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Abstract

Vehicle re-identification (re-ID) has the huge potential to

contribute to the intelligent video surveillance. However, it

suffers from challenges that different vehicle identities with

a similar appearance have little inter-instance discrepancy

while one vehicle usually has large intra-instance differ-

ences under viewpoint and illumination variations. Previ-

ous methods address vehicle re-ID by simply using visual

features from originally captured views and usually exploit

the spatial-temporal information of the vehicles to refine

the results. In this paper, we propose a Viewpoint-aware

Attentive Multi-view Inference (VAMI) model that only re-

quires visual information to solve the multi-view vehicle re-

ID problem. Given vehicle images of arbitrary viewpoints,

the VAMI extracts the single-view feature for each input im-

age and aims to transform the features into a global multi-

view feature representation so that pairwise distance met-

ric learning can be better optimized in such a viewpoint-

invariant feature space. The VAMI adopts a viewpoint-

aware attention model to select core regions at different

viewpoints and implement effective multi-view feature infer-

ence by an adversarial training architecture. Extensive ex-

periments validate the effectiveness of each proposed com-

ponent and illustrate that our approach achieves consistent

improvements over state-of-the-art vehicle re-ID methods

on two public datasets: VeRi and VehicleID.

1. Introduction

Vehicle re-identification (re-ID) aims to spot a vehicle of

interest from multiple non-overlapping cameras in surveil-

lance systems. It can be applied to practical scenarios in

intelligent transportation systems such as urban surveillance

and security. However, compared with a similar topic called

person re-ID [5, 19, 27, 37, 12, 35] which has been exten-

sively explored, vehicle re-ID encounters more challenges.

The top-left part of Fig. 1 reveals the two main obstacles

of vehicle re-ID. One inherent difficulty is that a vehicle

captured in different viewpoints usually has dramatically
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Figure 1. The left part shows the challenges of vehicle re-ID and a

general framework of previous works. The right part illustrates the

motivation of our proposed method that infers a multi-view feature

representation from a single-view input, thus distance metrics can

be optimized in the viewpoint-invariant multi-view feature space.

varied visual appearances. In contrast, two different vehi-

cles of the same color and type have a similar appearance

from the same viewpoint. The subtle inter-instance dis-

crepancy between images of different vehicles and the large

intra-instance difference between images of the same vehi-

cle make the matching problem unsatisfactorily addressed

by existing vision models. Recent re-ID methods are mainly

proposed for persons, which can be categorized into three

groups including feature learning [33, 10, 32, 40, 28], dis-

tance metric learning [30, 39, 24, 2] and subspace learning

[38, 1, 31, 34]. All these methods utilize features of origi-

nally captured views to train models and compute distances

between vehicle pairs, in which multi-view processing was

not sufficiently considered. Directly deploying person re-ID

models for vehicles does not achieve expected performance

since features such as color and texture of clothes and pants

can be used for humans even with large viewpoint varia-

tions but not for vehicles. Many vehicle re-ID researchers

also noticed the challenges, thus preferred to make use of

license plate or spatial-temporal information [15, 26, 23] to
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obtain promising results. However, license plate recogni-

tion requires high-resolution images in front or rear view-

points, and the spatial-temporal information is usually hard

to be obtained. Therefore, a general model only based on

visual appearances is more desired for vehicle re-ID.

In this paper, we propose a viewpoint-aware attentive

multi-view inference (VAMI) model to infer multi-view fea-

tures from single-view image inputs. Then, distance metrics

can be learned on the generated viewpoint-invariant multi-

view feature space. The right column of Fig. 1 illustrates the

motivation of our proposed VAMI. The main contributions

of the VAMI are highlighted as follows:

(1) A viewpoint-aware attention model is proposed to

obtain attention maps from the input image. The high-

scored region of each map shows the overlapped appear-

ance between the input vehicle’s view and a target view-

point. For instance, to infer the side view feature from a

front-side view input image, the VAMI only pays attention

to the vehicle’s side pattern while ignoring the front region.

(2) Given the attentive features of a single-view input,

we design a conditional multi-view generative network to

infer a global feature containing different viewpoints’ infor-

mation of the input vehicle. The adversarial training mecha-

nism and auxiliary vehicle attribute classifiers are combined

to achieve effective feature generation.

