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Abstract

We are interested in enabling automatic 4D cinema

by parsing physical and special effects from untrimmed

movies. These include effects such as physical interactions,

water splashing, light, and shaking, and are grounded to ei-

ther a character in the scene or the camera. We collect a

new dataset referred to as the Movie4D dataset which an-

notates over 9K effects in 63 movies. We propose a Con-

ditional Random Field model atop a neural network that

brings together visual and audio information, as well as se-

mantics in the form of person tracks. Our model further

exploits correlations of effects between different characters

in the clip as well as across movie threads. We propose ef-

fect detection and classification as two tasks, and present

results along with ablation studies on our dataset, paving

the way towards 4D cinema in everyone’s homes.

1. Introduction

Fast progress in deep learning together with large

amounts of labeled data has enabled significant progress in

tasks such as image tagging [16], object detection [14], ac-

tion recognition [10], and image captioning [43]. Neural

networks have also proven themselves as surprisingly good

artists by repainting images in different styles [12], writ-

ing poems [18], and synthesizing music [5, 42]. With the

emerging market of virtual reality, simulated roller-coasters,

and infotainment, machines might also help us reach a new

level of the entertainment experience.

In 4D cinema, the audience is taken to a wild ride

through the movie: their seats shake when a high speed car

chase unrolls on the screen, water splashes on their faces

when a boat cuts through the Perfect Storm, and smoke

veils around them when Clint Eastwood lights up yet an-

other cigarette. While entertaining for the audience, such

effects are not so fun to annotate for the movie creators.

They are time consuming and require careful annotation of

what physical phenomena is occurring at every time instant

in the film [23]. The strength of the effect, and possibly di-
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Figure 1: Movie4D: We aim to predict effects as experienced by

characters and camera, their duration, and all details such as inten-

sity, type, and direction, automatically in movies.

rection is also important to faithfully recreate the fast-paced

dynamic world for the audience.

In this work, we take a step towards promoting creation

of 4D cinema by automatically parsing detailed physical ef-

fects in movies. In particular, given a streaming video, we

aim to detect both which effect is being applied to each of

the characters in the scene (or camera), as well as to predict

accompanying details such as the intensity of each effect,

its duration and possibly direction. While inferring effects

from videos has clear significance for the entertainment in-

dustry, we believe it also has value for building intelligent

robots in the future. When faced with the real world, robots

will need to foresee physical forces based on current visual

or audio information in order to cope with them.

Due to unavailability of an existing dataset of this form,

we first collect the Movie4D dataset containing rich annota-

tions of physical effects in feature films (Fig. 1). Our dataset

contains 9286 effect annotations with time stamps and ac-

companying details. The effects are also grounded to either

the camera’s point of view, or to a particular character in

the clip. These effects take place in various scenes, ranging

from heroic battlefronts to everyday lives.

We propose a model to parse effects from untrimmed

videos and ground them to characters’ tracks. We formal-

ize the task as performing inference in a Conditional Ran-
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dom Field, that exploits potentials extracted from multi-

ple modalities (visual, audio, and semantic) via neural net-

works. Our model further profits from correlations between

effects applied to different characters in the same clip (such

as one character being exposed to a shake likely means that

the other character experiences the same effect), as well as

across clips (some effects like water splashing are long in

duration). We showcase the model through ablation studies,

and point to challenges of the task.

Our code and data will be released1 in order to inspire

more research in bringing 4D cinema to everyone’s homes.

2. Related Work

Video analysis, especially movies and TV series have

several research directions. Among them, some of the most

popular tasks are automatic person identification [4, 7, 9,

27], pose estimation [8], describing short video clips us-

ing one sentence [29] or aligning videos with plots [38]

and books [39, 47]. Video-based question-answering is also

growing in popularity, and among these MovieQA [40] and

PororoQA [19] are based on movies and TV series.

Actions and interactions have also been studied in the

context of movies. Hollywood2 [21] aims at predicting a

few action classes given short clips, while human interac-

tions such as hugging, kissing, are studied in [26]. A few

approaches aim at finding people looking at each other [24].

With deep learning, and the need for larger datasets, ac-

tion recognition (not necessarily in movies) has grown via

ActivityNet [17], the THUMOS challenge and related UCF

dataset [36]. Moving away from classifying actions given a

segmented clip, there is a drive to detect and classify actions

in longer untrimmed videos.

