This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Explicit Loss-Error-Aware Quantization for Low-Bit Deep Neural Networks

Aojun Zhou'*

Anbang Yao'* Kuan Wang?

Yurong Chen!

!Intel Labs China
2Department of Automation, Tsinghua University

1{aojun .zhou, anbang.yao, yurong.chen}@intel.com

Abstract

Benefiting from tens of millions of hierarchically stacked
learnable parameters, Deep Neural Networks (DNNs) have
demonstrated overwhelming accuracy on a variety of artifi-
cial intelligence tasks. However reversely, the large size of
DNN models lays a heavy burden on storage, computation
and power consumption, which prohibits their deployments
on the embedded and mobile systems. In this paper, we pro-
pose Explicit Loss-error-aware Quantization (ELQ), a new
method that can train DNN models with very low-bit pa-
rameter values such as ternary and binary ones to approx-
imate 32-bit floating-point counterparts without noticeable
loss of predication accuracy. Unlike existing methods that
usually pose the problem as a straightforward approxima-
tion of the layer-wise weights or outputs of the original full-
precision model (specifically, minimizing the error of the
layer-wise weights or inner products of the weights and the
inputs between the original and respective quantized model-
s), our ELQ elaborately bridges the loss perturbation from
the weight quantization and an incremental quantization s-
trategy to address DNN quantization. Through explicitly
regularizing the loss perturbation and the weight approx-
imation error in an incremental way, we show that such
a new optimization method is theoretically reasonable and
practically effective. As validated with two mainstream con-
volutional neural network families (i.e., fully convolutional
and non-fully convolutional), our ELQ shows better results
than state-of-the-art quantization methods on the large s-
cale ImageNet classification dataset. Code will be made
publicly available.

1. Introduction

In the past half a decade, we have witnessed tremendous
success of Deep Neural Networks (DNN5s) in many artificial

*This work was done when Aojun Zhou was an intern at Intel Labs
China supervised by Anbang Yao who is responsible for correspondence.
Intern Kuan Wang contributed to the experiments. The first two authors
jointly wrote the paper with equal contribution.

2wangkuanl5@mails .tsinghua.edu.cn

intelligence domains such as computer vision [22], speech
recognition [12], natural language processing [2], Go games
[31] and so forth. The pioneering AlexNet [22] proposed
by Krizhevsky et al. ignites the resurgence of the popular-
ity of DNNs. From then on, there is a clear trend that the
architecture of mainstream DNNss is evolved to be signifi-
cantly deeper and more complex than the 8-layer AlexNet.
This is vividly demonstrated with the development of Con-
volutional Neural Networks (CNNs) [32] [35] [10] [41] [37]
[18] which are now prevailing in the computer vision com-
munity. There are also some works [1] [16] [42] that make
special efforts on designing more efficient network architec-
tures from the perspective of reshaping dense convolutions
into depth-wise separable convolutions. Despite these great
advances on network design and accuracy improvement,
the intensive storage and computational costs of these top-
performing DNN models make it difficult to deploy them
on the mobile and embedded systems for real-time applica-
tions.

With the drive to make DNN solutions be applicable on
low-power devices, substantial research efforts have been
invested in DNN compression and acceleration both in a-
cademia and industry. In this paper, our focus is restricted
to DNN quantization. Specifically, we intend to address the
problem of how to train DNN models whose weights are
forced to be very low-bit values such as ternary and binary
ones without noticeable loss of model accuracy when com-
pared with full-precision (i.e., 32-bit floating-point) coun-
terparts. By representing DNN models with very low-bit
parameter values such as {—1,0, 1} and {—1, 1} multiplied
with layer-wise scaling factors, it would bring great bene-
fits to the applications of DNN solutions, especially on the
specialized deep learning hardware where originally time-
intensive multiplication operations can be replaced by sim-
ple bit-shift and accumulation operations. Our method dif-
fers greatly with the known methods from the perspective
of optimization formulation. Existing methods [4] [23] [28]
[45] usually achieve ternary or binary quantization goal by
a straightforward approximation of the layer-wise weights
or inner product outputs of the full-precision model. In the

9426

approximation, they try to minimize the error of the layer-
wise weights or inner products of the weights and the in-
puts between the original and respective quantized model-
s. However, a critical fact is that replacing 32-bit floating-
point weight values with very low-bit equivalents will in-
troduce fluctuations to weight and output magnitudes, thus
regularizing respective approximation error is necessarily
important. Beyond that, it will bring perturbation on the
classification loss which would influence the predication ac-
curacy of the quantized DNN models, therefore a careful
handling of such a loss perturbation is also critical to sup-
press common model accuracy loss. To alleviate this prob-
lem, Hou et al. [15] propose a proximal Newton algorithm
based quantization method that directly minimizes the loss
w.r.t. the binarized weights. In [14], they further extend
this idea to handle ternary quantization task. With proximal
Newton algorithm, a close-form solution can be derived, but
it needs to estimate the second order Hessian matrix of the
loss function w.r.t. the quantized weights and the input ac-
tivations, bringing unacceptable computational complexity
which prohibits its using in the training with a large-scale
dataset such as ImageNet. Unlike these methods, in this pa-
per, we present a new and efficient quantization scheme that
considers aforementioned two critical factors jointly during
the optimization. Our main contributions are summarized
as follows.

