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Abstract

This paper introduces a novel anchor design principle

to support anchor-based face detection for superior scale-

invariant performance, especially on tiny faces. To achieve

this, we explicitly address the problem that anchor-based

detectors drop performance drastically on faces with tiny

sizes, e.g. less than 16 × 16 pixels. In this paper, we in-

vestigate why this is the case. We discover that current an-

chor design cannot guarantee high overlaps between tiny

faces and anchor boxes, which increases the difficulty of

training. The new Expected Max Overlapping (EMO) score

is proposed which can theoretically explain the low over-

lapping issue and inspire several effective strategies of new

anchor design leading to higher face overlaps, including

anchor stride reduction with new network architectures, ex-

tra shifted anchors, and stochastic face shifting. Compre-

hensive experiments show that our proposed method sig-

nificantly outperforms the baseline anchor-based detector,

while consistently achieving state-of-the-art results on chal-

lenging face detection datasets with competitive runtime

speed.

1. Introduction

Face detection plays an important role in many facial

analysis tasks [1, 37, 21]. Starting from the traditional face

detectors with hand-crafted features [36, 51, 8, 45, 16], the

modern detectors [42, 17, 27, 47] have been dramatically

improved thanks to the robust and discriminative features

from deep convolutional neural networks (CNNs) [33, 10].

Current state-of-the-art face detectors are designed using

anchor-based deep CNNs [50, 11, 44, 26, 48], inspired by

the techniques from popular object detectors [20, 30, 4].

Anchor-based detectors quantize the continuous space of

all possible face bounding boxes on the image plane into the

discrete space of a set of pre-defined anchor boxes that serve

as references. The Intersection-over-Union (IoU) overlap is

used for evaluating the similarity between anchor boxes and

face boxes. During training, each face is matched with one

(a) Recall Rate-Face Scale (b) Average IoU-Face Scale

(c) Baseline anchors (yellow) vs. our anchors (red) with higher face IoUs

Figure 1. Problems of current anchor-based detectors and our

solution. (a): A baseline anchor-based detector, trained and eval-

uated on the Wider Face dataset (see Section 5.1 for details), has

significantly lower recall rate at IoU of 0.5 on tiny faces (16× 16)

than larger faces. (b): Maximum IoU with anchors is computed

for each face and averaged in each scale group, showing positive

correlation with the recall rate across the scales. (c): Visualization

of the anchor boxes with highest IoUs for each face. Our anchors

have much higher IoU with faces than the baseline anchor. Right

side shows an enlarged example. (Best viewed in color)

or several close anchors. Matched anchors are trained to

output high confidence scores and then regress to ground-

truth boxes. During inference, faces in a testing image are

detected by classifying and regressing anchors.

Although anchor-based detectors have shown success in

handling shape and appearance invariance [6, 19], their ca-

pabilities in handling scale invariance is not satisfactory. On

the other hand, faces can be captured at any size in images.

In addition to heavy occlusion, extreme pose and low il-

lumination, very small faces have become one of the most

challenging problems in robust face detection. Figure 1(a)
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shows the face recall rate of a baseline anchor-based de-

tector across different face scales. While big faces (larger

than 64 × 64 pixels) can be almost 100% recovered, there

is a significant drop in recall for smaller faces, especially

those with less than 16 × 16 pixels. In other words, af-

ter classifying and adjusting anchor boxes, the new boxes

with high confidence scores are still not highly overlapped

with enough small faces. This suggests that we look at how

anchors are overlapped with faces initially before training.

For each face we compute its highest IoU with overlapped

anchors. Then faces are divided into several scale groups.

Within each scale group we compute the averaged highest

IoU score, as presented in Figure 1(b). It’s not surprising

to find that average IoUs across face scales are positively

correlated with the recall rates. We argue that anchors with

low IoU overlaps with small faces are harder to be adjusted

to the ground-truth, resulting in low recall of small faces.

In this paper, we focus on new anchor design to sup-

port anchor-based detectors for better scale-invariance. Our

newly proposed anchors have higher IoU overlaps with

faces than the baseline anchors, as shown in Figure 1(c).

