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Abstract

Lighting estimation from faces is an important task and

has applications in many areas such as image editing, in-

trinsic image decomposition, and image forgery detection.

We propose to train a deep Convolutional Neural Network

(CNN) to regress lighting parameters from a single face

image. Lacking massive ground truth lighting labels for

face images in the wild, we use an existing method to esti-

mate lighting parameters, which are treated as ground truth

with noise. To alleviate the effect of such noise, we utilize

the idea of Generative Adversarial Networks (GAN) and

propose a Label Denoising Adversarial Network (LDAN).

LDAN makes use of synthetic data with accurate ground

truth to help train a deep CNN for lighting regression on

real face images. Experiments show that our network out-

performs existing methods in producing consistent lighting

parameters of different faces under similar lighting condi-

tions. To further evaluate the proposed method, we also

apply it to regress object 2D key points where ground truth

labels are available. Our experiments demonstrate its effec-

tiveness on this application.

1. Introduction

Estimating lighting sources from an image is a funda-

mental problem in computer vision. In general, this is a par-

ticularly difficult task when the scene has unknown shape

and reflectance properties. On the other hand, estimat-

ing the lighting of a human face, one of the most popular

and well studied objects, is easier due to its approximately

known geometry and near Lambertian reflectance. Lighting

estimation can be used in applications such as image edit-

ing, 3D structure estimation, and image forgery detection.

This paper focuses on estimating lighting from a single face

image. We consider the most common face image type:

near frontal pose. The same idea can be applied to face im-

ages with other poses.

There exist many approaches for lighting estimation

∗means equal contribution.

Figure 1. Training of a LDAN model has two steps: 1) Train the

feature net and lighting net for synthetic data with two losses:

Faces with similar lighting should have similar lighting related fea-

tures (||s1 − s2||2); Estimated lighting should be close to ground

truth lighting (||l1 − l
∗||2 and ||l2 − l

∗||2). 2) Train the feature

net for real data while fixing both the feature net and lighting net

trained in step 1. We use two losses in this step: The distribution

of synthetic features and real features should be close (||Ps−Pr||);
Estimated lighting should be close to noisy ground truth lighting

(||lr − l̂r||).

from a single face image [6, 35, 19, 30], however they are

not learning-based and rely on complicated optimization

during testing, making the process inefficient. Moreover,

the performance of these methods (e.g., [6]) depends on the

resolution of face images, and cannot give accurate predic-

tions for low resolution images.

Witnessing the dominant success of neural network mod-

els in other computer vision problems such as image classi-

fication, we are interested in a supervised learning approach

that directly regresses lighting parameters from a single face

image. Given an input face image, the approach outputs low

dimensional Spherical Harmonics (SH) coefficients [8, 32]
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of its environment lighting condition. This is a very difficult

problem, especially due to the scarcity of accurate ground

truth lighting labels for real face images in the wild. In fact,

building a dataset with realistic images and ground truth

lighting parameters is extremely hard and currently there

exists no such dataset.

Lacking ground truth labels, we applied an existing

method [6] to estimate lighting parameters of real face im-

ages. However, these lighting parameters are not the real

“ground truth” as they contain unknown noise. Synthetic

face images, on the other hand, have noise-free ground truth

lighting labels. In this work, we show that this synthetic

data with accurate labels can help train a deep CNN to

regress lighting of real face images: “denoising” the un-

reliable labels.

The proposed method is based on two assumptions: (1)

A deep CNN trained with synthetic data is accurate, i.e., it

is not affected by any noise; (2) Ground truth labels for real

data are noisy, but still contain useful information. We de-

sign the lighting regression deep CNN, which consists of

two sub-networks: a feature net that extracts lighting re-

lated features and a lighting net that takes these features

as input and predicts the Spherical Harmonics parameters.

Based on the first assumption, the lighting net trained with

synthetic data is accurate. However, this lighting net ex-

pects lighting related features for synthetic data as input.