(3) In addition to inferring multi-view features, we em-

bed pairwise distance metric learning in the network to

place the same vehicle together and push different vehicles

away. The distance metric can be more suitably optimized

in the generated viewpoint-invariant feature space. Ex-

tensive ablation studies and comparison experiments con-

ducted on the public VeRi and VehicleID datasets have

demonstrated the effectiveness and superiority of our VAMI

over state-of-the-art vehicle re-ID approaches.

2. Related Work

Vehicle Re-ID. Inspired by person re-ID, vehicle re-ID

has attracted more attention in the past two years. Deep rel-

ative distance learning [13] is designed for learning the dif-

ference between similar vehicles based on a new VehicleID

dataset which contains two viewpoints: front and rear. Liu

et al. [14, 15] released the VeRi-776 dataset where vehi-

cles have more available viewpoints. They employed vi-

sual feature, license plate and spatial-temporal information

to explore the re-ID task. Zhou et al. [41] designed a con-

ditional generative network to infer cross-view images from

input view pairs and then combined the input and generated

views to improve the re-ID performance. Moreover, Shen

et al. [23] and Wang et al. [26] proposed the visual-spatio-

temporal path proposals and orientation invariant feature

embedding as well as spatial-temporal regularization, re-

spectively, to focus on exploiting vehicles’ spatial and tem-

poral information to address the vehicle re-ID task.

Attention Mechanisms. Visual attention mechanisms

aim to automatically focus on the core regions of image in-

puts and ignore the useless parts. The visual attention mod-

els’ ability of selective feature extraction has been exten-

sively explored in many applications including image clas-

sification [16, 25], fine-grained image recognition [4, 36],

image captioning [18, 2] and VQA [42]. Existing attention

mechanisms can be mainly categorized into two groups.

One is the fully-differentiable soft attention model which

aims to learn attention maps to weight different regions of

an image. The other is the hard attention model which is

a stochastic process sampling hidden states with probabili-

ties. Hard attention models are not differentiable and usu-

ally learned by reinforcement learning [21].

Generative Adversarial Networks (GANs). GANs

consist of a generative model G and a discriminative model

D competing against each other in a two-player min-max

game. It has achieved great success on many vision tasks

such as image generation [6, 20] and image translation

[9, 43]. In essence, the design of the adversarial learning

leads to the success of GAN, mainly because it forces the

generated samples to be indistinguishable from real data.

Moreover, many works extend GAN to conditional frame-

works such as InfoGAN [3], AC-GAN [17] and CycleGAN

[43] to investigate better models for generation tasks. In

this paper, we propose an attentive multi-view feature gen-

erative network by adversarial learning.

3. Proposed Methods

3.1. Problem Formulation

The overall target of vehicle re-ID is the same with that

for person. Given a query vehicle image, a ranking list of

candidates in the gallery set is desired, placing images of

the query vehicle’s identity in top positions and vice versa.

Define a pair of images (Ii, Ij) and their corresponding sim-

ilarity label lij . If Ii and Ij are two views from the same

vehicle, then lij = 1, while lij = 0 if they are from differ-

ent vehicles. For each single-view input image I, we aim

to map its feature to a multi-view representation f by the

following function:

f = T (concat({xv}
V
v=1

)) = T (concat(F (I) · {αv}
V
v=1

)).
(1)

The operator F (·) is to extract the feature of the input im-

age I. {αv}
V
v=1

is obtained by the viewpoint-aware atten-

tion model to select overlapped regions between the input

view and a target viewpoint v, where V is the defined num-

ber of viewpoints. Moreover, the operator T (·) denotes the

transformation from the concatenated attentive single-view

features {xv}
V
v=1

to the inferred multi-view features.

After modeling f , we simultaneously aim to optimize the

network minimizing a loss function Lreid to shorten the dis-
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Figure 2. An overview of the architecture of VAMI. The F Net is for learning single-view features containing vehicles’ intrinsic information

such as model, color and type. Moreover, viewpoint features can be also learned so that the central point feature of each viewpoint cluster

over the whole training set can be obtained and used for attention learning. The attention model aims to output viewpoint-aware attention

maps from the input view image targeting at different viewpoints. To infer multi-view features from the obtained attentive single-view

features, we design a conditional generative network trained by an adversarial architecture. The network of the real multi-view data branch

is only available in the training phase. Auxiliary vehicle classifiers are configured at the end of D to help match the inferred multi-view

features with correct input vehicles’ identities. Finally, given positive and negative vehicle pairs, a contrastive loss is designed to optimize

the network for distance metric learning. (Best viewed in color.)

tance between fi and fj when lij = 1 and maximize that

when lij = 0 by adopting the pairwise contrastive loss [7].