Therefore, it is easier for the network to learn how to adjust

the new anchors (red boxes) to ground-truth faces than the

original anchors (yellow boxes). To achieve this, we look

deep into how faces are matched to anchors with various

configurations and propose the new Expected Max Overlap-

ping (EMO) score to characterize anchors’ ability of achiev-

ing high IoU overlaps with faces. Specifically, given a face

of known size and a set of anchors, we compute the ex-

pected max IoU of the face with the anchors, assuming the

face’s location is drawn from a 2D distribution of on the

image plane. The EMO score theoretically explains why

larger faces are easier to be highly overlapped by anchors

and serves as a guidance for our anchor design principle.

The EMO score enlightens several simple but effec-

tive strategies of new anchor design for higher face IoU

scores without introducing much complexity to the net-

work. Specifically, we propose to reduce the anchor stride

with various network architecture designs. We also propose

to add anchors shifted away from the canonical center so

that the anchor distribution becomes denser. In addition, we

propose to stochastically shift the faces in order to increase

the chance of getting higher IoU overlaps. Finally, we pro-

pose to match low-overlapped faces with multiple anchors.

We run extensive ablative experiments to show our pro-

posed method can achieve significant improvement over

the baseline anchor-based detector. It also achieves the

state-of-the-art results on challenging face detection bench-

marks, including Wider Face [43], AFW [22], PASCAL

Faces [41], and FDDB [12] In summary, the main contribu-

tions of this paper are three folds: (1) Provide an in-depth

analysis of the anchor matching mechanism under different

conditions with the newly proposed Expected Max Over-

lap (EMO) score to theoretically characterize anchors’ abil-

ity of achieving high face IoU scores. (2) Propose several

effective techniques of new anchor design for higher IoU

scores especially for tiny faces, including anchor stride re-

duction with new network architectures, extra shifted an-

chors, and stochastic face shifting. Demonstrate significant

improvement over the baseline anchor-based method. (3)

Achieve state-of-the-art performance on Wider Face, AFW,

PASCAL Faces and FDDB with competitive runtime speed.

2. Related Work

Face detection is a mature yet challenging computer vi-

sion problem. One of the first well performing approaches

is the Viola-Jones face detector [36]. Its concepts of boost-

ing and using simple rigid templates have been the basis for

different approaches [46, 16]. More recent works on face

detection tend to focus on using different models such as a

Deformable Parts Model (DPM) [51, 8, 45, 2, 9]. Mathias et

al. [25] were able to show that both DPM models and rigid

template detectors have a lot of potential that has not been

adequately explored. All of these detectors extract hand-

crafted features and optimize each component disjointly,

which makes the training less optimal.

Thanks to the remarkable achievement of deep convo-

lutional networks on image classification [33, 10] and ob-

ject detection [30, 4, 20], deep learning based face detec-

tion methods have also gained much performance improve-

ment recently [42, 17, 50, 27, 47, 44, 11, 34, 26, 48]. CNNs

trained on large-scale image datasets provide more discrim-

inative features for face detector compared to traditional

hand-crafted features. The end-to-end training style pro-

motes better optimization. The performance gap between

human and artificial face detectors has been significantly

closed.

However, the Wider Face dataset [43] pushes the chal-

lenge to another level. In addition to heavy occlusion, ex-

treme pose, and strong illumination, the ultra small sizes of

faces in crowd images have become one of the most chal-

lenging problems in robust face detection. To solve this,

CMS-RCNN [50] incorporates body contextual information

to help infer the location of faces. HR [11] builds multi-

level image pyramids for multi-scale training and testing

which finds upscaled tiny faces. SFD [48] addresses this

with scale-equitable framework and new anchor matching

strategy. In this paper, we introduce a novel anchor design

for finding more tiny faces, leading to state-of-the-art detec-

tion performance.

3. Expected Max Overlapping Scores

This section presents the new Expected Max Overlap-

ping (EMO) score to characterize anchors’ ability of achiev-

ing high face IoU scores. We start with an overview of
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(a) Anchor setup and distribution (b) Anchor matching mechanism (c) Computing the EMO score

Figure 2. (a): Anchors are a set of boxes with different sizes (yellow dashed boxes) tiled regularly (centered on “+” crosses) on the image

plane. A face (green) overlaps with multiple anchors. (b): A face is matched to an anchor with the max IoU. The matched anchor is

highlighted as red dashed box. (c): The EMO score characterizes the anchors’ ability of capturing a face by computing the expected max

IoU of the face with anchors w.r.t. the distribution of face’s location (Best viewed in color).

anchor-based detectors. Then we show the standard anchor

setup and the anchor matching mechanism. Finally we de-

rive the EMO by computing the expected max IoU between

a face and anchors w.r.t. the distribution of face’s location.

