., T , which encodes not only the in-

formation regarding the current time step, but also all other

time steps. Therefore, each time step of the output from the

self-attention is able to encode all context information. In

addition, it is easy to see that the length of the path between

time steps is only one. In contrast to recurrent models, this

makes the gradient update independent with respect to their

position in time, and thus makes learning potential depen-

dencies amongst distant frames easier.

4.2. Proposal Decoder

Our event proposal decoder is based on ProcNets [42],

for its state-of-the-art performance on long dense event pro-

posals. We adopt the same anchor-offset mechanism as in

ProcNets and design a set of N explicit anchors for event

proposals. Each anchor-based proposal is represented by an

event proposal score Pe ∈ [0, 1] and two offsets: center θc
and length θl. The associated anchor has length la and cen-

ter ca. The proposal boundaries (Sp, Ep) are determined by

the anchor locations and offsets:

cp = ca + θcla lp = la exp{θl},
Sp = cp − lp/2 Ep = cp + lp/2.

(8)

These proposal outputs are obtained from temporal convo-

lution (i.e. 1-D convolutions) applied on the last layer out-

put of the visual encoder. The score indicates the likelihood

for a proposal to be an event. The offsets are used to ad-

just the proposed segment boundaries from the associated

anchor locations. We made following changes to ProcNets:

• The sequential prediction module in ProcNets is re-

moved, as the event segments in a video are not closely

coupled and the number of events is small in general.

• Use input from a multi-head self-attention layer in-

stead of a bidirectional LSTM (Bi-LSTM) layer [14].

• Use multi-layer temporal convolutions to generate the

proposal score and offsets. The temporal convolutional

network contain three 1-D conv. layers, with batch

normalization [18]. We use ReLU activation for hid-

den layers.

• In our model, the conv. stride depends on kernel size

(⌈kernel size
s ⌉) versus always 1 in ProcNets1.

We encode the video context by a self-attention layer

as it has potential to learn better context representation.

Changing stride size based on kernel size reduces the num-

ber of longer proposals so that the training samples is more

balanced, because a larger kernel size makes it easier to get

good overlap with ground truth. It also speeds up training

as the number of long proposals is reduced.

4.3. Captioning Decoder

Masked Transformer. The captioning decoder takes in-

put from both the visual encoder and the proposal decoder.

Given a proposal tuple (Pe, Sp, Ep) and visual representa-

tions {F 1, . . . , FL}, the L-layered captioning decoder gen-

erates the t-th word by doing the following

Y l+1
≤t = C(Y l

≤t) = Ψ(PF(Φ(Y l
≤t)),Φ(Y

l
≤t)) (9)

Φ(Y l
≤t) =





Ψ(MA(Ω(Y l
≤t)1, F̂

l, F̂ l),Ω(Y l
≤t)1)

· · ·
Ψ(MA(Ω(Y l

≤t)t, F̂
l, F̂ l),Ω(Y l

≤t)t)



 (10)

Ω(Y l
≤t) =





Ψ(MA(yl1, Y
l, Y l), yl1)

⊤

· · ·
Ψ(MA(ylt, Y

l, Y l), ylt)
⊤



 (11)

F̂ l = fM (Sp, Ep)⊙ F l (12)

p(wt+1|X,Y L
≤t) = softmax(WV yLt+1) (13)

where y0i represents word vector, Y l
≤t = {yl1, . . . , ylt}, wt+1

denotes the probability of each word in the vocabulary for

time t+1, WV ∈ R
ν×d denotes the word embedding matrix

with vocabulary size ν, and ⊙ indicates elementwise mul-

tiplication. C(·) denotes the decoder representation, i.e. the

output from feed-forward layer in Fig. 1. Φ(·) denotes the

cross module attention that use the current decoder states to

attend to encoder states (i.e. multi-head attention in Fig. 1).

Ω(·) represents the self-attention in decoder. Notice that the

subscript ≤ t restricts the attention only on the already gen-

erated words. fM : R2 7→ [0, 1]T is a masking function that

output values (near) zero when outside the predicted starting

and ending locations, and (near) one otherwise. With this

1
s is a scalar that affects the convolution stride for different kernel size
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function, the receptive region of the model is restricted to

the current segment so that the visual representation focuses

on describing the current event. Note that during decoding,

the encoder performs the forward propagation again so that

the representation of each encoder layer contains only the

information for the current proposal (see eq. 12). This is

different from simply multiplying the mask with the exist-

ing representation from the encoder during proposal pre-

diction, since the representation of the latter still contains

information that is outside the proposal region. The repre-

sentation from the L-th layer of captioning decoder is then

used for predicting the next word for the current proposal

using a linear layer with softmax activation (see eq. 13).