To make it work for real data, the lighting related features

for real data should be mapped to the same space. For that

purpose, we utilize the idea of Generative Adversarial Net-

works (GAN) [16]. Specifically, a discriminator is trained

to distinguish between lighting related features from syn-

thetic data and real data, while the feature net (instead of a

generator in the standard GAN) is trained to fool the dis-

criminator. The discriminator and our feature net play a

minimax two player game, with the objective of pulling the

distribution of lighting related features of real data towards

that of the synthetic data. Under the second assumption,

we have an additional objective of reducing regression loss

between predicted lightings and ground truth labels. More-

over, we design the network to take 64×64 pixels RGB face

images so that it will work for low resolution face images.

Figure 1 illustrates the proposed LDAN model. It con-

sists of two steps during training: (1) Train with synthetic

data; (2) Fix the feature net for synthetic data and the light-

ing net, train another feature net for real data with adversar-

ial loss and regression loss. Eric et al. [40] proposed sim-

ilar ideas, applying adversarial loss to map the distribution

of features from the source domain to the target domain.

However, they only use adversarial loss. We argue that such

a mapping can be unpredictably arbitrary. As illustrated by

Figure 2, both mapping A to A′, B to B′ and mapping A to

B′ and B to A′ make the source and target data have similar

distributions. This may be correct for classification tasks if
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Figure 2. Two different functions that map data from the source

domain to target domain with similar adversarial loss. With ad-

ditional regression loss, our model is encouraged to learn a better

behaved mapping function (the one on the left).

A and B belong to the same class. However, for regression,

mapping A to B′ makes the mapped feature far away from

where it should be. As a result, using the regression loss for

real data is critical in our regression problem: it regularizes

the domain mapping function to have reasonable behavior.

At the same time, the noise in real data labels are suppressed

by training with the adversarial loss.

Since real ground truth labels for SH do not exist, we

propose to use a classification based method to evaluate the

consistency of estimated SH. However, this is still an indi-

rect approach. To further evaluate the effectiveness of the

proposed method, we apply it to an object key point regres-

sion problem where the ground truth labels are available.

Similar to lighting regression from faces, we apply an ex-

isting method [42] to get the noisy ground truth and use

synthetic data to help train an object key point regression

network. Evaluated using the real ground truth, we demon-

strate that LDAN works better than directly training a net-

work with these noisy ground truth labels.

The main contributions of our work are: 1) We propose

a lighting regression network for face images; 2) We pro-

pose a novel method, LDAN, to utilize accurate synthetic

image lighting labels in training real face images with noisy

labels; 3) The proposed method: increases the accuracy by

9% compared to [6] on quantitative evaluation, is robust to

low resolution images, and is thousands of times faster.

2. Related Work

Lighting Estimation from A Single Face Image. Es-

timating lighting conditions from a single face image is a

challenging problem. Blanz and Vetter [9] proposed to esti-

mate the ambient and directional light as a byproduct of fit-

ting 3D Morphable Models (3DMM) to a single face image.

Since then, several 3DMM based methods were proposed

[2, 30, 19, 35, 41, 12]. The performance of these methods

rely on a good 3DMM of faces. However, existing 3DMMs

are usually built with face images taken in a controlled en-
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vironment, so their expressive power (especially the texture

model) for faces in the wild is limited [10]. Barron and Ma-

lik proposed an optimization based method for estimating

shape, albedo, and lighting for general objects [6]. To solve

such an underconstrained problem, their method heavily re-

lies on prior knowledge about shape, albedo, and lighting of

general objects. Though they achieved promising results,

their method is slow and may fail to give reasonable re-

sults in some cases due to the non-convexity of the objective

function. [38] uses GRBMs to estimate albedo, normal, and

illumination of a single image. They assume a distant point

light source that is represented by the direction of the light

which is less expressive than SH.

[24] proposed to use deep learning to disentangle repre-

sentations about pose, lighting, and identity of a face image.

The authors only show the effectiveness of their method on

synthetic images; its performance on real face images is un-

clear. Recently, there is a trend to disentangle real faces

using deep CNNs [36, 39, 23]. These methods, however,

mainly focus on evaluating their performance on shape and

albedo estimation. It is not clear whether the lighting esti-

mated by these methods are accurate.