3.1. Overview of Anchor-Based Detector

Anchor-based detection methods classify and regress an-

chor boxes to detect objects. Anchors are a set of pre-

defined boxes with multiple scales and aspect ratios tiled

regularly on the image plane. During training, anchors are

matched to the ground-truth boxes based on the IoU over-

lap. An anchor will be assigned to a ground-truth box if a)

its IoU with this box is the highest than other anchors, or

b) its IoU is higher than a threshold Th. An anchor will be

labeled as background if its IoU overlaps with all boxes are

lower than a threshold Tl.

Anchors are associated with certain feature maps which

determine the location and stride of anchors. A feature map

is a tensor of size c × h × w, where c is the number of

channels, h and w are the height and the width respectively.

It can also be interpreted as c-dimensional representations

corresponding to h ·w sliding-window locations distributed

regularly on the image. The distance between adjacent loca-

tions is the feature stride sF and decided by H
h
= W

w
= sF .

Anchors take those locations as their centers and use the

corresponded representations to compute confidence scores

and bounding box regression. So, the anchor stride sA is

equivalent to the feature stride, i.e. sA = sF .

3.2. Anchor Setup and Matching

We consider the standard anchor setup as shown in Fig-

ure 2. Let S be a pre-defined scale set representing the

scales of anchor boxes, and R be a pre-defined ratio set rep-

resenting the aspect ratios of anchor boxes. Then, the num-

ber of different boxes is |S × R| = |S||R|, where × is the

Cartesian product of two sets and | ∗ | is the set’s cardinal-

Figure 3. The EMO score is a function of face scale l and anchor

stride sA (Best viewed in color).

ity. For example, anchor boxes with 3 scales and 1 ratio are

shown as the yellow dashed rectangles in the top-left corner

in Figure 2(a). Let L be the set of regularly distributed loca-

tions shown as the yellow crosses “+”, with the distance be-

tween two adjacent locations as anchor stride sA. Then the

set of all anchors A is constructed by repeatedly tiling an-

chor boxes centered on those locations, i.e. A = S×R×L.

Given a face box Bf shown as the green rectangle, it

is matched to an anchor box Ba with the max IoU overlap

shown as the dashed red rectangle (Figure 2(b)). The max

IoU overlap is computed as Eq. (1).

max
a∈A

|Bf ∩Ba|

|Bf ∪Ba|
(1)

where ∩ and ∪ denote the intersection and union of two

boxes respectively.

3.3. Computing the EMO Score

A face can randomly appear at any location on the image

plane W × H , where H and W are the height and width

respectively. In Figure 2(c), we denote the center point of a

face as a pair of random variables (x, y), i.e. the green cross

“×”. Let p(x, y) be the probability density function of the
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location of the face, it then satisfies
�H

0

�W

0
p(x, y)dxdy =

1. Plugging in Eq. (1), the EMO score is defined as Eq. (2).

EMO =

� H

0

� W

0

p(x, y)max
a∈A

|Bf ∩Ba|

|Bf ∪Ba|
dxdy (2)

In practice, we consider the anchor setting accord-

ing to the Wider Face dataset. We set S =
{16, 32, 64, 128, 256, 512} to cover the face scale distribu-

tion of the dataset, and set R = {1} since face boxes are

close to squares. Therefore, there are total 6 anchors for

each “+” location. In addition, we assume each face can

randomly appear anywhere on the image plane with equal

probability. Thus, (x, y) are drawn from uniform distribu-

tions, i.e. x ∼ U(0,W ) and y ∼ U(0, H).
Since anchors are repeatedly tiled on an image, the over-

lapping pattern is also periodic w.r.t. the face location. We

therefore consider only one period where the face center is

enclosed by 4 anchor centers as shown in Figure 3. Then,

the face will have the highest IoU with the anchor centered

on the closest location to the face center. Due to symme-

try, we focus on the cases where the face gets matched to

the top-left anchor (dashed red box) with the highest IoU

and the blue square shows the sA
2

× sA
2

region where the

face center can appear. Face with the center outside that

region will be matched to one of the other three anchors.