Differentiable Proposal Mask. We cannot choose any

arbitrary function for fM as a discrete one would prevent

us from doing end-to-end training. We therefore propose to

use a fully differentiable function to obtain the mask for vi-

sual events. This function fM maps the predicted proposal

location to a differentiable mask M ∈ R
T for each time

step i ∈ {1, . . . , T}.

fM (Sp, Ep, Sa, Ea, i) = σ(g( (14)

[ρ(Sp, :), ρ(Ep, :), ρ(Sa, :), ρ(Ee, :),Bin(Sa, Ea, :)]))

ρ(pos, i) =

{

sin(pos/10000i/d) i is even

cos(pos/10000(i−1)/d) otherwise
(15)

Bin(Sa, Ea, i) =

{

1 if i ∈ [Sa, Ea]

0 otherwise
(16)

where Sa and Ea are the start and end position of anchor,

[·] denotes concatenation, g(·) is a continuous function, and

σ(·) is the logistic sigmoid function. We choose to use a

multilayer perceptron to parameterize g. In other words, we

have a feed-forward neural network that takes the positional

encoding from the anchor and predicted boundary positions

and the corresponding binary mask to predict the continu-

ous mask. We use the same positional encoding strategy as

in [29].

Directly learning the mask would be difficult and unnec-

essary, since we would already have a reasonable bound-

ary prediction from the proposal module. Therefore, we

use a gated formulation that lets the model choose between

the learned continuous mask and the discrete mask obtained

from the proposal module. More precisely, the gated mask-

ing function fGM is

fGM (Sp, Ep, Sa, Ea, i) =

PeBin(Sp, Ep, i) + (1− Pe)fM (Sp, Ep, Sa, Ea, i) (17)

Since the proposal score Pe ∈ [0, 1], it now acts as a gating

mechanism. This can also be viewed as a modulation be-

tween the continuous and proposal masks, the continuous

mask is used as a supplement for the proposal mask in case

the confidence is low from the proposal module.

4.4. Model Learning

Our model is fully differentiable and can be trained con-

sistently from end-to-end The event proposal anchors are

sampled as follows. Anchors that have overlap greater than

70% with any ground-truth segments are regarded as pos-

itive samples and ones that have less than 30% overlap

with all ground-truth segments are negative. The proposal

boundaries for positive samples are regressed to the ground-

truth boundaries (offsets). We randomly sample U = 10
anchors from positive and negative anchor pools that corre-

spond to one ground-truth segment for each mini-batch.

The loss for training our model has four parts: the regres-

sion loss Lr for event boundary prediction, the binary cross

entropy mask prediction loss Lm, the event classification

loss Le (i.e. prediction Pe), and the captioning model loss

Lc. The final loss L is a combination of these four losses,

Lr = Smoothℓ1(θ̂c, θc) + Smoothℓ1(θ̂l, θl)

Li
m = BCE(Bin(Sp, Ep, i), fM (Sp, Ep, Sa, Ea, i))

Le = BCE(P̂e, Pe)

Lt
c = CE(ŵt, p(wt|X,Y L

≤t−1))

L = λ1Lr + λ2

∑

i

Li
m + λ3Le + λ4

∑

t

Lt
c

where Smoothℓ1 is the smooth ℓ1 loss defined in [13], BCE

denotes binary cross entropy, CE represents cross entropy

loss, θ̂c and θ̂l represent the ground-truth center and length

offset with respect to the current anchor, P̂e is the ground-

truth label for the proposed event, ŵt denotes the ground-

truth word at time step t, and λ1...4 ∈ R
+ are the coeffi-

cients that balance the contribution from each loss.

Simple Single Stage Models. The key for our proposed

model to work is not the single stage learning of a compo-

sitional loss, but the ability to keep the consistency between

the proposal and captioning. For example, we could make

a single-stage trainable model by simply sticking them to-

gether with multi-task learning. More precisely, we can

have the same model but choose a non-differentiable mask-

ing function fM in eq. 12. The same training procedure can

be applied for this model (see the following section). Since

the masking function would then be non-differentiable, er-

ror from the captioning model cannot be back propagated

to modify the proposal predictions. However, the caption-

ing decoder is still able to influence the visual representation

that is learned from the visual encoder. This may be unde-

sirable, as the updates the visual representation may lead to

worse performance for the proposal decoder. As a baseline,

we also test this single-stage model in our experiments.