Learning with Noisy Labels. Learning with noisy la-

bels has attracted the interest of researchers for a long time.

[13] gives a comprehensive introduction to this problem.

With the development of deep learning, many research stud-

ies have now focused on how to train deep neural networks

with noisy labels [27, 37, 5, 43, 28, 21]. [27, 37, 28, 21]

assume the probability of a noisy label only depends on the

noise-free label but not on the input data, and try to model

the conditional probability explicitly. [43] models the type

of noise as a hidden variable and proposes a novel proba-

bilistic model to infer the true labels. [5] proposes to use

CNNs pre-trained with noise-free data to help select data

with noisy labels in order to better handle the noise. All the

above mentioned methods focus on classification problems

and a considerable portion of the data are assumed to have

noise-free labels. However, estimating lighting from face

images is a regression problem, and the translation proba-

bility from noise-free labels to noisy labels is much more

difficult to model. Moreover, the labels of our real data are

noisy. As a result, we are dealing with a much harder prob-

lem than the methods mentioned above.

GAN for Domain Adaption. Since Goodfellow et al.

[16] first proposed Generative Adversarial Networks, sev-

eral works have been using this idea for unsupervised Do-

main Adaption [14, 40, 34, 33]. All these methods solve

a problem in which the labels in the target domain are not

enough to train a deep neural network. However, the prob-

lem we try to solve is intrinsically different from theirs in

that the labels in the target domain are sufficient, but all

these labels are noisy. Moreover, all these methods apply

domain adaption to classification tasks where adversarial

loss is enough to achieve a good performance. On the con-

trary, adversarial loss alone cannot work in our regression

task. Though adversarial loss could map the distribution of

data in the target domain to that of the source domain, for

a single point in the target domain, the mapping is arbitrary

which is problematic as every data point has its unique label

in a regression task.

3. Proposed Method

3.1. Spherical Harmonics

[8, 32] have shown that for convex objects with Lamber-

tian reflectance and distant light sources, the lighting of the

environment can be well estimated by 9 (gray scale) or 27
(color) dimensions of Spherical Harmonics (SH). In this pa-

per, we use SH as the lighting representation as it has been

widely used to represent the environmental lighting in face

related applications as suggested in [7, 41, 46, 6, 22, 30].

All dimensions of SH can be fully recovered from an

image if the pixels are equally distributed over a sphere.

However, the pixels of a face image, loosely speaking, are

distributed over a hemisphere. The SH that can be recov-

ered from a face image, as discussed in [31], lie in a lower

dimensional subspace, and the SH for faces under different

poses lie in different subspaces. As a result, we consider

regressing the SH in a lower dimensional subspace instead

of the original 27 dimensional SH and focus on near frontal

faces since most face images are taken under this pose.

Taking the red color channel as an example, we now

show how to get the lower dimensional subspace of SH for

near frontal faces. Let Ir be a column vector: each element

represents one pixel value of a face image for the red chan-

nel, then Ir = ΛrY lr. Λr is a n× n diagonal matrix, each

element of which is the albedo of the corresponding pixel, lr
is a 9 dimensional SH parameters vector, Y is a n×9 matrix

and n is the number of pixels in the image. Each column of

Y corresponds to one SH base image whose elements are

determined by the normal of the corresponding pixel (see

[8]). By applying SVD on Y , we get Y = UDV T , then

Ir = ΛrUDV T lr. V is a 9× 9 matrix that spans the entire

9 dimensions of SH. We use synthetic data to get V since

we know the ground truth normal of every pixel and thus Y

is known. We then only keep the first 6 columns of V , de-

noted as V6, corresponding to the largest 6 singular values

since they capture 99% energy of the singular values. With

V6, we project all the SH to their 18 dimensional subspace

throughout the experiments.