The relative location of the face center to the anchor cen-

ter is denoted as (x�, y�), where x�, y� are drawn from the

distribution U(0, sA/2).
Given a l × l face with the same size as the anchor box,

i.e. l ∈ S, it will be matched to the l× l anchor. So the IoU

score between the face and the matched anchor is

IoU =
(l − x�)(l − y�)

2l2 − (l − x�)(l − y�)
(3)

IoU is a function of the relative location (x�, y�). Closer

distance from face center to anchor center leads to higher

IoU. The EMO score of this face is the expected IoU w.r.t.

the distribution of (x�, y�) derived as in Eq. (4).

EMO =

� sA

2

0

� sA

2

0

(
2

sA
)2

(l − x�)(l − y�)

2l2 − (l − x�)(l − y�)
dx�dy�

(4)

Figure 4 shows the EMO scores given different face

scales and anchor strides. It explains why larger faces tend

to have higher IoU overlap with anchors. When the face

size is fixed, sA plays an important role in reaching high

EMO scores. Given a face, the smaller sA is, the higher

EMO score achieves, especially for small faces. Hence the

average max IoU of all faces can be statistically increased.

4. Strategies of New Anchor Design

This section introduces our newly designed anchors,

with the purpose of finding more tiny faces. We aim at im-

proving the average IoU especially for tiny faces from the

Figure 4. The effect of face scale and anchor stride on the EMO

score. Small anchor stride is crucial for tiny faces.

view of theoretically improving EMO score, since average

IoU scores are correlated with face recall rate. Based on

the analysis in Section 3, we propose to increase the aver-

age IoU by reducing anchor stride as well as reducing the

distance between the face center and the anchor center.

For anchor stride reduction, we look into new network

architectures to change the stride of feature map associated

with anchors. Three architectures are proposed and dis-

cussed in Section 4.1. Additionally, we redefined the anchor

locations such that the anchor stride can be further reduced

in Section 4.2. Moreover, we propose the face shift jitter-

ing method Section 4.3 which can statistically reduce the

distance between the face center and the anchor center, the

other important factor to increase the IoU overlap.

With the aforementioned methods, the EMO score can

be improved which theoretically guarantee higher average

IoU. However, some very tiny faces are still getting low IoU

overlaps. We propose a compensation strategy in Section

4.4 for training which matches very tiny faces to multiple

anchors.

4.1. Stride Reduction with Enlarged Feature Maps

As discussed in Section 3.1, anchor stride equals to fea-

ture stride in current anchor-based detectors. Therefore, one

way to increase the EMO scores is to reduce the anchor

stride by enlarging the feature map. This section presents

three different architectures that double the height and width

of the feature maps as illustrated in Figure 5.

Bilinear upsampling upscales the feature map by a factor

of 2 as shown in Figure 5(a). In this network, a deconvolu-

tion layer is attached to the feature map and its filters are

initialized to have weights of a bilinear upsampler. During

training, the filters are updated to adapt to the data.

Figure 5(b) shows the upscaled feature map augmented

with the features from shallower large feature map by skip

connection. The intuition in this design is to combine high

level features for semantical information and low level fea-

tures for localization precision [18]. In the actual networks,

the low-level and high-level feature maps have different

numbers of channels. Thus, two 1 × 1 convolution layers

are first added to reduce the number of channels to the same
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Figure 5. Three types of network architecture for reducing the anchor stride by enlarging the feature map (red).

size. Then, after the element-wise addition, another 3 × 3
convolution layer is appended to the final feature map for

detection (not shown in Figure 5(b)).

The architectures in Figures 5(a) and 5(b) introduce ad-

ditional parameters to the networks when enlarging the fea-

ture maps, hence increasing the model complexity. How-

ever, the same goal can be achieved without additional pa-

rameters by using dilated convolutions [23] as shown in Fig-

ure 5(c). Specifically, we take out the stride-2 operation (ei-

ther pooling or convolution) right after the shallower large

map and dilate the filters in all the following convolution

layers. Note that 1× 1 filters are not required to be dilated.