In the related domain of audio analysis, AudioSet [13]

is a large collection of audio events that range from hu-

man and animal sounds, musical instruments, to everyday

environmental sounds. A recent audio-video dataset Flickr-

SoundNet [3] has enabled training audio-visual models in

an unsupervised manner [2, 3]. Movie effects are audio-

visual too, and we exploit these modalities in our models.

4D effects. Over the years, movie budgets have increased

and facilitated use of dazzling special effects [1]. In this

paper, we propose classification and detection of such ef-

fects and physical interactions in movies, as experienced by

the camera and characters. Inspired by semantic role la-

beling for images that requires to predict the verb and the

corresponding role-noun pairs (imSitu [44]), our effect an-

notations (e.g. wind) come with a variety of details that de-

termine the intensity (e.g. strong), direction (e.g. from left)

and even sub-types (e.g. cold wind).

In the past, several attempts have been made to predict

a similar range of effects, however, in different, and im-

1www.cs.toronto.edu/˜henryzhou/movie4d/

TRAIN VAL TEST TOTAL

Movies 50 7 6 63

# Effects 7283 816 1187 9286

# Instantaneous effects 1492 115 268 1875

Effect avg. duration 5.9 6.8 6.6 6.1

Per Movie

Avg. # video clips 11.9 12.1 13 12.1

Avg. # characters 7.2 6.4 7.5 7.1

Per Clip

Avg. # shots 79.9 79.2 78.9 79.7

Avg. # threads 9.6 9.9 8.3 9.5

Avg. # person tracks 56.8 62.5 61.2 57.9

Table 1: Summary of the Movie 4D dataset.

portantly, isolated contexts. Classification of weather con-

ditions has been analyzed for driver-assistance [30], while

detecting water [25], and especially rain [11] is of special

interest. In the context of fire safety, work by [6] aims at

detecting smoke.

There is work on real rendering of audio-visual signals

to sensory devices and chairs. [22] aims to translate audio

signals (movies, hand-held games, etc.) onto a vibro-tactile

sensory device, with [34] focusing on rendering gunshots.

Probably the most related to our work, [23] analyzes 10 real

4D films with about 2.2K effects and manually groups them

based on viewer experience (e.g. motion, vibration). As mo-

tion forms a large chunk of 4D effects, [23] employs optical

flow along with Kalman filtering to use video motion to con-

trol the chair. Our work is different on two key fronts: (i) we

use audio-visual information to detect and classify effects

in movies, and even those that were not originally made for

4D; and (ii) our dataset annotations and model reason about

which characters experience the effects. We also collect a

significantly larger dataset with 63 movies and over 9.2K

effect annotations.

3. Movie4D Dataset

We first introduce our dataset, by describing the anno-

tation process, statistics, and proposed tasks. In the next

section, we propose a model that aims to solve these tasks.

We build the Movie4D dataset to analyze the detection

and detailed parsing of effects in films. Our dataset consists

of 654 five-minute clips obtained from 63 movies. Most

of our movie genres are action/adventure, and sci-fi as they

typically contain the highest number as well as diversity of

effects. However, Movie4D also features films from drama,

comedy, and romance, that could be used as a proxy to un-

derstanding effects in the real world.

3.1. Annotating Effects

We are interested in annotating effects in video clips, in-

cluding the start and end timestamps, effect type, and effect-

specific details such as intensity, direction, and sub-type.
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Figure 2: Left: The tree illustrates the structure of an effect annotation. Each effect consists of duration, point of view, intensity, and type,

with additional effect-specific details. Right: Example frames corresponding to the different effect types in our dataset. While some effects

can be easily detected from images alone, many of them require multiple sources of information (image, motion, audio and semantic cues).

We develop a web annotation interface, where the annotator

is allowed to select a movie, and then browse through a set

of clips. As preprocessing, we split the movie into 5-min

clips and provide a few to the annotator. After selecting a

clip, the annotators are presented with the video, and a dy-

namic questionnaire interface that allows them to add new

effects (details in supp. material). While browsing (watch-

ing) the clip, the annotator first adds the type of the effect,

such as shake or wind, and a few mandatory fields common

to all effects: (i) start and end time; (ii) intensity; and (iii)

point of view (POV). Effects that have a duration less than

one second are referred to as instantaneous. For each effect

type, we present additional effect-specific fields which the

annotator can fill. Fig. 2 provides the list of effect types, de-

tails, as well as examples. We explain our effect annotations

in more detail below.