3.2. Label Denoising Adversarial Network

Training a regression deep CNN needs a lot of data with

ground truth labels. However, getting the ground truth light-

ing parameters from a realistic face image is extremely dif-

ficult. It usually needs a mirror ball or panorama camera
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which is carefully set up to record an environment map rel-

ative to the position of the face. Instead, we adapted [6]

to predict lighting parameters from a large number of face

images. These parameters are then projected to a lower di-

mensional subspace using V6 discussed above. We use these

projected lighting parameters as noisy ground truth labels

and denote them as ŷr for real face images r. They are used

as (data, label) pairs to train a deep regression CNN. Be-

cause these labels are noisy, directly training a deep CNN

cannot give the best performance.

We propose to use synthetic face images, whose ground

truth lighting parameters are known, to help train a bet-

ter deep CNN model. The proposed model has two sub-

networks: a feature network that is used to extract light-

ing related features and a lighting network that takes light-

ing related features as input and predicts SH. For synthetic

data s, we denote its feature network as S and its light-

ing network as L. Then the predicted SH is represented

as ys = L(S(s)). Since S and L are trained using synthetic

data with known ground truth labels, they are accurate. Fea-

ture network R and lighting network Lr for real data, on the

other hand, are affected by noises if directly trained using

the noisy ground truth of real data. To alleviate the effect of

noisy labels, we propose to use L as the lighting net for real

data, i.e., Lr := L, since it is not affected by noise. How-

ever, since L is trained using synthetic data, it only works

if the input is from the space of lighting related features of

synthetic data. As a result, R needs to be trained such that

the lighting related features for real data are mapped into

the same space as synthetic data.

Given a set of synthetic images s and their ground truth

labels y∗
s , we train feature net S and lighting net L through

the following loss function:

min
S,L

∑

(i,j)∈Ω

[(L(S(si))− y∗
si)

2 + (L(S(sj))− y∗
si)

2]
︸ ︷︷ ︸

regression loss for synthetic

+λ(S(si)− S(sj))
2

︸ ︷︷ ︸

feature loss

, (1)

where si and sj are a pair of synthetic face images with the

same SH lighting, different identities, and different small

random deviations from frontal pose. y∗
si represents their

ground truth label. Ω is a set containing all such pairs. λ is

the weight for a feature loss. Besides the regression loss, we

also add the MSE feature loss to enforce the lighting related

features of face images with the same SH to be the same.

This encourages the lighting related features to contain no

information about face identities and poses.

With trained S and L, next we train the feature net R
for real face images r so that the lighting related features

for real data (fr = R(r)) lie in the same space as that of

synthetic data (fs = S(s)). Our idea is inspired by GAN

[16]: a discriminator D is trained to distinguish fr and fs,

while R is trained so that fr would make D fail. By play-

ing this minimax game, the distribution of fr will be close

to that of fs. Wasserstein GAN (WGAN) [3] is used as our

training strategy since it can alleviate the “mode dropping”

problem and generate more realistic samples for image syn-

thesis. However, making the distribution of fr and that of fs
similar is not enough for our regression problem since the

mapping can be unpredictably arbitrary. As shown in Fig-

ure 2, both mappings would make two sets of points have

similar distributions, but they are not equally correct if we

care about accuracy on individual points’ labels. To deal

with this problem, we use the noisy ground truth of real

data as “anchor points” during training. As a result, the loss

function for training on real data is defined as follows:

min
R

max
D

∑

i

(L(R(ri))− ŷri)
2

︸ ︷︷ ︸

regression loss for real

+ µ (ES(s)∼Ps
[D(S(s)]− ER(r)∼Pr

[D(R(r))])
︸ ︷︷ ︸

adversarial loss

(2)

where Ps and Pr are the distributions of lighting related fea-

tures for synthetic and real images respectively.

Following [16, 3], the discriminator D and feature net R
are trained alternatively. While training D, RMSProp [20]

is applied and Adadelta [45] is used to train S , R and L
as discussed in [3]. The details on how to train the whole

model are illustrated in Algorithm 1.

Algorithm 1 Training procedure for LDAN

1: Train S and L for synthetic data using loss function in

Equation 1 by Adadelta.