1. We present Explicit Loss-error-aware Quantization
(ELQ), a new DNN quantization method that jointly
regularizes the weight approximation error and the ac-
companying loss perturbation in an explicit manner.
To train lossless quantized models, we further bridge
our ELQ with an incremental quantization strategy.

2. We show that our approach is theoretically reasonable
and practically effective. It achieves state-of-the-art re-
sults on the large scale ImageNet classification dataset,
as validated with two mainstream CNN architecture
families (i.e., fully convolutional and non-fully convo-
lutional).

2. Related Works

In the literature, there exists numerous methods for DNN
compression and acceleration, and the reader is referred to
[34] for a recent survey. Here, we just briefly summarize
three major solution families that are related to our method.

Knowledge Distillation. One way to train a smaller stu-
dent network while maintaining the similar accuracy of the
large teacher is knowledge distillation. A pioneering work
is [13] in which Hinton et al. take the soft predication out-
puts from a large and powerful teacher model or an ensem-
ble of the trained models as the hints to jointly regularize
the optimization objective when training a smaller neural

network with the given data and the corresponding one-hot
labels. Later on, several works [29] [40] attempt to use both
final predications and intermediate representations from the
ensemble teachers to enhance the training of target student
model. Recently, [26] and [27] show that the knowledge of
large teacher networks can be well applied to improve mod-
el accuracy during the training and quantization of smaller
student networks.

Network Pruning. The basic goal of network pruning
is to compress any dense network architecture into a sparse
version without loss of model accuracy. This line of re-
search can be dated back to the late 1980s. Two represen-
tative works are brain damage [39] and brain surgeon [9]
in which the authors derive optimal sparse network archi-
tecture from the perspective of information-theoretic opti-
mization. Both methods suffer from the high computational
complexity since they need to compute second order deriva-
tives of the loss function, thus they cannot handle large and
deep neural networks. Recently, Han et al. [8] revisit this
topic and introduce a simple yet effective pruning strategy
which gets impressive network compression and inference
performance as tested with a specialized hardware design
[7]. In Han et al.’s method, network parameters whose abso-
lute values are below given thresholds are directly removed
from the network layer-by-layer first, then the re-training
is adopted to recover pruned network accuracy. Guo et al.
[5] further present a more efficient method that can enable
the recovery of wrongly pruned connections appeared in
[8], yielding better compression performance. In the lat-
est works [17] [11] [25], the authors propose to either trim
convolutional filters or prune feature map channels.

Low-Bit Network Quantization. Most of the compu-
tational cost of a DNN model, especially during inference
phase, comes from the intensive multiplication operations
of the 32-bit floating-point weights and inputs. Naturally,
network quantization aims to eliminate the need of these
dominant multiplications by replacing any full-precision
DNN model with a low-precision version. In [36] [6], the
authors use 8-bit fixed-point or 16-bit fixed-point represen-
tation to substitute 32-bit floating-point representation. Ex-
pectation BackPropagation (EBP) [33] constrains the net-
work weights to +1 and —1 during feed-forward test in a
probabilistic way. BinaryConnect [3] extends the idea be-
hind EBP to directly binarize network weights during train-
ing phase. By keeping a copy of the full-precision network
weights and taking it as the reference in weight binariza-
tion, BinaryConnect achieves competitive accuracy on s-
mall datasets (e.g., MNIST and CIFAR-10) using shallow
CNNs. From then on, a lot of methods [4] [23] [28] [45]
[44] [19] are proposed for training binary or ternary DNNs,
but most of them are based on a straightforward approxi-
mation of either layer-wise network weights or layer-wise
network outputs through minimizing the error of the layer-

9427

wise weights or inner products of the weights and the inputs
between the original and respective quantized models. Our
method differs with them both in the optimization formula-
tion and quantization strategy.

3. The Proposed Method

In this section, we give a detailed view of our Explic-
it Loss-error-aware Quantization (ELQ), show how to for-
mulate the optimization, how to bridge our basic quanti-
zation algorithm with an incremental strategy, and how to
train very low-bit DNNs from the full-precision reference
models with our ELQ.

3.1. Very Low-Bit Neural Networks

We begin with the notations in this paper. Denote M =
{(W,,X;)]1 < 1 < L} as a full-precision (i.e., 32-bit
floating-point) DNN model, where W is the weight set of
the I*" layer, X; is the input set of the I*" layer, and L is
the number of layers in the DNN model M. To simplify
the explanation, here we only consider convolutional lay-
ers and fully connected layers of CNNs, and we also omit
the dimension difference in the expression. Usually, for the
convolutional layers, W; is a 4D tensor and X; is a 3D ten-
sor. For the fully connected layers, 1W; is a 2D matrix and
X is either a 2D matrix (obtained by reshaping a 3D ten-
sor) or a 1D vector. In this paper, we aim to constrain DNN
model M to only have very low-bit weight set W\l whose en-
tries are composed of Q; = {«ci|l < k < K}. Here for
the I*" layer, o is a corresponding positive scaling factor
that needs to be determined during training, cy, is an integer
value, and K is the number of the quantized weight centers.
Specifically, for binary networks, ¢, € {—1, 1}, while for
ternary networks, ¢, € {—1,0,1}.