Therefore, the most significant factor to achieve effective

re-ID is how to design and optimize the F (·), α and T (·).

3.2. Attentive Multi­View Inference Network

Our proposed viewpoint-aware attentive multi-view in-

ference network mainly consists of four important com-

ponents. The network architecture is illustrated in Fig. 2.

Learning F (·) for extracting vehicles’ single-view features

is first addressed by training a deep CNN using vehicles’

attribute labels. To obtain viewpoint-aware attention maps

α for extracting core regions targeting at different view-

points from the input view, corresponding viewpoint em-

beddings are adopted to attend to one intermediate layer of

the F Net. Exploiting the attentive feature maps for differ-

ent viewpoints as conditions, we aim to generate multi-view

features by T (·) with an adversarial training architecture.

During training, features extracted from real images in vari-

ous viewpoints of the input vehicle are used for the real data

branch, but this branch is no longer needed in the testing

phase. The discriminator simultaneously distinguishes the

generated multi-view features from the real ones and adopts

auxiliary vehicle classifiers to help match the inferred fea-

tures with the correct input vehicle’s identities. Finally,

given pairwise image inputs, a contrastive loss is configured

at the end to optimize the network embedded with distance

metric learning. The details of each component are clearly

explained in the following four sub-sections.

3.2.1 Vehicle Feature Learning

The F Net is built with a deep CNN module for learning ve-

hicles’ intrinsic features containing vehicles’ model, color

and type information. Its backbone deploys five convolu-

tional (conv) layers and two fully-connected (fc) layers.

The first two conv layers are configured with 5× 5 kernels,

while the following three conv layers are set with 3 × 3
kernels. Stride is set with 4 for the first conv layer and 2

for the remaining conv layers. The Leaky-ReLU is set after

each layer with the leak of 0.2. Detailed hyper-parameters’

settings are illustrated in the bottom-left part of Fig. 2.

In addition to two 1024-dimensional fc layers con-

nected with multi-attributes classification, one more 256-

dimensional fc layer is configured for viewpoint classifica-

tion. All the vehicle images are coarsely categorized into

five viewpoints (V = 5) as front, rear, side, front-side and

rear-side which are enough to describe a vehicle compre-

hensively. After training the F Net, we can extract view-

point features over all the training data and easily learn five

viewpoints’ feature clusters by k-means clustering, thus the

feature in the center of each cluster called central viewpoint

feature can be obtained. These central viewpoint features

are used for learning the viewpoint-aware attention model.
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3.2.2 Viewpoint-aware Attention Mechanism

Visual attention models can automatically select salient re-

gions and drop useless information from features. In the

vehicle re-ID problem, our model requires to focus on the

overlapped visual pattern of vehicles between the input

viewpoint and the target viewpoint. For instance, to tell the

difference between two similar vehicles from the front-side

and rear-side viewpoints, humans usually will pay attention

to their shared side appearance to discriminate whether the

two vehicles are the same or not. The top-right part of Fig. 3

shows some examples. Thus, we aim to address this prob-

lem by proposing a viewpoint-aware attention model.

Fig. 3 illustrates the underlying design of our attention

mechanism. In order to extract feature vectors of different

regions, we select the Conv4 layer of the F Net since it has

high-level perceptrons and keeps a large enough spatial size.

Thus, the input image is represented as {u1,u2, · · ·,uN},

where N is the number of image regions and un is a 256-

dimensional feature vector of the n-th region. Our model

performs viewpoint-aware attentions by multiple steps. At-

tention mechanism at each step can be considered as a build-

ing block. An attention map can be produced by learn-

ing a context vector weakly supervised by labels indicating

shared appearance between the input and target viewpoints.