2: Compute lighting related features for synthetic images

using fsi = S(si).
3: for number of training epochs do

4: for k=1 to 1 iterations do

5: Sample 128 fs and r. Train discriminator D
through the following loss using RMSProp:

max
D

Efs∼Ps
[D(fs)]− ER(r)∼Pr

[D(R(r))]

6: end for

7: for k=1 to 4 iterations do

8: Sample 128 r and train R through the following

loss using Adadelta:

min
R

∑

i

(L(R(ri))− ŷri)
2 − µER(r)∼Pr

[D(R(r))]

9: end for

10: end for
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Table 1. Accuracy of different methods. Standard deviation is shown in the bracket for learning based methods.

SIRFS log SIRFS SH 3DMM REAL LDAN Model B Model C

top-1 (%) 60.72 56.04 49.08 61.29 (±1.8) 65.73 (±1.78) 56.62 (±3.86) 63.03 (±0.91)
top-2 (%) 79.65 74.39 65.78 81.95 (±1.3) 84.57 (±1.35) 76.94 (±4.10) 82.79 (±0.35)
top-3 (%) 87.27 83.74 74.37 90.59 (±0.7) 92.43 (±0.59) 86.69 (±3.39) 91.21 (±0.47)

4. Experiments

4.1. Data Collection

Real Face Images: The proposed LDAN requires a

large number of both synthetic and real face images for

training. For real face images, we download them from the

Internet. SIRFS [6] is then applied to these face images to

get the noisy ground truth SH. Since SIRFS was proposed

to estimate lighting for general objects, their prior is not

face-specific. To get a better constraint for a face shape, we

apply Discriminative Response Map Fitting [4] to estimate

the facial landmarks and pose. Then, a 3DMM [9] is fitted

to estimate the face depth map which is used as a prior to

constrain the face shape estimation of SIRFS. We collected

40, 000 faces with noisy ground truth SH for training.

Synthetic Face Images: We apply a 3D face model [29]

to generate 40, 000 pairs of faces. Each pair of these faces

are under the same lighting but with different identities and

a small random variation with respect to frontal pose.

MultiPie: The MultiPie dataset [17] contains a large

number of face images of different identities taken under

various poses and illumination conditions. From this data

set, 4, 980 face images are chosen, which contain 250 iden-

tities in frontal pose under 19 lighting conditions. Though

the ground truth lighting parameters are not provided for

each of these face images, the lighting condition group un-

der which a face image is taken is given. This data is used

only for evaluation in our experiments.

4.2. Implementation Details

We apply the same ResNet structure [18] for feature net

S and R. It takes a 64 × 64 RGB face image as input and

outputs a 128-D feature vector. We define the lighting net L
and discriminator D to be 2 and 3 fully connected layers re-

spectively. The lighting net outputs 18 dimensional lighting

parameters and D outputs the score for being a lighting re-

lated feature of real data. Please refer to the supplementary

material for details on the network structures.

While training the proposed model, we first train dis-

criminator D for 1 iteration and then train feature net R for

4 iterations. We alternate these two steps for 10 epochs. We

choose µ = 0.01, and λ = 0.01. Our algorithm is imple-

mented using Keras [11] with Tensorflow [1] as backend.

4.3. Evaluation Metric

Since ground truth lighting parameters for real face im-

ages are not available, it is difficult to evaluate the accuracy

of regressed lighting quantitatively. We propose an indirect

classification-based metric and test our method on the Mul-

tiPie data set, which contains face images taken under 19
lighting conditions. More specifically, after regressing the

SH for each test face image, 90% of them are used to com-

pute the mean SH for each lighting condition group. Then,

the rest images are assigned to the 19 lighting conditions

based on the Euclidean distance between its estimated SH

and the mean SH. We carry out 10 cross validations for this

classification measurement to make use of all the data.