In addition to not having any additional parameters, dilated

convolution also preserve the size of receptive fields of the

filters.

With halved anchor stride, the average IoU of tiny faces

increases by a large margin as shown in Figure 7, compared

to the original one. In addition, we show in Section 5.1 the

performance comparison of the three architectures.

4.2. Extra Shifted Anchors

Reducing anchor strides by enlarging feature maps

doesn’t change the condition that sA = sF . This section

presents a new approach such that sA < sF . We fur-

ther reduce sA by adding extra supportive anchors not cen-

tered on the sliding window locations, i.e. shifted anchors.

This strategy can help to increase the EMO scores without

changing the resolution of feature maps. These shifted an-

chors share the same feature representation with the anchors

in the centers.

Specifically, given a feature map with stride sF , the dis-

tance between two adjacent sliding window locations is sF ,

and labeled by black dots in Figure 6. In Figure 6(a), each

location has a single anchor (black) centered on it, giving

the anchor stride of sA = sF . When extra supportive

(green) anchors are added to the bottom-right of the cen-

ter for all locations, the anchor stride can be reduced to

sA = sF /
√
2 (Figure 6(b)). In addition, two other support-

ive anchors (blue and magenta) can be sequentially added

to further reduce the anchor stride to sA = sF /2 (Figure

6(c)). Note that no matter how many anchors are added, all

anchors are regularly tiled in the image plane. Indeed, we

s
F

s
A

(a) sA = sF

s
F

s
A

(b) sA = sF /
√

2

s
F

s
A

(c) sA = sF /2

Figure 6. Anchor stride reduction by adding shifted anchors.

Figure 7. Comparison of the average IoU between original and our

anchor design. With our proposed stride reduction techniques, the

average IoU is significantly improved for small faces.

only need to add small shifted anchors since large anchors

already guarantee high average IoUs, which saves the com-

putational time. For example, three shifted anchors of the

smallest size (16 × 16) are added on top of enlarged fea-

ture maps (Section 4.1) to show further improvement of the

average IoUs in Figure 7.

4.3. Face Shift Jittering

When computing the EMO score for each face, the cen-

ter of the face is assumed to be drawn from a 2D uniform

distribution. However in the actual datasets, each face has a

fixed location. Some of them are closed to the anchor cen-

ters so they are more likely to have high IoU overlaps with

anchors. While some others far from anchor centers will

always get low IoU scores. In order to increase the proba-

bility for those faces to get high IoU overlap with anchors,

they are randomly shifted in each iteration during training.
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Specifically, the image is shifted by a random offset

(δx, δy) in every iteration. δx and δy are the pixels where

the image is shifted to right and down respectively, so that

locations of all faces in that image are added by (δx, δy).
The offset is sampled from a discrete uniform distribution,

i.e. δx, δy ∈ {0, 1, ..., sA/2 − 1}. We use discrete uniform

distribution of offsets to approach the continuous uniform

distribution of face locations. We set the maximum offset to

be sA/2− 1 because the period of overlap pattern is sA/2.

4.4. Hard Face Compensation

As shown in Figure 7, even with halved feature strides

and shifted small anchors, very tiny faces still have lower

average IoU than bigger faces. It is because face scales

and locations are continuous whereas anchor scales and lo-

cations are discrete. Therefore, there are still some faces

whose scales or locations are far away from the anchor.

These faces are hard to be matched to anchors.

We propose a compensation strategy of anchor match-

ing to assign hard faces to multiple anchors. Specifically,

we first label anchors as positive if their overlapping scores

with faces are higher than a threshold Th, same as the cur-

rent anchor matching strategy. Then faces whose highest

overlapping scores are below Th are the hard faces. For hard

faces the top N anchors with highest overlap with them are

labeled as positive. We find the optimal N empirically as

described in Section 5.1.

5. Experiments

In this section, we first show the effectiveness of our pro-

posed strategies with comprehensive ablative experiments.

Then with the final optimal model, our approach achieves

state-of-the-art results on face detection benchmarks. Fi-

nally the computational time is presented.