Numerous methods, including but not limited to [4] [23]
[28] [45] [44] [19] [15] [14], are proposed to train binary
or ternary neural networks. Basically, most of them can be
grouped into two solution families. The first solution family
directly approximates full-precision weight sets with binary
or ternary versions in a layer-by-layer manner, as defined
below

min ||W; — W[|?
W (1
st. Wie{aep|ll<k<K} 1<I<IL,

BinaryConnect [3] and BinaryNet [4] apply stochastic
binarization functions to transform trained full-precision
weights into binary equivalents. Inspired by them, Zhu et
al. [45] use similar probabilistic trinization functions as
the bounds to clip full-precision weights into ternary val-
ues. The other solution family considers the approximation
of the inner products of the layer-wise weight sets and input
sets, such as XNOR-Net [28] and Ternary Weight Networks

(TWNs) [23], as defined below

min [|[W, X, — W, X, ||
Wi 2)
s.t. WZE{OéleHSk‘SK}, 1<I<L.

From an optimization perspective, aforementioned approx-
imation based DNN quantization methods have two main
drawbacks. First, regularizing respective approximation er-
ror will bring noticeable perturbation on the classification
loss which would impact the predication accuracy of the
quantized DNN model. However, loss perturbation has not
been considered in these methods because they usually as-
sume that the derivatives of the loss function w.r.t. the full-
precision and quantized weights are exactly the same. Sec-
ond, for these methods, there still exist noticeable accuracy
gaps between the full-precision and very low-bit models.

3.2. Explicit Loss-Error-Aware Quantization

One of our goals is to encode the quantization effect to
the loss function into the process of training very low-bit
DNNs. To the best of our knowledge, only two attempts us-
ing the same optimization framework are available. Hou et
al. [15] propose a proximal Newton algorithm based quan-
tization method that directly minimizes the loss w.r.t. the
binarized weights. In [14], they further extend this idea to
handle ternary quantization task. Their optimization prob-
lem is defined as

min L(Wl)
Wi 3)
s.t. VV[G{OL[CMIS]CSK}, 1<I<L.

Here, the loss function L w.r.t. the quantized weights at
iteration ¢ is defined as

L(ﬁ/‘l(t)) — L(Wl(t‘l)) _i_J(tfl)(Wl(t) _I//V\l(t_l))‘f‘

— - — —)
1/2(Wl(t) _ Wl(tfl))TH(t—l)(VVl(t) _ Wl(til))7

where J*~1) and H*~1) are the Jocobian and Hessian ma-
trices w.r.t. the quantized weights at iteration ¢ — 1. With
proximal Newton algorithm, a close-form solution can be
derived (details on theoretical proofs are referred to [15] and
[14]). However, proximal Newton algorithm needs to esti-
mate the Hessian matrix of the loss function w.r.t. the quan-
tized weights and the inputs, bringing unacceptable compu-
tational complexity which prohibits its using in the training
with a large-scale dataset such as ImageNet. Besides, the
loss difference between the quantized model and the full-
precision counterpart is not well considered.

Unlike the optimization methods analyzed above, in our
ELQ, the optimization problem is defined as

mAin L(Wl) + ale(Wl, Wl) + GQE(Wl, Wl)

Wi (5)
st. Wie{ayeq|ll<k<K} 1<I<L.

9428

Here, L is the basic loss function w.r.t. the original full-
precision model (It shall be noticed that this is different
from the existing methods that only consider the loss func-
tion w.r.t. the quantized model at feed-forward stage during
training. Retaining the loss function w.r.t. the full-precision
model is critical for our ELQ, which will be clarified in the
following paragraphs), L, encodes the loss difference be-
tween the quantized and full-precision models, F represents
the approximation error between the quantized weight sets
and the full-precision counterparts, and a; and as are two
positive coefficients balancing the regularization. Specifi-
cally, £ = ||W; — /Wl||2, thus we only need to determine
L,. Here, we define it as

LP(Wla/Wl) = [L(W;) — L(W)). (©6)

Supposing that W; is quantized into W; where W; €
{ayeg]l < k < K}, we can denote the absolute approx-
imation difference as

5= W, — W 7

Now we consider first order Taylor expansion of the loss

function perturbation L, by flattening L(/Wl) w.r.t. Wi, and
we can derive

L (Wi, W) = |L(W3) — L(W)) — afvl;l)w/v? —wy)
oL —~
= |W(Wl - W)
0
o)