4.4. Experimental Results

We compare LDAN with SIRFS [6] based method in this

section. In SIRFS, the shading of a face is formulated in

logarithm space, i.e. log{si} = Yil where si is the shading

at the i-th pixel, Yi is the i-th row of Y and l represents the

SH in logarithm space. To estimate the correct SH light-

ing, we assume that the normal of each pixel estimated by

SIRFS is in Euclidean space. Supposing l̂ is the correct SH,

the shading can be found by si = Yi l̂. Then l̂ can be found

by solving the following overcomplete linear equation:

Y l̂ = exp {Y l}. (3)

Compare with baselines. Table 1 compares the pro-

posed method with some baseline methods using the clas-

sification metric on MultiPie. We denote the original out-

put of SIRFS as SIRFS log, and the corrected SH by Equa-

tion (3) as SIRFS SH. We test these two methods on the

original resolution of the MultiPie data which is roughly

220 × 270 after cropping the faces. For comparison, we

also show the results of a 3DMM model based lighting es-

timation method [15] (denoted as 3DMM). We notice that

3DMM performs worse than SIRF SH; this inspires us to

use SIRF SH as the noisy ground truth for the real data.

REAL in Table 1 represents a baseline method which uses

SIRFS SH as ground truth to train a deep CNN without

synthetic data. REAL and LDAN are trained 5 times and

the mean accuracies are shown in Table 1. We notice that

SIRFS SH performs worse than SIRFS log. This is because

the accuracy of SIRFS SH depends not only on the accu-

racy of SIRFS log, but also on the accuracy of estimated

normals. The noisy estimation of normals makes the SIRFS

SH less reliable. The performance of REAL is better than

SIRFS SH, though it is trained directly using the output of

SIRFS SH as the ground truth label. This suggests that by

observing a large amount of data, the deep CNN itself can
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Table 2. Results of ablation study. Standard derivation is shown in the bracket.

LDAN LDAN w/o Adversarial LDAN w/o Regression LDAN w/o Fixed Lighting Net

top-1 (%) 65.73 (±1.78) 63.63 (±2.12) 30.72 (±0.63) 63.95 (±0.60)
top-2 (%) 84.75 (±1.35) 83.44 (±1.57) 49.12 (±0.85) 83.97 (±0.25)
top-3 (%) 92.43 (±0.59) 91.48 (±1.09) 61.58 (±1.07) 92.07 (±0.46)

be robust to noise to some extent. This shows an advan-

tage for learning based methods compared with optimiza-

tion based algorithms. LDAN outperforms REAL by more

than 4% and SIRFS SH by more than 9% for top-1 accuracy,

showing the effectiveness of the proposed pipeline.

We further propose two other baselines to compare with

LDAN as shown in Figure 3. Different from LDAN, Model

B and Model C learn the feature nets for synthetic and real

data simultaneously and map the lighting related features of

them to the same space. These two models are inspired by

[14] and [33]. For Model B, synthetic and real data share

the same feature net. Since synthetic data and real data are

quite different from each other, using a single feature net, it

is difficult to make their lighting features have the same dis-

tribution, and we do not expect good performance. Model

C defines different feature nets for synthetic and real data.

The difference between Model C and LDAN is that Model

C tries to map lighting related features for synthetic and

real data to a common space, which might be different from

that learned with synthetic data alone, whereas LDAN tries

to directly map lighting related features of real data to the

space of synthetic data. Intuitively, compared with LDAN,

Model C is more easily affected by the noisy labels of real

data since the training of the feature net for synthetic data is

affected by the real data.

Model B and C are also trained 5 times and their mean

accuracies are shown in Table 1 for comparison. We no-

tice that Model B performs even worse than REAL, which

shows that using the same feature net for both synthetic and

real data is not a good idea. LDAN and Model C outper-

form all other methods in Table 1. Moreover, LDAN per-

forms better than Model C, showing that it is more robust to

the noise in the real data labels.

Ablation Study. To investigate the effectiveness of ad-

versarial loss and regression loss, we carry out ablation

studies for LDAN. We train the feature net 5 times for real

data without adversarial loss or regression loss respectively

and compare the results with LDAN in Table 2. Without

adversarial loss, the performance of LDAN is better than

REAL in Table 1, which means that synthetic data can help

to regress lighting in this case. Without regression loss, on

the other hand, the performance of LDAN drops dramati-

cally. This is because the mapping of the distribution of

lighting related features of real data to that of synthetic data

is arbitrary as shown in Figure 2. This is problematic for a

regression task where each data has its unique label. Having

noisy ground truth as “anchor points”, as we do in LDAN,

Table 3. Accuracy of LDAN for different scale of face images.