5.1. Ablation Study

The Wider Face dataset [43] is used in this ablation

study. This dataset has 32,203 images with 393,703 labeled

faces with a high degree of variability in scales, occlusions

and poses. The images are split into training (40%), valida-

tion (10%) and testing (50%) set. Faces in this dataset are

classified into Easy, Medium, and Hard subsets according

to the difficulties of detection. The hard subset includes a

lot of tiny faces. All networks are trained on the training

set and evaluated on the validation set. Average Precision

(AP) score is used as the evaluation metric. Note that we

train and evaluate on the original images without rescaling

since we want to test the detector’s ability of finding real

tiny faces instead of upscaled tiny faces.

Baseline setup We build an anchor-based detector with

ResNet-101 [10] inspired by the R-FCN [4] as our baseline

detector. It differs from the original R-FCN in the follow-

ing aspects. Firstly we set 6 anchors whose scales are from

the set {16, 32, 64, 128, 256, 512} and all anchors’ aspect

ratios is 1. This setting matches with the face boxes in the

Wider Face dataset. Secondly, “res5” is used to generate

region proposals instead of “res4”. Thirdly, the threshold of

IoU for positive anchors is changed to 0.5. All the other set-

tings follow the original [4]. The baseline detector is trained

on the Wider Face training set for 8 epochs. The initial

learning rate is set to 0.001 and decreases to 0.0001 after

5 epochs. During training we applied online hard example

mining [32] with the ratio between positives and negatives

as 1:3. The detector is implemented in the MXNet frame-

work [3] based on the open source code from [5].

The effect of enlarged feature map As discussed in

Section 4.1, enlarged feature map reduces the anchor stride

so that it helps to increase the EMO scores and the average

IoU, especially for tiny faces. To better understand its effect

on the final detection performance, we apply three architec-

tures in Figure 5 to the ResNet backbone architecture of the

baseline detector. The corresponding stride-8 feature and

stride-16 feature in the backbone architecture are “res3” and

“res5” respectively. For bilinear upsampling (denoted as

BU), “res5” is appended with a stride-2 deconvolution layer

with filters initialized by a bilinear upsampler. For bilinear

upsampling with skip connection (denoted as BUS), all the

additional convolution layers have 512 output channels. For

dilated convolution (denoted as DC), all the 3×3 filters in

“res4” and “res5” are dilated. Evaluation results are pre-

sented as “BU”, “BUS” and “DC” in Table 1. Compared to

the baseline, the enlarged feature map provides significant

improvements on the Hard subset (rising by 7.4% at most),

which mainly consists of tiny faces. Among the three ar-

chitectures, BUS is better than BU at finding tiny faces, but

has more false positives, because BUS uses features from

the shallower “res3” layer that is less discriminative. DC

achieves the best performance on all three subsets without

introducing extra parameters. Thus, we fix the architecture

to DC in the following experiments.

The effect of additional shifted anchors Adding shifted

anchors can further reduce the anchor stride without chang-

ing the resolution of the feature map. In Figure 7 we can

see with halved anchor stride, faces larger than 32 × 32
pixels already have the same average IoU overlap. So we

mainly focus on adding anchors with scales of 16 and 32.

As shown in Figure 6, there are two settings of shifted an-

chors, i.e. added by one to reduce the stride by 1/
√
2 or

added by three to reduce the stride by 1/2. We denote the

shifted anchor setting as s × n, where s ∈ {16, 32} is the

scale of anchor and n ∈ {1, 3} is the number of additional

anchors. Noted that we always start with adding anchors

of scale 16 since larger anchors cannot affect the average

IoU of smaller faces. Hence there are total 5 combinations

as presented in the second row section in Table 1. It turns

out that adding shifted anchors can improve the AP score
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on the Hard set. However, there is a trade-off between num-

ber of additional anchors and the detection accuracy. More

anchors do not always lead to higher average precision, be-

cause each anchor is associated with a set of parameters in

the network to predict the confidence score and box off-

sets. As the number of anchors increases, each anchor is

matched to fewer faces and the associated parameters are

trained from fewer examples. In the end, we find adding

just 3 anchors of scale 16 gives the best performance.

The effect of face shift jittering Next we look into the

effect of randomly shifting the faces for each iteration dur-

ing training, denoted as SJ for shift jittering. It is applied

to both the model with DC and the model with DC and 3

shifted anchors of scale 16. Experiments show that shift jit-

tering can further improve the AP scores of Hard faces. In

Table 1, the AP rises by 0.9% on the model with DC (+DC

vs. +DC+SJ) and by 0.3% on the model with DC and 3

shifted anchors of scale 16 (+DC+16x3 vs. +DC+16x3+SJ).