Intensity. We provide three options: mild, medium, and

strong. Mild effects are common on a daily basis, such as a

light blow of wind. Medium effects are significantly more

noticeable, but are still acceptable to most people. An ex-

ample would be stronger wind or a pouring rain. Strong

effects are not common in normal life and may cause pain

or discomfort, such as severe shaking due to explosion or

earthquakes, or strong winds due to hurricanes.

POV denotes the subject that experiences the interaction

within the video. We allow annotators to choose from a

cast of main characters that we provide (seven per movie on

average), as well as the camera. A camera POV indicates

that the effect is applied to the cameraman or the observer

of a scene from a first-person perspective.

Our annotators were hired from the freelance web-

site Upwork, that facilitates interaction through a message

board. We trained the annotators for roughly two hours and

gave them constant feedback for the first two movies they

annotated, in order to ensure consistency. Each annotator

was asked to annotate a full movie. The annotators were

paid by the hour.

1. Shake. The POV experiences continuous or sudden

spatial motion. Shake has detail direction with options: left-

right, front-back, up-down, all-around, and other.

2. Splash is caused by water (or any liquid) splashing

onto the subject. Splash has detail direction with options:

front, back, left, right, top, bottom, all-around, and other.

3. Wind is a result of natural weather phenomenon or

artificial manipulations by machines (such as standing on

a fast moving boat). The detail direction for wind has the

same options as that of splash. Wind also has detail type

with the following options: hot, cold, and normal.

4. Physical Interactions are effects defined between

two characters, such as fighting. Physical interactions have

detail type with the following options: hit, pinch, twist,

string, rub, drag, massage, impact, gunshot, and other. We

also ask our annotators to select the source and target of the

physical interaction (e.g. ‘A drags B’, where A and B are

characters from the cast).

5. Light effects are defined only for those that involve

an artificial light source. The detail direction has the same

options as splash and wind. Light effects also have detail

type with different colors: white, red, yellow, orange, green,

blue, purple, and other.

6. Weather effects are usually subject to both the camera

and all characters in the scene. Weather has detail type and

comprises: extremely-sunny, rain, snow, fog, wind, snow-

storm, other.

7. Temperature is annotated as an effect when the am-

bient temperature is not normal. It has type high and low.

8. Liquid Surrounding indicates that a large portion of

the character/camera is submerged in water or other liquids.

The detail type tells us the type of liquid: water, or other.

9. Gravity effects are annotated only when POV expe-

riences unnatural low/high gravity forces. They have the

detail type with options: high gravity (acceleration), low

gravity, and zero gravity.

Person tracks. As our effect reasoning requires determin-

ing POV, we ground this information to character tracks in

the clips. In particular, we perform person tracking in every
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Figure 3: Effect distribution by count (left) and duration (right).
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Figure 4: Density of effects in several movies. In general,

action/adventure/sci-fi movies tend to have more effects, while

drama/romance have a lower density and variety.

shot of the clip, and ask the annotators to assign a charac-

ter name from the cast list to each track. We use person

detections from the YOLO9000 object detector [28], and

combine subsequent detections into person tracks based on

spatial overlap. 41.4% of our tracks correspond to main

characters and 30.3% to background characters. We obtain

several false positives due to detections spaced at 3 frames

per second.

3.2. Dataset Statistics

We collected a total of 9286 annotations from 654 clips

each 5-min long. Table 1 provides a summary of different

features about our data, along with train-val-test splits. We

create splits with disjoint movies and achieve a balance be-

tween movie metadata and effect annotations.

The distribution of the number of effect classes and their

durations is presented in Fig. 3, and we see that light and

wind are dominant effects. Fig. 4 presents the density of

effects in a few example movies. We select 15 movies from

various genres and compute the effect duration within them.

Dramatic effects such as shake, liquid surrounding, and

wind are more pronounced in action-packed movies such

as adventure and sci-fi.

In Fig. 5, we show the t-SNE [41] visualization of the

top 40 characters based on amount of time spent with ef-

fects. The effect duration is used as a feature for clustering.