Method LDAN SIRFS SH

Resolution 64× 64 32× 32 16× 16 64× 64
top-1 (%) 65.73 64.89 61.72 42.17
top-2 (%) 84.75 84.39 82.17 61.94
top-3 (%) 92.43 92.10 90.94 74.51

can alleviate this problem and give much better results. We

also train LDAN without fixing the lighting net and show

the results in Table 2. We notice that the performance is

similar to training LDAN without adversarial loss. This is

expected since the lighting net are trained to adapt to the

noisy labels: the impact of the adversarial loss is reduced.

Visualizing Estimated Lighting. Figure 4 and Fig-

ure 5 visualize the SH parameters estimated by SIRFS, and

LDAN from MultiPie images and the CelebA [26] data set

respectively. Though there are few images with strong side

light effect, we notice that LDAN can still work reason-

ably well for such images as shown in Figure 4 (b) and

(d). However, the predicted lightings are not as sharp as

those by SIRFS. This is mainly because the performance of

learning based methods are heavily dependent on the train-

ing data. Without sufficient face images with strong side

light for training, the performance of LDAN on those im-

ages may not be optimal. In classification we expect ex-

treme lighting to be differentiated more easily than normal

lighting because equal changes in the angle of lighting di-

rections affect frontal lighting less than side lighting under

the Lambertian model (details discussed in supplementary

material). We notice that the lighting predicted by SIRFS

can have incorrect directions (Figure 5 (a) (b) (c) and (d)

as well as Figure 4 (c)). One of the reasons is the effect of

the hair. Since the facial landmark detection method is not

perfect, some of the hair regions are included in the cropped

face images, which confuses SIRFS. Moreover, some light-

ing predicted by SIRFS have the incorrect color tone, espe-

cially for faces with dark reflectance, as shown in Figure 5

(e) (f) (g) and (h). On the other hand, LDAN is not affected

by these two issues.

Robustness to Low Resolution Images. To investigate

the robustness of the proposed method for low resolution

images, we downsample face images of MultiPie to 32×32
and 16 × 16 and then resize them to 64 × 64 and evaluate

the lighting classification accuracy using our trained LDAN

model. As shown in Table 3, our trained model is quite

robust to low resolution images, even for face images with
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Figure 3. Two models we use to compare with the proposed LDAN. Different from LDAN, Model B use the same feature net for synthetic

and real data; Model C trains feature net for synthetic and real data together.

(a) (b) (c) (d)
Figure 4. First row: MultiPie face image, rendered synthetic face with SIRFS estimated lighting and rendered synthetic face with LDAN

estimated lighting. Second row: the hemisphere visualization of the corresponding estimated lightings. Images are best viewed on screen.

size 16 × 16, the top-1 accuracy only drops 4% compared

with the original resolution (64× 64). To compare, we also

run SIRFS on 64 × 64 face images. Since we cannot run

3DMM on lower resolution images to get a good initial-

ization, we fit the 3D model on the original resolution and

resize it accordingly. We notice that the performance of

SIRFS drops drastically (14%) even on 64× 64 images.

Denoising Effect of LDAN To check the denoising ef-

fect of LDAN, we carried out experiments with synthetic

data. We select 35, 000 synthetic images as the noise-free

training data, 15, 000 as the noisy training data, and 5, 000
as testing data. We add three levels of Gaussian noise (std

0.1, 0.2, and 0.5) to the ground truth SH of synthetic data

to prepare the noisy training data. To evaluate the perfor-

mance, we render pairs of face images using the LDAN es-

timated lighting and the corresponding groundtruth lighting

and compute their per-pixel error for evaluation. Table 4

shows results compared with a directly trained network. As

a reference, the per-pixel error of directly training the net-

work using noise-free data is 0.0714. The results suggest

that LDAN can indeed reduce the impact of noisy labels.