5. Implementation Details

For the proposal decoder, the temporal convolutional

networks take the last encoding output from video encoder
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as the input. The sizes of the temporal convolution ker-

nels vary from 1 to 251 and we set the stride factor s to

50. For our Transformer model, we set the model dimen-

sion d = 1024 (same as the Bi-LSTM hidden size) and set

the hidden size of feed-forward layer to 2048. We set num-

ber of heads (H) to 8. In addition to the residual dropout

and attention dropout layers in Transformer, we add a 1-D

dropout layer at the visual input embedding to avoid overfit-

ting. We use recurrent dropout proposed in [9] for this 1-D

dropout. Due to space limits, more details are included in

the supplementary material.

6. Experiments

6.1. Datasets

ActivityNet Captions [19] and YouCookII [42] are the

two largest datasets with temporal event segments anno-

tated and described by natural language sentences. Ac-

tivityNet Captions contains 20k videos, and on average

each video has 3.65 events annotated. YouCookII has 2k

videos and the average number of segments per video is

7.70. The train/val/test splits for ActivityNet Captions are

0.5:0.25:0.25 while for YouCookII are 0.66:0.23:0.1. We

report our results from both datasets on the validation sets.

For ActivityNet Captions, we also show the testing results

on the evaluation server while the testing set for YouCookII

is not available.

Data Preprocessing. We down-sample the video every

0.5s and extract the 1-D appearance and optical flow fea-

tures per frame, as suggested by Xiong et al. [33]. For

appearance features, we take the output of the “Flatten-

673” layer in ResNet-200 [15]; for optical flow features,

we extract the optical flow from 5 contiguous frames, en-

code with BN-Inception [18] and take output of the “global-

pool” layer. Both networks are pre-trained on the Activi-

tyNet dataset [5] for the action recognition task. We then

concatenate the two feature vector and further encode with

a linear layer. We set the window size T to 480. The in-

put is zero padded in case the number of sampled frames is

smaller than the size of the window. Otherwise, the video

is truncated to fit the window. Note that we do not fine-tune

the visual features for efficiency considerations, however,

allowing fine-tuning may lead to better performance.

6.2. Baseline and Metrics

Baselines. Most of the existing methods can only cap-

tion an entire video or specified video clip. For example,

LSTM-YT [31], S2YT [30], TempoAttn [35], H-RNN [40]

and DEM [19]. The most relevant baseline is TempoAttn,

where the model temporally attends on visual sequence in-

puts as the input of LSTM language encoder. For a fair

comparison, we made the following changes to the origi-

nal TempoAttn. First, all the methods take the same visual

feature input. Second, we add a Bi-LSTM context encoder

to TempoAttn while our method use self-attention context

encoder. Third, we apply temporal attention on Bi-LSTM

output for all the language decoder layers in TempoAttn

since our decoder has attention each layer. We name this

baseline Bi-LSTM+TempoAttn. Since zero inputs deteri-

orates Bi-LSTM encoding, we only apply the masking on

the output of the LSTM encoder when it is passed to the

decoder. We also compare with a a simple single-stage

Masked Transformer baseline as mentioned in section 4.4,

where the model employs a discrete binary mask.

For event proposals, we compare our self-attention

transformer-based model with ProcNets and our own base-

line with Bi-LSTM. For captioning-only models, we use the

same baseline as the full dense video captioning but instead,

replace the learned proposals with ground-truth proposals.

Results for other dense captioning methods (e.g. the best

published method DEM [19]) are not available on the val-

idation set nor is the source code released. So, we com-

pare our methods against those methods that participated

in CVPR 2017 ActivityNet Video Dense-captioning Chal-

lenge [12] for test set performance on ActivityNet.

Evaluation Metrics. For ground-truth segment caption-

ing, we measure the captioning performance with most

commonly-used evaluation metrics: BLEU{3,4} and ME-

TEOR. For dense captioning, the evaluate metric takes both

proposal accuracy and captioning accuracy into account.

Given a tIoU threshold, if the proposal has an overlapping

larger than the threshold with any ground-truth segments,

the metric score is computed for the generated sentence and

the corresponding ground-truth sentence. Otherwise, the

metric score is set to 0. The scores are then averaged across

all the proposals and finally averaged across all the tIoU

thresholds–0.3, 0.5, 0.7, 0.9 in this case.