We observe that characters from sci-fi movies such as Inter-

stellar, Gravity, and Iron Man are grouped together at the

bottom (due to the zero-gravity floating and flying). In con-

trast, characters from adventure/action films such as Lord of

the Rings and Hunger Games that experience natural phe-

nomenon (wind, weather) are grouped at the top.

Jake Sully
Avatar

Dr. Alan Grant
Jurassic Park

Jack Dawson
Titanic

Jack Twist
Brokeback Mountain

Dr. Ian Malcolm
Jurassic Park

Hector Barbossa
PotC

Chief John Anderton
Minority Report

Tony Stark
Iron Man

Pippin Took
LOTR

Cobb
Inception

Ryan Stone
Gravity

Agatha Lively
Minority Report

Cooper
Interstellar

Ennis Del Mar
Brokeback Mountain

Tim Murphy
Jurassic Park

Brand
Interstellar

Jack Sparrow
PotC

Gandalf
LOTR

Dr. Ellie Sattler
Jurassic Park

Ariadne
Inception

Solomon Vandy
Blood DiamondPeeta Mellark

Hunger Games
Gollum
LOTR

Indy
Indiana Jones

Neytiri
Avatar

Leon Kowalski
Blade Runner Elizabeth Swann

PotC

Tyler Durden
Fight Club

Danny Archer
Blood Diamond

Rose DeWitt Bukater
Titanic

Aragorn
LOTR

Hugh Glass
The Revenant

Katniss Everdeen
Hunger Games

Matt Kowalski
Gravity

Frodo Baggins
LOTR

Dominic Toretto
F&F

Peter Parker
Spider-Man

Samwise Gamgee
LOTR

Brian O Conner
F&F

Lex Murphy
Jurassic Park

Figure 5: tSNE plot of characters (grouped using effect duration).

Notice the clustering of characters by themes such as outer space

(bottom), fighting (top left), and adventure (top right).
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Figure 6: Ratios of camera and character POV annotations.

Fig. 6 presents the ratio of effects applied to characters

or camera. Effects due to environmental conditions apply

more frequently to the camera. On the other hand, shake

and splash are very human-centric.

4. Effect Parsing in Videos

We propose models for effect detection and recogni-

tion. We first describe some preprocessing and introduce

notation. Then, we present the neural architecture that is

used to extract various features and perform classification.

This acts as a baseline for our tasks. The classifier out-

puts are exploited as unary potentials in a Conditional Ran-

dom Field (CRF) that performs joint reasoning about the ef-

fects within and across movie shots and threads. We address

both trimmed effect recognition, and the more challenging

untrimmed effect detection and parsing.

4.1. Video preprocessing

Careful consideration of shot boundaries and threading

is important in order to compute features that are mean-

ingful, as well as to exploit scene and filming priors. For

example, wind effect typically applies to all characters as

well as the camera in a shot, and possibly spans multiple

neighboring shots. Similarly, if one character experiences a

physical interaction it is highly likely that another character

should exist and also undergo a physical interaction within

the same shot or even thread.

Shots. Given a (5-min) clip from our dataset, we first de-

tect shot boundaries using the motion-compensated differ-

ence between two consecutive frames [45].
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Sub-Shots. Shots longer than 3s are further divided into

sub-shots capped at a maximum duration of 3s. We adopt

these as our primary unit of analysis. While the average shot

duration is 3.65s, some shots in our movies are longer than

10s. Using sub-shots (instead of shots) reduces the noise

from neighboring non-effect frames, while still providing

enough audio-visual content to retain relevant effect infor-

mation. Note that shots that are less than 3s are equivalent

to their sub-shots. On average, our sub-shots are 2.49s long,

and are assigned an effect label if they have a 10% or greater

overlap with the effect annotation.

Threads. We thread shots taken from the same camera

angle and viewpoint using SIFT-based matching [37].

4.2. Neural Architecture

Effects in movies are dominated by their audio-visual na-

ture. In a video clip, we denote the audio content of a sub-

shot as ut and visual content as xt. We use i = 1, . . . , |xt|
to index frames within the sub-shot, i.e. xi

t denotes the vi-

sual feature of frame i in the sub-shot. We extract several

features using networks pre-trained on different tasks:

(i) Visual features are the core of our model and intu-

itively are useful to detect all effect types. Within each

second, we sub-sample three frames, and extract features

from the pool5 layer of the VGG19 model [35] pre-trained

on ImageNet [31]. As a sub-shot is capped at 3s, it cor-

responds to a maximum of 9 visual frames and features.