The context vector at step t can attend to certain regions

of the input view by the following equation:

c
t = Attention(ct−1, {un}

N
n=1

,v), (2)

where ct−1 is the context vector at step t− 1 and v denotes
one of the five central viewpoint features. The soft attention
mechanism is adopted that a weighted average of all the in-
put feature vectors is used for computing the context vector.
The attention weights {αt

n}
N
n=1

are calculated through two
layer non-linear transformations and the softmax function:

h
t
n = tanh(Wt

c(c
t−1 ⊙ v) + b

t
c)⊙ tanh(Wt

uun + b
t
u), (3)

α
t
n = softmax(Wt

hh
t
n + b

t
h),

c
t =

N∑

n=1

α
t
nun,

where Wt
c, Wt

u, Wt
h and bias terms are learnable parame-

ters. ht
n is the hidden state and ⊙ denotes the element-wise

multiplication. The context vector c0 is initialized by:

c
0 =

1

N

N∑

n=1

un. (4)

Learning this viewpoint-aware attention model is mainly

weakly supervised by the shared appearance region’s labels

between the input and target viewpoints. We design three-

bit binary codes to encode the view-overlap information as

shown in the bottom-right matrix of Fig. 3. The first bit is

set as 1 when the two viewpoints share the front appearance,

while the second and third bits denote whether the side and
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Figure 3. The details of the viewpoint-aware attention model. The

top-right part gives examples of overlapped regions of certain ar-

bitrary viewpoint pairs.

rear appearances are shared or not, respectively. The atten-

tion loss LAtt is optimized by the cross entropy. Specifi-

cally, if the input vehicle image is the front-side viewpoint

and the target viewpoint is rear-side, the central viewpoint

feature of rear-side will be adopted as the v and the super-

vision codes will be (0, 1, 0) since the two viewpoints only

share the side appearance region. Then, once the attention

model is trained, it outputs an attention map only giving

high response on the side appearance of the input vehicle.

Moreover, for certain cases where none of the front, side or

rear appearance is overlapped between viewpoint pairs (i.e.

(0, 0, 0)), it is surprisingly observed that the top appearance

would be attended, which is shown in the results of Sec. 4.2.

Since the target is to infer multi-view features contain-

ing all the five viewpoints’ information from the input view,

as illustrated in the green curly brackets of Fig. 2, we ex-

tract the input view’s Conv4 feature maps and output corre-

sponding attention maps {αv}
V
v=1

for other four viewpoints.

The feature maps of the input view are masked by different

viewpoints’ attention maps. Then, these intermediate atten-

tive feature maps {xv}
V
v=1

are concatenated as conditional

embeddings to further infer multi-view features.

3.2.3 Adversarial Multi-view Feature Learning

Traditional adversarial learning models employ a generative

net and a discriminative net which are two competing neural

networks. The generative net usually takes a latent random

vector z from a uniform or Gaussian distribution as input to

generate samples, while the discriminative net aims to dis-

tinguish the real data x from generated samples. The pz(z)
is expected to converge to a target real data distribution

pdata(x). In this paper, we propose a conditional feature-

level generative network to infer real multi-view features

from the attentive features of single-view inputs.
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Instead of generating real images by normal GANs, our

model aims to transform single-view features into multi-

view features by a generative model. Two networks for both

the fake path and the real path are designed as Gf and Gr,

respectively. The input of Gf is the concatenated attentive

feature {xv}
V
v=1

of the input single-view image in which

the noise is embedded in the form of dropout. The input

of Gr is the real features {x̄v}
V
v=1

of images from differ-

ent viewpoints of the same vehicle identity with Gf . The

Gr is designed mainly for better fusing and learning a real

high-level multi-view feature of the input vehicle.

Since we do not need to generate images by gradually en-

larging the spatial size of feature maps but infer high-level

multi-view features, Gf and Gr are proposed with resid-

ual transformation modules rather than adopting deconvolu-

tional layers. The residual transformation module consists

of four residual blocks whose hyper-parameters are shown

in Fig. 2. The advantage of using residual blocks is that the

networks can better learn the transformation functions and

fuse features of different viewpoints by a deeper percep-

tron. Moreover, Gf and Gr have the same architecture but

do not share the parameters since they are set with different

purposes. We tried to set Gf and Gr sharing parameters,

but the model failed to converge since the inputs of the two

paths have a huge difference.
The discriminative net D employs a general fully convo-

lutional network to distinguish the real multi-view features
from the generated ones. Rather than maximizing the out-
put of the discriminator for generated data, the objective of
feature matching [22] is employed to optimize Gf to match
the statistics of features in an intermediate layer of D. The
adversarial loss is defined in the following equation:

LAdvers = max
D

(E(log(D(Gr({x̄v}
V
v=1)))) (5)

+ E(log(1−D(Gf ({xv}
V
v=1)))))

+ min
Gf

||E(Dm(Gr({x̄v}
V
v=1)))− E(Dm(Gf ({xv}

V
v=1)))||

2

2,

where m means the mth layer in D (m = 4 in our set-

ting). Moreover, D is trained with auxiliary vehicles’ multi-

attributes classification to better match inferred multi-view

features with input vehicles’ identities. The architecture of

D is shown in Fig. 2. The second conv layer is concatenated

with the input single-view feature maps to better optimize

the conditioned Gf and D. Then, we apply two more conv

layers to output the final multi-view feature fMV Reid which

is a 2048-dimensional feature vector. The final conv layer

deploys the 4×4 kernels while others use 3×3 kernels. For

all the conv layers in Gf , Gr and D, we adopt Leaky-ReLU

activation and batch normalization. The pre-activation pro-

posed in [8] is implemented for residual blocks.

In the training phase, in addition to optimizing the

LAdvers, the LReid defined in Sec. 3.1 is configured to

make the model learning with distance metrics given pos-

itive and negative vehicle image pairs. Learning LReid is

based on the fMV Reid inferred from the single-view input

rather than corresponding real multi-view inputs. Our dis-

tance metric learning is more reasonable since the generated

multi-view feature space is viewpoint-invariant. In the test-

ing phase, only single-view inputs are available. Given any

image pair in arbitrary viewpoints, each image can pass for-

ward the F , Gf and D to infer the fMV Reid containing all

viewpoints’ information of the input vehicle, then the Eu-

clidean distance between the pair can be computed for the

final re-ID ranking.

3.2.4 Optimization

The training scheme for VAMI consists of four steps. In the

first step, the F Net for vehicle feature learning is trained

using Softmax classifiers. Then, the computed five central

viewpoint features are used for training the viewpoint-aware

attention model by LAtt. In the second step, the Gr for

learning the real multi-view features from five viewpoints’

inputs needs to be pre-trained by auxiliary vehicles’ multi-

attributes classification together with D. Otherwise, opti-

mizing the Gf , Gr and D together at the early stage will

make the LAdvers unstable since the fused real data distri-

bution in the adversarial architecture has not been shaped.

Once the Gr is trained, we fix it. In the following step, the

conditioned Gf and D nets can be optimized by LAdvers to

infer multi-view features from single-view inputs. Finally,

the pairwise loss LReid is added to fine-tune the whole net-

work except for F and Gr to learn distance metrics, since at

the early training stage the inferred multi-view features are

poor so that the LReid cannot contribute to the optimization.

4. Experiments

We first qualitatively demonstrate the viewpoint-aware

attention model. Then, ablation studies and comparisons

with state-of-the-art vehicle re-ID methods are evaluated on

the VeRi [15] and VehicleID [13] datasets.

4.1. VeRi­776 and Training Details

Experiments are mainly conducted on the VeRi-776

dataset since each vehicle has multiple viewpoints’ images

so that we can fully evaluate the effectiveness of our VAMI.

The VeRi dataset contains 776 different vehicles captured

in 20 cameras. The whole dataset is split into 576 vehi-

cles with 37,778 images for training and 200 vehicles with

11,579 images for testing. An additional set of 1,678 im-

ages selected from the test vehicles are used as query im-

ages. We strictly follow the evaluation protocol proposed

in [15]. During training, for those vehicles without certain

viewpoints, neighboring viewpoints are substituted. Since

an image-to-track search is proposed, in addition to the Cu-

mulative Matching Characteristic (CMC) curve, a mean av-

erage precision (mAP) is also adopted for evaluation [15].
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Figure 4. Viewpoint-aware attention maps. The upper row shows the input images and the bottom row shows the output attention maps.

The highly-responded region is obtained by the input view attended with the central viewpoint feature of the target viewpoint.