The effect of hard face compensation The hard face

compensation completes our final model. It is denoted as

HC(N ) where N is the number of anchors to which the

hard faces are assigned. We find N = 5 is a proper choice

since smaller N leads to lower recall rate and larger N
results in more false positives. To this end, we denote

“+DC+16x3+SJ+HC(5)” as our “Final” detector.

The effect of testing size The size of the testing images

has significant impact on the face detection precision, espe-

cially for tiny faces. Therefore we evaluate our final model

on the Hard set of Wider Face validation set with different

image sizes, comparing with the state-of-the-art SSH face

detector [26]. We show in Table 2 that our detector trained

with single scale outperforms the SSH detector trained with

multiple scales at every testing size. Note that at the maxi-

mum input size of 600x1000, our detector outperforms SSH

by 7.1%, showing the effectiveness of our proposed tech-

niques for detecting tiny faces.

The effect of image pyramid Image pyramid for multi-

scale training and testing helps improving the detection per-

formance, as shown by “Baseline+Pyramid” in Table 1. By

applying our strategies we observe another improvement

(“Final+Pyramid”). We follow the same way in [26] to build

the pyramid.

5.2. Evaluation on Common Benchmarks

We evaluate our proposed method on the common face

detection benchmarks, including Wider Face [43], Anno-

tated Faces in the Wild (AFW) [22], PASCAL Faces [41],

and Face Detection Dataset and Benchmark (FDDB) [12].

Our face detector is trained only using Wider Face train-

ing set and is tested on those benchmarks without further

finetuning. We demonstrate consistent state-of-the-art per-

formance across all the datasets. Qualitative results are il-

lustrated in the supplementary materials.

Table 1. Ablative study of each components in our proposed

method on Wider Face validation set. Network architectures: BU

- bilinear upsampling; BUS - bilinear upsampling with skip con-

nection; DC - dilated convolution. Extra shifted anchors: s × n -

adding n shifted s-by-s anchors. SJ - Face Shift Jittering. HC(N )

- assigning each hard face to top N anchors.

Easy Medium Hard

Baseline 0.934 0.895 0.705

+BU 0.933 0.901 0.710

+BUS 0.926 0.899 0.778

+DC 0.936 0.911 0.779

+DC+16x1 0.934 0.908 0.781

+DC+16x1&32x1 0.936 0.910 0.782

+DC+16x3 0.938 0.912 0.786

+DC+16x3&32x1 0.937 0.909 0.781

+DC+16x3&32x3 0.938 0.913 0.779

+DC+SJ 0.939 0.910 0.788

+DC+16x3+SJ 0.940 0.914 0.789

+DC+16x3+SJ+HC(3) 0.938 0.912 0.793

+DC+16x3+SJ+HC(5) (Final) 0.940 0.914 0.795

+DC+16x3+SJ+HC(7) 0.936 0.912 0.791

Baseline+Pyramid 0.943 0.927 0.840

Final+Pyramid 0.949 0.933 0.861

Table 2. The effect of testing size on the average precision (AP) of

Hard faces in Wider Face validation set.

Max size 600x1000 800x1200 1200x1600 1400x1800

SSH [26] 0.686 0.784 0.814 0.810

Ours 0.757 0.817 0.838 0.835

Wider Face dataset We report the performance of our

face detection system on the Wider Face testing set with

16,097 images. Detection results are sent to the database

server for receiving the precision-recall curves. Figure 8 il-

lustrates the precision-recall curves along with AP scores.

It’s clear that our detector consistently achieves best per-

formance on all face cases against recent published face

detection methods: SFD [48], SSH [26], ScaleFace [44],

HR [11], CMS-RCNN [50], Multitask Cascade CNN [47],

LDCF+ [27] and Faceness [42]. The results demonstrate

that our proposed components further promote the solution

for finding small and hard faces.

AFW dataset This dataset consists of 205 images with

473 annotated faces. During testing images are kept at the

original scale. Our method is compared with popular face

detection algorithms [25, 38, 31, 51] as well as commer-

cial face detection systems including Picasa, Face.com and

Face++. Figure 9(a) show that our detector outperforms

others by a considerable margin.