®)
Akin to [38], for easy implementation, we also use a lin-
ear assumption % o 0, then the loss difference term L,
and the approximation error term E' can be easily reshaped
into a uniform expression. Accordingly, for the optimiza-
tion problem defined in (5), we can derive following weight
update scheme

oL
oW ™)

— Asign(W; =W,),
©)
where is a positive learning rate, \ is a positive coeffi-
cient, and sign(z) is the sign function. Now, the differ-
ence between the optimization formulations of our ELQ
and existing methods is apparent. Existing methods assume
L(W;) == L(I//V\l) as can be easily seen from the optimiza-
tion (1), (2) and (3). In our formulation defined as (5), be-
sides the weight approximation error (i.e., the third term),
we use L(W;) instead of L(W\l) as the first term to empha-
size their difference and use the loss difference between the
quantized and full-precision models as the second term to
encode the loss perturbation from the weight quantization,

Wlt — VVltfl —

this is critical to obtain Equation (9) for weight update. On
the one hand, the full-precision version of network weights
is retained during training and updated at backward prop-
agation stage. From this perspective, W, is the variable to
be optimized. On the other hand, the updated weights are
quantized at feed-forward stage. From this perspective, /V[7l
is the final variable to be optimized.

After the weight sets are updated at iteration ¢, the re-
spective ternary or binary equivalents can be obtained if the
corresponding optimal scaling factor set {«;} can be deter-
mined. Specifically, o is computed as

a; = mean(W;) + Bmaz (W), (10)

where (3 is a positive coefficient, and we empirically set 5 =
0.05 in this paper. Now, for the ternary quantization of a
weight set W,

e%) if W;>0.50
Wi=1< —aq if W< —0.5¢ an

0 otherwise,

and the binary quantization of a weight set IW; can be direct-
ly determined by taking the sign of the full-precision weight
values

— ifW; >0
Wi = {‘” Lo (12)
—qq otherwise.

3.3. Association of ELQ with Incremental Strategy

Since our ELQ jointly considers the weight approxima-
tion error and the accompanying quantization impact to the
loss function for very low-bit DNN quantization problem, it
has advantages in suppressing potential accuracy loss of the
quantized DNN models in comparison to popular quantiza-
tion methods. We can directly apply ELQ to handle ternary
or binary quantization task. However, similar to state-of-
the-art methods [4] [23] [28] [45] [15] [14] [44] [19], if we
also adopt popular global strategy for ELQ in the quantiza-
tion process, there may still exist accuracy gaps for achiev-
ing lossless quantization since simultaneously transforming
all full-precision network weights into ternary or binary e-
quivalents leaves little room to recover model accuracy. To
address this problem, we combine our ELQ with a new ex-
tension of the incremental strategy [43] proposed recently.
Its basic idea is to first split the weights of each layer of a
DNN model into two disjoint groups, then the weights in
one group are directly quantized and fixed, and the weights
of the other group retaining 32-bit floating-point values are
re-trained to compensate for model accuracy loss resulted
from the quantization. The operations of weight partition,
group-wise quantization and re-training are repeated until
all network weights are quantized. In what follows, we first

9429

@) ©

(@) ())

Figure 1: Illustration of the quantization procedure of our ELQ with the incremental strategy, taking ternary quantization
task as an example and setting interval bound factors at successive partition steps as {01 = 0.5,02 = 0.4,03 = 0.3,04 =
0.2,05 = 0.15,06 = 0.1,07 = 0.05,05 = 0}. (a) Step 1: determine layer-wise 3 quantized centers {o;ck|l < k < 3} by
applying Equation (10) over respective weight distribution, and perform weight clip and re-training. The resulting centers of
{-0.2,0, 0.2} are indicated with 3 red dashed lines. (b) Step 2: calculate two pairs of (o1 ;c1, o2aqcr) and (o1 cs, o204 C3)
first, and then the weights that fall into the intervals of [(201 — o2)cr, o1qc1), (o101, 020y c1) U [o20c3, 0100 C3),
[c1aqes, (201 — 02)ayes) need to be quantized into 3 respective center values. Here, 01 = 0.5, 09 = 0.4,y = 0.2, ¢; = —1
and ¢ = 1, thus the weights fall into the ranges of [-0.12, —0.1), [-0.1, —0.08)U[0.08,0.1), [0.1, 0.12) (shown as black and
red rectangles) are quantized into {—0.2, 0, 0.2} respectively and fixed, and the training is only performed on the remained
full-precision weights with value clips. (c) Step 3: let o3 = o3, repeat the operations described in (b). (d), (e) and (f) show
some successive steps until all network weights are quantized, reaching final convergence. In each figure, the horizontal axis
denotes weight values, and the vertical axis denotes the accumulated number of weights with the same values, and only one
particular network layer is considered for illustration.

show how to bridge our ELQ with this incremental quan- Here, it can be seen that binary matrix 7; forces quan-
tization strategy, and then illustrate how to perform weight tized weights to be fixed. In other words, only weights still
partition and train very low-bit DNNs. have 32-bit floating-point values are re-trained to enhance
Let 7} be a binary matrix having the same dimension to network model accuracy. Now, a critical problem is how
W, W, be the weight group that needs to be quantized, W} to perform weight partition. [43] proposes a magnitude-
be the weight group that needs to be re-trained, we have based weight partition method in which weights with larger
magnitudes are grouped into the set to be quantized, while