To train the model, the ADAM Optimizer is adopted with

the empirical learning rate of 0.0002 and the momentum of

0.5. The mini-batch size is set as 128. Training of the F

Net and viewpoint-aware attention model are stopped after

30 and 35 epochs, respectively, when the losses converge

to stable values. Moreover, we first pre-train the Gr and

D by 50 epochs and then start the adversarial learning with

the Gf for 200 epochs. Finally, we randomly combine 10k

positive pairs and 30k negative pairs and add the LReid loss

for a joint training by additional 50 epochs.

4.2. Qualitative Attention Map Results

Before evaluating the re-ID results, we first qualitatively

demonstrate the effectiveness of the viewpoint-aware atten-

tion model. Fig. 4 shows some examples of attention maps

achieved by our model. For instance, if the viewpoint of the

input image is front-side and the target viewpoint is side,

the central viewpoint feature of the side view will be used

to attend to the side appearance region of the input view

image. Then, only the feature in this region is selected for

further multi-view feature inference. The effectiveness of

this attention model for multi-view vehicle re-ID has been

evaluated by the ablation study in Sec. 4.3.2.

4.3. Ablation Studies

4.3.1 Effect of Multi-View Inference

The primary contribution needed to be investigated is the

effectiveness of the multi-view feature inference for vehicle

re-ID. We compare the VAMI with three baselines. The

first one simply adopts the feature of the original input view

image extracted from the second fully-connected layer of

the F Net. The second one adds a LReid to learn distance

metrics based on the single-view features. Moreover, we

also drop the LReid of the VAMI as a baseline to explore the

improvement by metric learning on the multi-view features.

Fig. 6(a) illustrates CMC curves of different approaches.

As shown in the upper half of Table 1, the mAP increases

13.3% by inferred multi-view features compared with orig-

inal single-view features. Such a huge improvement shows

the proposed multi-view inference indeed benefits the vehi-

cle re-ID from arbitrary viewpoints. Optimizing LReid on

Table 1. Evaluation (%) of effectiveness of the multi-view infer-

ence (MV Infer.) and adversarial network (Advers. Net.).
Baselines mAP r=1 r=5 r=20

M
V

In
fe

r. Single-view feat 28.64 63.52 78.69 87.13

Single-view feat + LReid 32.59 66.21 80.63 89.86

Multi-view feat 41.94 71.51 85.69 93.66

Multi-view feat + LReid 50.13 77.03 90.82 97.16

A
d

v
er

s.
N

et
. Regular objective for Gf 41.59 74.26 86.51 92.55

No auxiliary classifiers for D 33.43 69.54 79.34 88.46

Regular CNN for Gf and Gr 42.89 72.95 84.66 92.82

ℓ2 loss 34.96 67.92 82.60 91.48

VAMI 50.13 77.03 90.82 97.16

the multi-view feature space has a further gain of 8.19%

which shows the distance metric learning performed on the

viewpoint-invariant feature space is more suitable. The

ranking results demonstrate the similar tendency. Moreover,

Fig. 5 compares qualitative results that most gallery candi-

dates ranked in top positions by directly adopting single-

view feature based learning usually have similar viewpoints

with query ones, but more candidates with different view-

points can be proposed by our VAMI and correct hits in

the top-10 ranks become much more as well. The last two

rows in the column of results by VAMI give the failure cases

where some gallery candidates have highly similar appear-

ances from the same viewpoint with the query vehicle im-

ages. In Fig. 5, the features of images of 20 test vehicles

are also visualized. It shows samples of the same vehicle in

different viewpoints are scattered based on the single-view

features, but clustered after multi-view inference by VAMI.

4.3.2 Effect of Attention Model

To transform features across different viewpoints, we only

need to attend to regions of the input view containing the

appearance overlapped with target viewpoints while ignor-

ing other useless regions. The viewpoint-aware attention

model is dropped to explore its significance in this baseline.

The input view’s Conv4 feature maps are simply concate-

nated with a same size noise volume as the input for the

Gf . Table 2 shows the mAP largely decreases 10.01% if

we drop the attention model. However, the non-attentive

multi-view feature inference module can still outperform

the single-view based baselines.
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Figure 5. The left part compares qualitative results (Top-10 ranks) of single-view feature+LReid and our VAMI. Blue boxes are query

vehicles, while the green and red boxes denote correct hits and incorrect ones, respectively. The right part visualizes the spaces of the

original single-view features and the multi-view features inferred by our VAMI.