Table 4. Per-pixel error for synthetic data with different noise.

directly train LDAN

Std 0.1 0.0893 0.0740

Std 0.2 0.1158 0.0738

Std 0.5 0.2531 0.1752

Running Time. We run experiments on a workstation

with 4 Intel Xeon CPUs and 80 GB memory. While running

on a GPU, we use one NVIDIA GeForce TITAN X. For a

64× 64 RGB face image, SIRFS [6] takes 47 seconds. The

proposed deep CNN can predict 390 such face images on

the CPU and 2, 400 face images on the GPU per second, so

it is potentially 100, 000 times faster than an optimization

based method such as SIRFS.

4.5. Object 2D Keypoints Detection

Since ground truth lighting is hard to obtain, to bet-

ter quantitatively check the effectiveness of the proposed

method, we apply the LDAN training strategy to the ob-

ject 2D keypoint detection problem, which has ground truth

labels. The keypoint-5 dataset provided by 3DINN [42]

has ground truth labels for 2D keypoints of sofa, chair, bed

and swivel chair. [25] provided synthetic images of sofa

and chair and their corresponding labels. Since 3DINN has

achieved very high accuracy on the chair data set, we focus

on using sofa to test our method.

To mimic noisy labels, we apply the code provided by

3DINN to predict the keypoints of sofa, and then double the

noise of these labels so they contain more noises. Suppos-

ing l∗ is a ground truth location of a keypoint (2 dimensional

vector) and l′ is the keypoint location predicted by 3DINN,

we double the noise in the label l′ and get l̂ = 2l′ − l∗. Un-

less otherwise specified, we use l̂ as noisy labels to train
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. First row: CelebA face image, rendered synthetic face with SIRFS estimated lighting, and rendered synthetic face with LDAN

estimated lighting. Second row: the hemisphere visualization of the corresponding estimated lightings. Images are best viewed on screen.

networks. Different from 3DINN, we formulate keypoint

detection as a regression problem. Similar to our LDAN

model, the network is designed to have a feature network

and regression network 1. We first use the synthetic data

provided by [25] to train a keypoint regression network us-

ing Equation (1). Since we do not have two sofa images that

have exactly the same 2D keypoints, we ignore the feature

loss. Then we train the feature network for real sofa data

provided by 3DINN using Equation (2).
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Figure 6. PCK curve of real sofa images for different methods.

We use the Percentage of Correct Keypoints (PCK) met-

ric [44] to evaluate the accuracy. A 2D keypoint pre-

diction is correct if it lies within a radius α ∗ L of the

ground truth, where L is the diagonal of the image with

0 < α < 1. Following [42], we show the PCK curves of

LDAN and several baselines with the value of α between

0.0 and 0.2 in Figure 6: (1) Training the network using

real data with the noisy label (“regression”); (2) Training

1See the supplementary material for the details of the network structure.

the network using synthetic data and testing it on real data

(“synthetic”); (3) Fine tune the network trained on synthetic

data using real images with the noisy labels (“fine-tune”).

We also show the performance of 3DINN and performance

of training the network using ground truth label without

noise as references (“3DINN” and “regression gt”, both are

trained with real ground truth). At α = 0.1, LDAN’s PCK

value (79.66%) outperforms both “regression” (69.61%)

and “fine-tune” (76.12%). This shows that LDAN works

better than other methods that trained with noisy labels.

5. Conclusion

In this paper, we propose a lighting regression network to

predict Spherical Harmonics of environment lighting from

face images. Lacking the ground truth labels for real face

images, we applied an existing method to get noisy ground

truth. To alleviate the effect of noise, we propose to apply

the idea of adversarial networks and use synthetic face im-

ages with known ground truth to help train a deep CNN for

lighting regression. Compared with existing methods, the

proposed method is more efficient and could predict more

consistent Spherical Harmonics from different faces taken

under the same environment. We further apply the proposed

method to regress 2D keypoint, for which ground truth la-

bels are provided. Our experiments further demonstrate the

effectiveness of the proposed method.
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