Wa U W =Wi,and Wo N W, = 0. (13) thegother weighfs areI:) considered to be re—?rained. Howev-

Now, for the [*" layer, weight partition can be defined as er, this magnitude-based weight partition method is some-
. what naive, and the algorithm in [43] is also empirically

;= {O Wi oT € We (14) studied, lacking theoretical analysis. In our ELQ, we in-

L Wi oT, € Wy, troduce a new weight partition strategy. Considering that

in ternary or binary DNN quantization task, the problem

where ® denotes the Hadamard product operator. By comb-) o)
becomes easier to get a better solution if the weights are

ing Equation (14) and Equation (9), we can obtain the

weight update scheme for our ELQ as trained to be close to a number Qf target weight centers (i.e.,
5 {aycg|l < k < K}), in comparison to the case that network
W} = Wf*l — 77671 oT—- weights are scattered with a flat distribution curve. Inspired
oW, ™) (15) by this, for each layer, we define an interval bound factor
—~1t—1 . g _
)\sign(Wlt_l “w' Hoemn. set {on]1 < n < N} where 0 < 0, < 1, guiding succes

9430

Algorithm 1 Explicit Loss-error-aware Quantization for
training a ternary or binary DNN.

Require: X: the training data, M = {W; : 1 <[< L}:
the full-precision DNN model
Ensure: M = {ﬁ/\l : 1 <1 < L}: the final low-precision
model with weight set 1¥/; constrained to be ternary set
{—ay,0, o} or binary set {—ay, «;}
1: forl=1,2,...,L do
2: Initialize W, < 0, Wy, + W}, T; + 1

3: Calculate ternary or binary scaling factor oy by E-
quation (10)

4: Set interval bound factors at successive partition
stepsas {01 = a,00 =0,--- ,ony =0}

5: forn=1,2,...,N do
: Reset the base learning rate and the learning
policy
Start optimization and quantization
Optimize the neural network w.r.t. the loss func-

tion

9: Quantize weights into ternary or binary equiva-
lents by Equation (11) or Equation (12)

10: Calculate feed-forward loss w.r.t. the current
model

11: Update weights by Equation (15)

12: end for

13: end for

sive weight partition, quantization and re-training steps. An
illustration of our method for ternary DNN quantization is
shown in Figure 1. Algorithm 1 summarizes the procedure
of our ELQ to train a ternary or binary DNN for approxi-
mating the full-precision reference model.

4. Experiments

In this section, we evaluate our method by conduct-
ing extensive CNN quantization experiments on two well-
known image classification benchmarks, and compare our
quantized model accuracies with the latest state-of-the-art
results reported from XNOR-Net [28], DoReFa-Net [44],
Ternary Weight Networks (TWNs) [23], Trained Ternary
Quantization (TTQ) [45], Incremental Network Quanti-
zation (INQ) [43] and the BinaryConnect-ADAM (BC-
ADAM) based quantization method [24]. For fair compari-
son and easy reproduction, we implement our ELQ algorith-
m by Caffe package [20] with standard CNN model files,
and all experiments are conducted with the exactly same
settings including data augmentation, network architecture
configuration, bit-width used for quantization and so forth
in comparison to [28] [44] [23] [45] [43] [24].

Model Top-1 Decrease| Top-5 Decrease
error in top-1 | error in top-5

error error

Ref[45] 42.80 19.70

TWNs[23] 45.50 -2.7 23.20 -35

TTQ[45] 42.50 0.3 20.30 -0.6

Our Ref 42.76 19.77

Our ELQ 42.12 0.64 19.78 -0.01

Table 1: Accuracy (%) comparison of the ternary AlexNet
models trained on the ImageNet classification dataset.

Model Top-1 Decrease| Top-5 Decrease
error in top-1 | error in top-5

error error

Ref[44] 44.10 NA

DoReFa-Net[44] | 47.00 -2.9 NA NA

Ref[28] 43.40 19.80

XNOR-Net[28] 43.20 0.2 20.60 -0.8

Our Ref 42.76 19.77

Our ELQ 43.05 -0.29 20.23 -0.46

Table 2: Accuracy (%) comparison of the binary AlexNet
models trained on the ImageNet classification dataset.

4.1. Experiments on ImageNet

With ELQ, our main experiments are performed to train
both ternary and binary CNNs for ImageNet classification
task [30]. So far, in the deep learning community, Ima-
geNet is known as the most famous image classification
benchmark. It has about 1.2 million training images and
50 thousand validation images. The images in the dataset
are natural images, and each image is annotated as one of
1000 object classes. We apply our ELQ to AlexNet [22]
and ResNet-18 [10], covering both non-fully convolutional
and fully convolutional CNN architecture families. In the
experiments, all images are resized to have 256 x 256 pix-
els, and then the random crops of 224 x 224 pixels are used
for training. At feed-forward testing phase, only 224 x 224
center crops of validation images are used. We report our
results with two standard measures: Top-1 error rate and
Top-5 error rate.