We denote each frame’s representation as vi
t = φv(xt) and

mean pool across the spatial grid to obtain vi
t ∈ R

512. Op-

tionally, we adopt a two-layer MLP (512-128-1) to compute

self-attention weights to exploit spatial features (on the 7×7

grid) and replace the mean pool by a weighted average.

(ii) Optical Flow features form a visual representation

that encode motion and are useful to detect effects such as

wind, splash, shake, etc. We use the temporal stream of the

two-stream network [10] trained for action recognition, and

encode a stack of 10 optical flow images for each visual

frame to obtain f it = φf (xt), f
i
t ∈ R

512. Similar to Visual

features, self-attention weights are used.

(iii) Audio features are complementary to images, and

are being used successfully for unsupervised audio-visual

learning [2, 3]. We extract audio features for 1s raw audio

samples using the SoundNet8 model [3] from the pool5

layer, ait = φa(ut),a
i
t ∈ R

256. In conjunction with the im-

age, we expect audio to help detect effects such as swoosh-

ing winds, splashing water, or a mechanical shake.

(iv) Object detections can play a complementary role to

image features. For example, presence of people may indi-

cate physical interaction, while a car suggests shake. Based

on predictions from the YOLO9000 object detector [28],

we choose 550 most significant classes and form a sparse

feature vector corresponding to the object detection proba-

bilities oi
t = φo(xt),o

i
t ∈ R

550 for each frame.

Finally, we obtain a sub-shot representation by concate-

nating embedded features through linear layers:

φ(xi
t,u

i
t) = [Wvv

i
t,Wf f

i
t ,Waa

i
t,Woo

i
t] , (1)

Each linear layer embeds features into a D = 512 dim

space. Using pre-trained models as feature extractors was

a crucial requirement to train good models on our dataset.

Classifiers. We build several two-layer MLP classifiers

on the sub-shot representations to predict: (i) count (Cn):

number of effects present in the current sub-shot (0, 1, 2,

3); (ii) effect (Ce): the effect labels (9 classes); (iii) effect

intensities (Ci): three classes; and (iv) effect-specific de-

tails (Cd1, . . . , CdG) such as type of physical interaction or

direction of wind (each with its own independent MLP).

The count, effect, and intensity classifiers have hidden

layers with size corresponding to the input, i.e. hn, he, hi ∈
R

2048. As detail classifiers have much less training data, we

set the hidden layer hd ∈ R
512. The output layer computes

predictions in one-of-K classes:

ŷi
t = W2 · ReLU(W1 · φ(x

i
t,u

i
t)) = C(φ(xi

t,u
i
t)) . (2)

Biases are ignored for notational brevity. We leverage the

architecture (summarized in Fig. 7) to train task-specific

models in the following.

4.3. Trimmed Video: Effect recognition

Our first task is to predict the effect type and the corre-

sponding details when provided with a trimmed clip (known

to contain an effect). We treat this prediction as tagging,

i.e. we do not take into account POV information.

We first compute the set of sub-shots that overlap with

the trimmed clip and use them to obtain predictions ŷi
t. For

a given effect with sub-shots x1, . . . ,xT , we compute the

final prediction ŷ by

ŷ = max
t

1

|xt|

∑

i

ŷi
t . (3)

Averaging results within frames of a sub-shot (
∑

i) im-

proves robustness, and selecting the highest scoring sub-

shot (maxt) reduces noise.
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Figure 8: Depiction of our CRF model on a movie clip from Doctor Strange. We display the sub-shot (dashed) and shot boundaries (solid)

as vertical lines, and show a sample image frame along with person tracks. Ground-truth effect annotations are also displayed. Finally,

we present a glimpse of the CRF model that corresponds to a random variable for each sub-shot and person track, and the four types of

pairwise potentials connecting them.