6.3. Comparison with State­of­the­Art Methods

We compare our proposed method with baselines on the

ActivityNet Caption dataset. The validation and testing set

results are shown in Tab. 1 and 2, respectively. All our mod-

els outperform the LSTM-based models by a large margin,

which may be attributed to their better ability of modeling

long-range dependencies.

We also test the performance of our model on the

YouCookII dataset, and the result is shown in Tab. 3.

Here, we see similar trend on performance. Our transformer

based model outperforms the LSTM baseline by a signif-

icant amount. However, the results on learned proposals

are much worse as compared to the ActivityNet dataset.

This is possibly because of small objects, such as utensils

and ingredients, are hard to detect using global visual fea-

tures but are crucial for describing a recipe. Hence, one

future extension for our work is to incorporate object detec-

tors/trackers [38, 39] into the current captioning system.
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Table 1. Captioning results from ActivityNet Caption Dataset with

learned event proposals. All results are on the validation set and

all our models are based on 2-layer Transformer. We report BLEU

(B) and METEOR (M). All results are on the validation set. Top

scores are highlighted.

Method B@3 B@4 M

Bi-LSTM
2.43 1.01 7.49

+TempoAttn

Masked Transformer 4.47 2.14 9.43

End-to-end Masked Transformer 4.76 2.23 9.56

Table 2. Dense video captioning challenge leader board results.

For results from the same team, we keep the highest one.

Method METEOR

DEM [19] 4.82

Wang et al. 9.12

Jin et al. 9.62

Guo et al. 9.87

Yao et al.2(Ensemble) 12.84

Our Method 10.12

Table 3. Recipe generation benchmark on YouCookII validation

set. GT proposals indicate the ground-truth segments are given

during inference.

Method
GT Proposals Learned Proposals

B@4 M B@4 M

Bi-LSTM
0.87 8.15 0.08 4.62

+TempoAttn

Our Method 1.42 11.20 0.30 6.58

We show qualitative results in Fig. 3 where the proposed

method generates captions with more relevant semantic in-

formation. More visualizations are in the supplementary.

6.4. Model Analysis

In this section we perform experiments to analyze the

effectiveness of our model on different sub-tasks of dense

video captioning.

Video Event Proposal. We first evaluate the effect of self-

attention on event proposal, and the results are shown in

Tab. 4. We use standard average recall (AR) metric [8, 12]

given 100 proposals. Bi-LSTM indicates our improved

ProcNets-prop model by using temporal convolutional and

large kernel strides. We use our full model here, where the

context encoder is replaced by our video encoder. We have

noticed that the anchor sizes have a large impact on the re-

sults. So, for fair comparison, we maintain the same an-

chor sizes across all three methods. Our proposed Bi-LSTM

model gains a 7% relative improvement from the baseline

results from the deeper proposal network and more bal-

anced anchor candidates. Our video encoder further yields

2This work is unpublished. It employs external data for model training

and the final prediction is obtained from an ensemble of models.

Table 4. Event proposal results from ActivityNet Captions dataset.

We compare our proposed methods with our baseline method

ProcNets-prop on the validation set.

Method Average Recall (%)

ProcNets-prop [42] 47.01

Bi-LSTM (ours) 50.65

Self-Attn (our) 52.95

Table 5. Captioning results from ActivityNet Caption Dataset with

ground-truth proposals. All results are on the validation set. Top

two scores are highlighted.

Method B@3 B@4 M

Bi-LSTM
4.8 2.1 10.02

+TempoAttn

Our Method

1-layer 5.80 2.66 10.92

2-layer 5.69 2.67 11.06

4-layer 5.70 2.77 11.11

6-layer 5.66 2.71 11.10

a 4.5% improvement from our recurrent nets-based model.

We show the recall curve under high tIoU threshold (0.8)

in Fig. 4 follow the convention [19]. DAPs [8], is initially

proposed for short action proposals and adapted later for

long event proposal [19]. The proposed models outper-

forms DAPs-event and ProcNets-prop by significant mar-

gins. Transformer based and Bi-LSTM based models yield

similar recall results given sufficient number of proposals

(100), while our self-attention encoding model is more ac-

curate when the allowed number of proposals is small.