First, we consider AlexNet which has 5 convolutional
layers and 3 fully connected layers. Following TWNs [23],
DoReFa-Net [44], XNOR-Net [28] and TTQ [45], we al-
so remove dropout operations and add batch normalization
operations to original AlexNet architecture [22]. Taking
full-precision AlexNet model as the reference, we separate-
ly train corresponding ternary and binary models with our
ELQ using the same experimental settings. Specifically, we
run our ELQ training algorithm with SGD for 80 epochs
with the batch size of 256, the weights decay of 0.0003 and

9431

the momentum of 0.9. At each re-training step, the learning
rate starts at 0.001 and is divided by 2 every 2 epochs. For
weight partition in our ELQ, we set interval bound factors
at successive partition steps as {07 = 0.5,05 = 0.4,03 =
0.3,04 = 0.2,05 = 0.15,06 = 0.1,07 = 0.05,05 = 0}.
Table 1 compares the ternary AlexNet model accuracies of
our method with so far best reported results. First, we can
find that the accuracy difference between our full-precision
AlexNet reference and the comparative reference is very s-
mall (specifically, 0.04% difference in Top-1 error rate and
0.07% difference in Top-5 error rate). Second, it can be
seen that our ternary AlexNet model reaches a Top-1 error
rate of 42.12% which outperforms its full-precision refer-
ence by 0.64%, and its Top-5 accuracy is almost the same
as the reference. Comparatively, TWNs [23] brings serious
accuracy drops: 2.7% to Top-1 accuracy and 3.5% to Top-
5 accuracy. TTQ [45] exhibits much better accuracy than
TWN:s, but it still introduces 0.6% decrease in Top-5 accu-
racy. Generally, our ternary model achieves the best accura-
cies with obvious margins over all compared methods. Ta-
ble 2 further compares the binary AlexNet model accuracies
of our method with DoReFa-Net [44] and XNOR-Net [28].
Again, we can see that our full-precision reference model
has slightly better accuracy than those used in DoReFa-Net
and XNOR-Net. Comparatively, for binary AlexNet mod-
els, DoReFa-Net shows noticeable accuracy drop: 2.9% to
Top-1 accuracy. Although XNOR-Net achieves 0.2% gain
to Top-1 accuracy, it brings 0.8% drop in Top-5 accuracy.
Generally, our binary model has more consistent accuracy
in comparison to the reference model. Furthermore, both
our ternary and binary AlexNet models show the best accu-
racies compared with the state-of-the-art results.

Next, we consider full convolutional ResNet-18 that is
popularly used in DNN quantization tasks. ResNets [10]
have batch normalization layers and relief the vanishing
gradient problem by using shortcut connections. Taking
full-precision ResNet-18 model as the reference, we sep-
arately train corresponding ternary and binary models with
our ELQ using the same experimental settings. Specifically,
we run our ELQ training algorithm with SGD for 96 epochs
with the batch size of 80, the weights decay of 0.0003 and
the momentum of 0.9. At each re-training step, the learning
rate starts at 0.001 and is divided by 2 every 2 epochs. For
weight partition in our ELQ, we set interval bound factors
at successive partition steps as {07 = 0.5,02 = 0.4,03 =
0.3,04 = 0.2,05 = 0.15,06 = 0.1,07 = 0.05,05 = 0}.
Accuracy comparison of ternary ResNet-18 models is sum-
marized in Table 3. Partially owing to the increased depth
and the significantly decreased number of parameters, un-
like the results on AlexNet, the ternary ResNet-18 mod-
els from all methods have different level accuracy losses
when compared with the corresponding full-precision ref-
erences. However, only our method shows minor accuracy

Model Top-1 Decrease| Top-5 Decrease
error in top-1 | error in top-5

error error

Ref[45] 30.4 10.80

TWNs[23] 34.70 -4.3 13.80 -3.0

TTQ[45] 33.40 -3.0 12.80 -2.0

Our Ref 31.73 11.31

Our ELQ 32.48 -0.75 11.95 -0.64

Table 3: Accuracy (%) comparison of the ternary ResNet-
18 models trained on the ImageNet classification dataset.

Model Top-1 Decrease| Top-5 Decrease
error in top-1 | error in top-5
error error
Ref[28] 30.70 10.80
XNOR-Net[28] 39.20 -8.5 17.00 -6.2
Our Ref 31.73 11.31
Our ELQ 35.28 -3.55 13.96 -2.65

Table 4: Accuracy (%) comparison of the binary ResNet-18
models trained on the ImageNet classification dataset.

drops: 0.75% to Top-1 accuracy and 0.64% to Top-5 accu-
racy, which are much lower than the accuracy drops report-
ed for TWNs [23] and TTQ [45]. Even for the latest ternary
ResNet-18 model distilled by a much deeper and more pow-
erful ResNet-152 model [26], it still has —1.4% decrease
in Top-1 error rate (31.8% vs 30.4%). Accuracy compari-
son of binary ResNet-18 models is summarized in Table 4.
Compared with ternary ResNet-18 models, as the bit width
goes from 2 bits to 1 bit, binary ResNet-18 models show
much larger accuracy drops. The binary ResNet-18 model
from XNOR-Net [28] has 8.5% drop to Top-1 accuracy and
6.2% drop to Top-5 accuracy, while our binary ResNet-18
model outperforms it with significant margins.