(a) (b)

Figure 6. (a) CMC results of evaluation of the multi-view infer-

ence. (b) CMC results of studies of the adversarial structure.

Table 2. Evaluation (%) of attention model. k is the number of the

attention step. n is the noise rate in the form of dropout.

Baselines mAP r = 1 r = 5 r = 20

VAMI w/o attention 40.12 69.31 82.81 91.34

VAMI 50.13 77.03 90.82 97.16

k = 1 43.78 73.86 88.27 95.42

k = 2 50.13 77.03 90.82 97.16

k = 3 45.60 74.54 88.31 95.72

k = 4 41.05 70.23 83.44 91.90

n = 0.1 42.33 71.76 86.13 93.94

n = 0.2 43.25 73.32 87.98 95.10

n = 0.3 50.13 77.03 90.82 97.16

n = 0.4 47.68 75.19 88.97 96.04

n = 0.5 45.54 74.62 88.42 95.68

n = 0.6 41.59 71.49 85.45 93.30

Our attention model can be built by k steps in depth.

Thus, the variable k is evaluated to explore the best perfor-

mance. Table 2 shows the highest mAP is achieved when k

equals 2. Moreover, since the noise is provided in the form

of dropout for Gf , we also study its effect on the attentive

multi-view feature inference by varying the dropout rate n.

Through experiments, dropout rate as 0.3 gets the best re-

ID results. Too small noise embedding makes the generator

become deterministic, while too much noise weakens the

attentive features degrading the model to the non-attentive

version. Neither of such two cases gets satisfactory perfor-

mance.

4.3.3 Adversarial Structure Studies

To study each designed component in the adversarial multi-

view feature generation module, we explore them individu-

ally to compare the results.

Regular objective for Gf . Traditional objective for up-

dating the generator in an adversarial architecture is to di-

rectly maximize the output of the discriminator, which usu-

ally overtrains the discriminator. The training of the Gf and

D is unstable. We compare it as a baseline with our objec-

tive of feature matching.

No auxiliary classifiers for D. Configuring auxil-

iary vehicles’ classifiers can make the adversarial networks

learned with vehicles’ intrinsic features. It helps to match

the inferred multi-view features with correct identities of

the input vehicles. Otherwise, the generated features can

be close to real features but do not match input identities,

which is a destructive weakness for the re-ID task.

Regular CNN for Gf and Gr. To evaluate the advan-

tage of the designed residual transformation module, we

compare it with a regular CNN without identity mapping.

In this baseline, we configure convolutional layers with the

same settings of hyper-parameters both for the Gf and Gr.

ℓ2 loss. Our overall aim is to transform single-view fea-

tures into multi-view features. To explore the ability of gen-

erating real features by our adversarial network, an ℓ2 loss

is adopted instead of LAdvers at fMV Reid to minimize the

distance between features of the single-view and real multi-

view paths. Noise embedding in Gf is dropped in this case.

Fig. 6(b) compares the CMC curves of different base-

lines. As shown in the bottom half of Table 1, the final

proposed VAMI outperforms all the baselines by large mar-

gins, which validates each carefully designed component is

effective to benefit the multi-view vehicle re-ID task.
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Table 3. Comparisons (%) with state-of-the-art re-ID methods. Methods in the last three rows include spatial-temporal (ST) information.
VeRi VehicleID

Settings Query = 1678, Test = 11579 Settings Test Size = 800 Test Size = 1600 Test Size = 2400

Methods mAP r = 1 r = 5 r = 20 Methods r = 1 r = 5 r = 20 r = 1 r = 5 r = 20 r = 1 r = 5 r = 20

LOMO [11] 9.78 23.87 39.14 57.47 LOMO [11] 19.76 32.01 45.04 18.85 29.18 39.87 15.32 25.29 35.99

DGD [28] 17.92 50.70 67.52 79.93 DGD [28] 44.80 66.28 81.52 40.25 65.31 76.76 37.33 57.82 70.25

GoogLeNet [29] 17.81 52.12 66.79 78.77 GoogLeNet [29] 47.88 67.18 78.46 43.40 63.86 74.99 38.27 59.39 72.08