Learning and Inference details. While the pre-trained

feature extractors are fixed, the feature embedding layers

(Eq. 1) and effect Ce, intensity Ci, and detail Cd· classi-

fiers are trained. We adopt the cross-entropy loss for each

classifier and optimize our model with Adam [20] using a

constant learning rate 1e − 6. We found that training all

classifiers jointly by accumulating losses worked well. Due

to the large class imbalance at both levels: effects and de-

tails, we use an inverse frequency weight capped at 50 to

train our models. For long clips, we select a maximum of

T = 4 consecutive sub-shots (∼10s), automatically pro-

viding some data augmentation by random selection. Ad-

ditionally, we use a dropout rate of 0.3 for MLP classifiers

and set weight decay to 0.1. We choose a model checkpoint

that has the highest intensity-weighted effect-classification

accuracy weighted on the validation set.

At test time, we predict the highest scoring effect and

obtain detail predictions corresponding to it.

4.4. Untrimmed video: Effect detection

While trimmed video effect recognition focuses on clas-

sifying effects globally over a trimmed clip, we now aim to

predict the effects experienced by both the characters and

camera, and localize them in time. In this scenario, we

are given an entire video along with sub-shot boundaries,

threading information, and person tracks within each sub-

shot. While tracking is performed within a shot, we divide

the track across sub-shot boundaries if required. Our goal

is to determine the effect type, start and end-time and POV.

We compute and average frame-level predictions within

the sub-shot. Predictions are denoted by subscripts: camera

as ŷc,t, and for person track pl (l indexes tracks within a

sub-shot) as ŷpl,t within each sub-shot t. Two important

predictions are considered: (i) number of effects Cn, that

predicts ŷn in 4 classes (0 – no effect, and 1, 2, or 3 effects),

and (ii) Ce that predicts the effect labels ŷe. Prediction

scores are converted to probabilities via softmax.

Conditional Random Field. Effects display a strong cor-

relation across sub-shots, shots, and threads. For example,

within a shot (across sub-shots), the atmospheric conditions

weather and wind are unlikely to change.

We construct a CRF that incorporates these correlations,

with the aim to obtain joint predictions for the entire video.

Fig. 8 illustrates our model. For each sub-shot at time t,

we assign a random variable zc,t to denote the effect experi-

enced by POV camera, and zpl,t for effects of person tracks

within that sub-shot. All variables are z ∈ R
10, correspond-

ing to scores for the “no-effect” class and 9 effect labels.

In our CRF we consider unary U(·) and pairwise poten-

tials Pq(·, ·) and Pp(·, ·):

E(z,w) =
∑

t

(

wuc
U(zc,t) +

∑

l

wup
U(zpl,t)

)

+wq

∑

(t,t′)∈Q

Pq(zc,t, zc,t′) + wp

∑

(t,l)

Pp(zc,t, zpl,t) . (4)

For brevity, we denote three camera-related edge types as

Q. These edges link (i) R: neighboring sub-shots; (ii) S:

neighboring shots; and (iii) T : the last and first sub-shot of

a threaded set of shots.

Our unary potential takes the form

U(·) = [pn, (1− pn) · ŷe] , (5)

where, pn refers to the probability of the current sub-shot

not seeing an effect, and is the first element of the number

of effects pn = ŷn[0].
The pair-wise potentials encode co-occurrence between

the 9 effects and the no-effect class, and are denoted by

Pr between sub-shots, Ps between shots, and Pt between

threads. The relationship between camera and person-tracks

Pp is within the same sub-shot. We learn a different weight

with each edge type.
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CRF learning and inference. Our CRF may contain cy-

cles due to thread edges (see Fig. 8), and thus inference

is NP-hard. To perform inference we use distributed con-

vex belief propagation [32], which has convergence guar-

antees. To learn the weights, we use the primal-dual

method [15, 33], and use the typical 0-1 loss.

Sub-shot predictions to time intervals. Inspired by its

success in untrimmed action recognition, we group sub-shot

level predictions using the watershed transform [46] to ob-

tain contiguous time intervals with effect predictions. Each

of the 9 classes are processed separately to obtain effect de-

tections of the form: (tstart, tend, e).

Details. The neural network is separately trained to pre-

dict unaries using cross-entropy loss. Similar to the

trimmed model, we train our unaries prediction model with

Adam [20]. Recall that we extract image features from the

pool5 layer that provides 512-d vectors in a 7 × 7 spatial

grid. In contrast to the camera unaries, person track unar-

ies average features within the region of interest based on

the detection bounding box. We pick a model checkpoint

that performs well at predicting effect existence (based on

number of effects) and effect recognition.