4.2. Quantization with Increased Network Depth

We also perform ablation study on the CIFAR-10 dataset
[21] to explore the quantization performance of our ELQ
with increased network depth. CIFAR-10 is an image clas-
sification dataset which has 60000 32 x 32 color images
grouped into 10 object categories. We present experiments
trained on the training set of 50000 images and evaluated on
the test set of 10000 images. Following [23] [45] [24], we
also consider ResNet-20 and ResNet-56, and use the same
data augmentation for training. Here, we intentionally use
the same parameter settings to train very low-bit ResNet-
20 and ResNet-56 separately. Specifically, we run our ELQ
training algorithm with SGD for 150 epochs with the batch
size of 256, the weights decay of 0.0003 and the momen-
tum of 0.9. At each re-training step, the learning rate starts

9432

Model Top-1 Decrease in
error top-1 error

Ref[45] 8.23

TWNs (Ternary)[23] 9.12 -0.89

TTQ (Ternary)[45] 8.87 -0.64

Our Ref 8.75

Our ELQ (Ternary) 8.55 0.2

Our ELQ (Binary) 8.85 -0.1

Table 5: Accuracy (%) comparison of the ternary/binary
ResNet-20 models trained on the CIFAR-10 dataset.

Model Top-1 Decrease in
error top-1 error

Ref[45] 6.80

TTQ (Ternary)[45] 6.44 0.36
Ref[24] 8.10

BC-ADAM (Binary)[24] 8.83 -0.73

Our Ref 6.97

Our ELQ (Ternary) 6.30 0.67

Our ELQ (Binary) 7.18 -0.21

Table 6: Accuracy (%) comparison of the ternary/binary
ResNet-56 models trained on the CIFAR-10 dataset.

at 0.001 and is divided by 2 every 3 epochs. For weight par-
tition in our ELQ, we set interval bound factors at succes-
sive partition steps as {01 = 0.5,09 = 0.4,03 = 0.3,04 =
0.2,05 =0.15,06 = 0.1,07 = 0.05, 05 = 0}.

For ResNet-20, we first train a ternary model, and then
we train a binary version as well. Accuracy compari-
son is presented in Table 5. Similar to the results on the
ImageNet classification dataset, our method gets the best
ternary ResNet-20 model when compared with TWNs [23]
and TTQ [45]. For CIFAR-10 task, our ternary model is
even better than the full-precision reference, and our bina-
ry model also shows slightly improved accuracy than the
ternary models from TWNs and TTQ. It only brings 0.1%
drop in Top-1 accuracy in comparison to the full-precision
reference. With much deeper ResNet-56, we further ex-
plore ternary and binary quantization performance of our
ELQ. According to the results shown in Table 6, we can
find that our ELQ obtains much better results than the latest
BC-ADAM method [24]. Even though our ternary ResNet-
56 model has 0.88% accuracy improvement over our binary
model, the accuracy difference between our binary mod-
el and the full-precision reference is only 0.21%. Above
experiments clearly show that our ELQ can well address
ternary and binary quantization of DNNs with increased
network depth.

4.3. Comparison of Weight Partition Strategies

Recall that our ELQ uses an incremental quantization
implementation based on a new weight partition strate-

Model Top-1 Decrease in | Top-5 Decrease in
error top-1 error | error top-5 error

Ref 31.73 11.31

INQI[43] 33.98 -2.25 12.87 -1.56

Our ELQ | 32.48 -0.75 11.95 -0.64

Table 7: Accuracy (%) comparison of the ternary ResNet-
18 models trained on the ImageNet classification dataset.

gy. Original magnitude-based weight partition method pro-
posed in [43] is an empirical solution, lacking theoretical
analysis. Although our weight partition strategy is different
from this magnitude-based partition, it is necessary to com-
pare them. To this end, we perform an experiment on the
ImageNet classification dataset. In the experiment, we also
consider ternary quantization task for ResNet-18, as in [43].
The parameter settings for the batch size, the weight decay,
the momentum and so forth are exactly the same. The re-
sult summary is given in Table 7. It can be seen that our
model accuracy is consistently better than the results from
INQ, yielding the improvements of 1.5% and 0.92% w.r.t.
Top-1 and Top-5 accuracy. Although INQ is inferior to our
method, its model accuracy is much better than TWNs [23]
and TTQ [45], demonstrating the advantage of the way to
perform network quantization incrementally.