Dense Video Captioning. Next, we look at the dense

video captioning results in an ideal setting: doing the cap-

tioning based on the ground-truth event segments. This will

give us an ideal captioning performance since all event pro-

posals are accurate. Because we need access to ground-truth

event proposal during test time, we report the results on val-

idation set3 (see Tab. 5). The proposed Masked Transformer

(section 4.3) outperforms the baseline by a large margin (by

more than 1 METEOR point). This directly substantiates

the effectiveness of the transformer on both visual and lan-

guage encoding and multi-head temporal attention. We no-

tice that as the number of encoder and decoder layers in-

creases, the performance gets further boosts by 1.3%-1.7%.

As can be noted here, the 2-layer transformer strikes a good

balance point between performance and computation, and

thus we use 2-layer transformer for all our experiments.

Analysis on Long Events. As mentioned in section 4.1,

learning long-range dependencies should be easier with

self-attention, since the next layer observes information

from all time steps of the previous layer. To validate this

hypothesis directly, we test our model against the LSTM

3The results are overly optimistic, however, it is fine here since we are

interested in the best situation performance. The comparison is also fair,

since all methods are tuned to optimize the validation set performance.
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Ground-truth
Event 0: Two teams are playing volleyball in 
a indoor court.
Event 1: Two teams wearing dark uniforms 
are doing a volleyball competition, then 
appears a team with yellow t-shirts.
Event 2: Then, a boy with a red t-shirt 
serves the ball and the teams start to hit and 
running to pass the ball, then another team 
wearing green shorts enters the court.
Event 3: After, team wearing blue uniform 
competes with teams wearing white and red 
uniforms.

Masked Trans. (ours)
Event 0: a large group of people are seen 
standing around a gymnasium playing a 
game of volleyball
Event 1: the people in black and yellow 
team scores a goal
Event 2: the people continue playing the 
game back and fourth while the people 
watch on the sidelines
Event 3: the people continue playing the 
game back and fourth while the camera 
captures their movements

Bi-LSTM+TempoAttn
Event 0: a large group of people are seen 
standing around a field playing a game of 
soccer
Event 1: the players are playing the game 
of tug of war
Event 2: the people continue playing with 
one another and end by walking away
Event 3: the people continue playing and 
ends with one another and the other  

Ground-truth
Event 0: A man is writing something on a 
clipboard.
Event 1: A man holds a ball behind his 
head and spins around several times and 
throws the ball.
Event 2: People use measuring tape to 
measure the distance.

Masked Trans. (ours)
Event 0: a man is seen standing in a large 
circle and leads into a man holding a ball 
and
Event 1: the man spins the ball around 
and throws the ball
Event 2: the man throws the ball and his 
throw the distance

Bi-LSTM+TempoAttn
Event 0: a man is seen standing on a field 
with a man standing on a field
Event 1: he throws the ball and throws it 
back and forth
Event 2: he throws the ball and throws it 
back and forth  

Figure 3. Qualitative results on ActivityNet Captions. The color bars represent different events. Colored text highlight relevant content to

the event. Our model generates more relevant attributes as compared to the baseline.

Figure 4. Event proposal recall curve under tIoU threshold 0.8 with

average 100 proposals per video.

Table 6. Evaluating only long events from ActivityNet Caption

Dataset. GT proposals indicate the ground-truth segments are

given during inference.

GT Proposals Learned Proposals

Method B@4 M B@4 M

Bi-LSTM
0.84 5.39 0.42 3.99

+TempoAttn

Our Method 1.13 5.90 1.04 5.93

baseline on longer event segments (where the events are at

least 50s long) from the ActivityNet Caption dataset, where

learning the long-range dependencies are crucial for achiev-

ing good performance. It is clear from the result (see Tab.

6) that our transformer based model performs significantly

better than the LSTM baseline. The discrepancy is even

larger when the model needs to learn both the proposal

and captioning, which demonstrate the effectiveness of self-

attention in facilitate learning long range dependencies.

7. Conclusion

We propose an end-to-end model for dense video cap-

tioning. The model is composed of an encoder and two

decoders. The encoder encodes the input video to proper

visual representations. The proposal decoder then decodes

from this representation with different anchors to form

video event proposals. The captioning decoder employs a

differentiable masking network to restrict its attention to

the proposal event, ensures the consistency between the

proposal and captioning during training. In addition, we

propose to use self-attention for dense video captioning.

We achieved significant performance improvement on both

event proposal and captioning tasks as compared to RNN-

based models. We demonstrate the effectiveness of our

models on ActivityNet Captions and YouCookII dataset.
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