5. Experiments

We first discuss the metrics for our new dataset and tasks.

Trimmed video: Effect recognition metrics. We pro-

pose several metrics to evaluate effect and details prediction

when given a trimmed video. Our first metric E is effect

classification accuracy. We propose intensity-weighted ac-

curacy IE, as a viewer experience metric that incorporates

user annoyance when mild/strong effects are misclassified:

1× (mild), 2× (medium), and 3× (strong).

To evaluate detail prediction, we use a metric similar

to [44]. We introduce D-GT that measures the fraction of

details that are correct for each sample given GT effect la-

bel. Additionally, DA-GT measures the fraction of samples

that have all details correct. Similarly, detail prediction us-

ing predicted effect is evaluated by D-PR and DA-PR.

Finally, we present a slightly modified form of a confu-

sion matrix. As multiple effects can co-occur, one trimmed

clip could correspond to more than one effect label. In such

a case, if we are able to correctly classify one of the effects,

we say that the other effects are “missed”, but not “mis-

classified”. For example, during an explosion clip with light

and shake, if our model only predicts light, we count light

as correct, and shake as missed.

Untrimmed video: Effect detection metrics. We con-

sider two POV paradigms: (i) all effects are mapped to the

camera (similar to trimmed); or (ii) both camera and charac-

ters experience effects. Nevertheless, given the entire video

we are required to predict effect start- and end-times along

with effect labels and POV.

Model E IE D-GT DA-GT D-PR DA-PR

Random 11.1 11.1 23.6 3.8 2.6 0.4

Ours 41.5 42.0 35.5 9.9 15.7 5.3

Ours + Attn. 43.7 45.9 35.8 9.9 15.8 4.6

All - visual 26.9 28.5 36.2 10.4 10.2 3.0

All - optflow 32.1 32.4 33.0 8.4 10.9 3.0

All - audio 40.7 41.9 35.0 9.4 15.2 4.5

All - objdet 36.7 37.4 37.8 11.3 15.5 4.5

Table 2: Results on the test set for trimmed effect recognition task

with ablation study for different features (no attn.). Random indi-

cates the performance when treating all classes as equally likely.

E, D-PR and DA-PR are important metrics for future comparison.

Similar to a standard detection setting, our first met-

ric Exist Average Precision (AP) compares models on their

ability to predict whether a sub-shot (or person track) con-

tains an effect or not. We also include the effect prediction

accuracy (Effect ACC) at sub-shot (or track) level.

After merging sub-shot predictions, we evaluate time

interval predictions based on precision, recall and F1-

measure. A prediction is said to be a true positive when

it has a temporal IoU >10% (similar to ActivityNet [17]).

All other predictions are “false positives”, and ground-truth

effects that do not see any prediction are “misses”.

5.1. Dataset Quality

For 15 clips (5 min each) from 5 movies, we gathered 3

sets of labels from different annotators. We evaluate human

effect detection performance by comparing all pairs of an-

notations (one as GT other as pred.), using the F1 metric.

Temporal detection and localization is a hard task even for

humans (also seen in action localization), and we obtain an

average F1 score of 62.6% (54% - 67% for each movie).

We also analyze effect classification agreement in

trimmed clips among humans using Amazon Mechanical

Turk (AMT). Each clip was shown to 5 workers. At least

one worker agreed with our label for 90% of the clips.

When 4 of 5 workers provide the same label, this corre-

sponds to an accuracy of 88.4%. As each clip can exhibit

multiple effects (e.g. shake and wind), it is not necessary to

obtain a clear majority.

5.2. Trimmed video: Effect recognition

We present the effect recognition results on the test set

in Table 2. A baseline (row 1) that chooses 1 of K classes

with equal chance has 11.1% accuracy, however, rarely gets

the effect and details all correct (0.4%). Selecting the most

likely label (light) can achieve 25.8% effect accuracy.