5. Conclusion

This paper presents ELQ, a new quantization method,
for training very low-bit DNNs with negligible loss of pred-
ication accuracy compared with the full-precision counter-
parts. Taking a full-precision DNN as the reference, ex-
isting methods usually pose the optimization problem as
the approximation of either layer-wise weights or layer-
wise inner products of the weights and the respective in-
puts, without considering the quantization effect to the loss
function. Our ELQ jointly considers the loss perturbation
and the weight approximation error in the optimization, and
we further bridge it with an incremental quantization strat-
egy for lossless DNN quantization. One appealing merit
of our ELQ is that the negative quantization impact on the
predication accuracy can be well suppressed. Moreover, it
avoids the drawbacks of second order optimization methods
[15] [14], such as the expensive computational cost of the
Jacobian and Hessian matrices when training very low-bit
DNNs with large scale datasets. We have shown that our ap-
proach is theoretically reasonable and practically effective.
As validated with two mainstream convolutional neural net-
work families (i.e., fully convolutional and non-fully con-
volutional), our ELQ shows promising binary and ternary
quantization results on the large scale ImageNet classifica-
tion dataset. As for future works, we may extend the idea
behind ELQ to train very low-bit DNNs from scratch.

9433

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]
[10]
(11]

[12]

[13]
[14]
[15]

[16]

(7]

(18]

[19]

[20]

F. Chollet. Xception: Deep learning with depthwise separa-
ble convolutions. In CVPR, 2017.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research, 2011.

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:
Training deep neural networks with binary weights during
propagations. In NIPS, 2015.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized neural networks: Training neural net-
works with weights and activations constrained to +1 or -1.
In NIPS, 2016.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for
efficient dnns. In NIPS, 2016.

S. Gupta, A. Agrawal, and K. Gopalakrishnan. Deep learning
with limited numerical precision. In /ICML, 2015.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. Eie: Efficient inference engine on com-
pressed deep neural network. In ISCA, 2016.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both
weights and connections for efficient neural networks. In
NIPS, 2015.

B. Hassibi and D. G. Stork. Second order derivatives for
network pruning: Optimal brain surgeon. In NIPS, 1993.

K. He, X. Zhang, S. Ren, and S. Jian. Deep residual learning
for image recognition. In CVPR, 2016.

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-
ing very deep neural networks. In ICCV, 2017.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jait-
ly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and
B. Kingsbury. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 2012.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. In NIPS, 2014.

L. Hou and J. T. Kwok. Loss-aware weight quantization of
deep networks. ICLR, 2018.

L. Hou, Q. Yao, and J. T. Kwok. Loss-aware binarization of
deep networks. In ICLR, 2017.

A. G.Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv:1704.04861v1,2017.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. A data-driven
neuron pruning approach towards efficient deep architec-
tures. arXiv:1607.03250v1, 2016.

G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized neural networks: Training neural
networks with low precision weights and activations. arX-
iv:1609.07061v1, 2016.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM, 2014.

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]
[39]

[40]

9434

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. 2009.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

F. Li and B. Liu.
iv:1605.04711v1, 2016.
H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein.
Training quantized nets: A deeper understanding. In NIPS,
2017.

H. Li, A. Kadav, 1. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient convnets. In /CLR, 2017.

A. Mishra and D. Marr. Apprentice: Using knowledge dis-
tillation techniques to improve low-precision network accu-
racy. ICLR, 2018.

A. Polino, R. Pascanu, and D. Alistarh. Model compression
via distillation and quantization. /CLR, 2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Joseph. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In ECCV, 2016.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR,
2015.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211-252,
2015.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre,
G. v. d. Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. N-
ham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of go with deep neural networks and tree search.
Nature, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In /CLR, 2015.
D. Soudry, I. Hubara, and R. Meir. Expectation backpropa-
gation: Parameter-free training of multilayer neural networks
with continuous or discrete weights. In NIPS, 2014.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient pro-
cessing of deep neural networks:a tutorial and survey. arX-
iv:1703.09039v2, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the
speed of neural networks on cpus. In NIPS Workshop, 2011.
S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In CVPR,
2017.

X. Xiong and F. D. 1. Torre. Supervised descent method and
its applications to face alignment. In CVPR, 2013.

L. Yann, J. S. Denker, I. Solla, sara A., and G. E. Hinton.
Optimal brain damage. In NIPS, 1990.

J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-
edge distillation: Fast optimization, network minimization
and transfer learning. In CVPR, 2017.

Ternary weight networks. arX-

[41]

[42]

[43]

[44]

[45]

S. Zagoruyko and N. Komodakis. Wide residual networks.
In BMVC, 2016.

X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. arXiv:1707.01083v1, 2017

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-
tal network quantization: Towards lossless cnns with low-
precision weights. In /ICLR, 2017.

S. Zhou, W. Yuxin, Z. Ni, X. Zhou, H. Wen, and Y. Zou.
Dorefa-net: Training low bitwidth convolutional neural net-
works with low bitwidth gradients. arXiv:1606.06160v1,
2016.

C. Zhu, S. Han, and H. Mao. Trained ternary quantization.
In ICLR, 2017.

9435