FACT [15] 18.73 51.85 67.16 79.56 FACT [15] 49.53 68.07 78.54 44.59 64.57 75.30 39.92 60.32 72.92

XVGAN [41] 24.65 60.20 77.03 88.14 XVGAN [41] 52.87 80.83 91.86 49.55 71.39 81.73 44.89 66.65 78.04

SiameseVisual [23] 29.48 41.12 60.31 79.87 VGG+CCL [13] 43.62 64.84 80.12 39.94 62.98 76.07 35.68 56.24 68.41

OIFE [26] 48.00 65.92 87.66 96.63 MixedDiff+CCL [13] 48.93 75.65 88.47 45.05 68.85 79.88 41.05 63.38 76.62

VAMI (Ours) 50.13 77.03 90.82 97.16 VAMI (Ours) 63.12 83.25 92.40 52.87 75.12 83.49 47.34 70.29 79.95

SiameseCNN+PathLSTM [23] 58.27 83.49 90.04 96.03 - - - - - - - - -

SiameseVisual([23])+STR([15]) 40.26 54.23 74.97 91.68 No ST information - - - - - - - - -

VAMI (Ours) + STR([15]) 61.32 85.92 91.84 97.70 - - - - - - - - -

Figure 7. CMC curve comparisons of different vision-based vehicle re-ID methods.

4.4. Comparisons with State­of­the­arts

4.4.1 Evaluation on the VeRi-776 dataset

We compare the VAMI with state-of-the-art vehicle re-ID

methods. LOMO [11] is a hand-crafted local feature first

proposed for person re-ID. It aims to address the problem

against viewpoint and illumination variations. DGD [28] is

a method which can learn generic and robust deep features

with data from multiple domains. We transfer the model

from humans to vehicles by re-training on the VeRi and Ve-

hicleID datasets. The GoogLeNet fine-tuned on the Comp-

Cars dataset [29] is able to extract great visual descriptors

containing rich semantic features for vehicles. FACT [15],

consisting of SIFT, Color Name and GoogLeNet features,

is proposed to discriminate vehicles in joint domains. XV-

GAN [41] proposes to generate cross-view images from the

input view of a vehicle, then combines the original and gen-

erated views to compute distances. Siamese-Visual [23] is

proposed to learn vehicles’ features computing a pairwise

visual similarity by classification cross-entropy loss. More-

over, OIFE [26] aims to align local region features of differ-

ent viewpoints based on key points.

The CMC curves are shown in Fig. 7 and detailed mAP

results are listed in Table 3. In all the vision-based meth-

ods, our VAMI achieves the best performance over the sec-

ond place which also has an orientation-based region mod-

ule, with 2.13% mAP increase. The key point alignment

of OIFE does not work well for large viewpoint variations.

The Siamese-Visual simply adopts a pairwise deep CNN for

distance metric learning but does not include vehicles’ se-

mantic attributes learning. XVGAN focuses on image gen-

eration so that the re-ID results are limited by the blurred

image quality and small resolution. All the other methods

are hugely beaten by the VAMI. Moreover, we also combine

our model with the spatial-temporal relations (STR [15]),

which still outperforms other ST-based methods.

4.4.2 Evaluation on the VehicleID dataset

The VehicleID dataset consists of the training set with

110,178 images of 13,134 vehicles and the test set with

111,585 images of 13,133 vehicles. However, the dataset

only contains two viewpoints: front and rear. Thus, we

drop the attention model and transfer the multi-view fea-

ture inference module into a two-view version. The Conv4
layer of the input view is concatenated with a same size

noise volume for the input of Gf . Corresponding real im-

ages of each vehicle’s two viewpoints are set for the Gr in

the training phase. Table 3 shows our proposed multi-view

feature inference obtains dominant performance over other

approaches consistently in three settings of the gallery size.

5. Conclusion

In this paper, we proposed the VAMI model to address

the challenging multi-view vehicle re-ID task. The VAMI

adopts a viewpoint-aware attention model and the adversar-

ial training architecture to implement effective multi-view

feature inference from single-view input. Extensive exper-

iments show that the VAMI can achieve promising results

and outperform state-of-the-art vehicle re-ID methods.
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