In comparison, our neural model performs much bet-

ter with an accuracy of 41.5%. With attention, we obtain

43.7%, and intensity-weighted accuracy of 45.9%. We be-

lieve that IE does not differ much from accuracy E partially

due to inconsistencies in intensity annotations. Finally, our
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Figure 9: Our modified form of confusion matrix on trimmed ef-

fect classification. The second-last column, “Missed” corresponds

to effects whose samples have more than one annotation. The last

column shows the number of samples in the test set for each class.

0.049 0.052 0.597 0.232

Figure 10: Qualitative result of trimmed prediction for a clip in

Pirates of the Caribbean. Each frame corresponds to a sub-shot,

and we show the probability of predicting physical interaction –

related to the fight scene between the two characters. Averaging

across sub-shots leads to predictions such as light and wind (possi-

bly because of motion), however, max is able to predict correctly.

model is able to predict the effect label and all details cor-

rect for 5.3% of all annotations, hinting towards the diffi-

culty of the task.

We also present an ablation study evaluating the impor-

tance of each feature stream by leaving one out at a time.

The visual features play an important role, followed by mo-

tion (optical flow) features. This makes sense as light, phys-

ical interaction and shake are among the most dominant

classes. Objects are also quite important (e.g. cars shake)

validated by the approximate 5% drop in effect prediction

accuracy when ignoring them. Finally, audio features seem

to have smallest contribution, however, do affect DA-PR.

Fig. 9 presents the modified confusion matrix. The

confusion between light - temperature, or splash - wind -

weather seem genuine as these are difficult effects to dis-

criminate. Finally, Fig. 10 is an example illustrating max

across sub-shots works better than mean.

5.3. Untrimmed video: Effect detection

We present effect detection results in two parts. First, in

Table 3 we show the performance of detecting the presence

of and classifying effects for each processing unit (sub-shot

camera and/or track). The top part (rows 1-5) display results

when all effects are mapped to the camera POV. We see

the impact of different pairwise potentials: sub-shot, shot,

and thread (rows 2-4), while, row 5 corresponds to the best

result when using all pairwise terms. A large 8.8% boost in

effect accuracy and a substantial 1.9% increase on Exist AP

# POV Model Exist AP Effect ACC

1 Unaries 55.4 43.6

2 CRF: U + sub-shot 56.3 44.4

3 Camera CRF: U + shot 51.4 50.4

4 CRF: U + thread 53.8 44.6

5 CRF: U + all pairwise 57.3 52.4

6 Cam Unaries 29.4 45.3

7 + CRF: U + video pairwise 27.9 48.0

8 Tracks CRF: U + all pairwise 28.8 48.8

Table 3: Effect detection and classification performance on the test

set. Results are evaluated at sub-unit level (before combining into

time intervals) and measured for each sub-shot (top) and sub-shot

and person track (bottom).

POV Model Prec Recl F1

Camera
Unaries 15.0 35.1 21.1

CRF 25.2 35.6 29.5

Cam + Tracks
Unaries 14.2 37.2 20.5

CRF 16.7 28.7 21.1

Table 4: Effect detection results on the test set, evaluating time in-

terval predictions with IoU >10%. Top: effects are mapped to the

camera POV. Bottom: effects for camera and tracks are separate.

is obtained over the unary outputs from the neural model.

The bottom part presents results when considering ef-

fects separately for camera and tracks POVs. Row 7 and 8

show the impact of the CRF, and the final pairwise poten-

tial connecting camera nodes with tracks Pp (c.f . Fig. 8).

We observe a small 3.5% improvement in effect accuracy,

however detection AP reduces a little.

We combine the unit predictions into time intervals, and

display results for comparing ground-truth and predicted

time-intervals in Table 4. Note that this task is considerably

harder as we need to predict a contiguous set of sub-shots

correctly in order to obtain good time boundaries. When as-

suming all effects apply to camera POV, the CRF provides a

8.4% boost in F1 measure. However, when analyzing cam-

era and person tracks, the improvement is small at 0.6%.

6. Conclusion

We introduced the Movie4D dataset consisting of 63

movies and 9286 effect annotations that enlist physical and

special effects in movies along with details such as dura-

tion, intensity, effect sub-types and direction. We presented

a thorough exploration of the dataset showcasing its fea-

tures. We proposed a CRF model that combines cues from

a multimodal neural network while respecting shot bound-

aries and threading information in a video. We evaluated

our approach through various ablation studies, pointing to

exciting avenues going forward.
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