PASCAL Faces dataset This dataset is a subset of

the PASCAL VOC testing set. It has 851 images with

1,335 annotated faces. Our detector is tested on the orig-
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Figure 8. Precision and recall curves on Wider Face testing set divided into Easy, Medium, and Hard levels.
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(c) FDDB

Figure 9. Comparison with popular state-of-the-art methods on the AFW, PASCAL Faces, and FDDB datasets

inal scale of image and compared against popular methods

[25, 38, 51] and some commercial face detection systems

(Picasa, Face++). The precision-recall curves in Figure 9(b)

demonstrate the superiority of our method.

FDDB dataset This dataset has 2,845 images with 5,171

annotated faces. In stead of rectangle boxes, faces in FDDB

are represented by ellipses. So we learn a regressor to trans-

form rectangle boxes predicted by our detector to ellipses.

Again, we test on the original images without rescaling. We

compare our approach with other state-of-the-art methods

[34, 11, 44, 47, 27, 28, 42, 17, 29, 35, 25, 2, 40, 15, 39, 9,

14, 7, 49, 13, 24] which don’t add additional self-labeled

annotations. As shown in Figure 9(c), our detector achieves

high recall rate and best AP score.

5.3. Runtime Speed

This section reports the runtime speed of our detector on

the Wider Face validation set. We vary the image size to

get a set of AP scores with corresponded average inference

times as shown in Figure 10. Our detector forms an up-

per envelope of other detectors [20, 30, 44, 11, 26]. Some

numbers are acquired from [44]. All detectors are evaluated

using a single NVIDIA Titan X GPU with batch size 1.

Figure 10. Speed (ms) vs. accuracy (AP) on Wider Face Hard set.

6. Conclusion

This work identified low face-anchor overlap as the ma-

jor reason hindering anchor-based detectors to detect tiny

faces. We proposed the new EMO score to characterize an-

chors’ capability of getting high overlaps with faces, pro-

viding an in-depth analysis of the anchor matching mech-

anism. This inspired us to come up with several simple

but effective strategies of a new anchor design for higher

face IoU scores. Consequently, our method outperforms

the baseline anchor-based detector by a considerable mar-

gin and achieves the state-of-the-art performance on the

challenging Wider Face, AFW, PASCAL Faces and FDDB

datasets.

5134



References

[1] C. Bhagavatula, C. Zhu, K. Luu, and M. Savvides. Faster

than real-time facial alignment: A 3d spatial transformer net-

work approach in unconstrained poses. In The IEEE Inter-

national Conference on Computer Vision (ICCV), Oct 2017.

1

[2] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade

face detection and alignment. In Computer Vision–ECCV

2014, pages 109–122. Springer, 2014. 2, 8

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. NIPS Workshop on Machine Learning Systems

(LearningSys), 2016. 6

[4] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection

via region-based fully convolutional networks. In Advances

in Neural Information Processing Systems, pages 379–387,

2016. 1, 2, 6

[5] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. International Confer-

ence on Computer Vision (ICCV), 2017. 6

[6] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. volume 88, pages 303–338. Springer, 2010. 1

[7] S. S. Farfade, M. J. Saberian, and L.-J. Li. Multi-view face

detection using deep convolutional neural networks. In Pro-

ceedings of the 5th ACM on International Conference on

Multimedia Retrieval, pages 643–650. ACM, 2015. 8

[8] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade

object detection with deformable part models. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2010. 1, 2

[9] G. Ghiasi and C. C. Fowlkes. Occlusion coherence: De-

tecting and localizing occluded faces. arXiv preprint

arXiv:1506.08347, 2015. 2, 8

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 2, 6

[11] P. Hu and D. Ramanan. Finding tiny faces. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, 2017. 1, 2, 7, 8

[12] V. Jain and E. Learned-Miller. Fddb: A benchmark for face

detection in unconstrained settings. Technical Report UM-

CS-2010-009, University of Massachusetts, Amherst, 2010.

2, 7

[13] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang. Probabilis-

tic elastic part model for unsupervised face detector adapta-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 793–800, 2013. 8

[14] H. Li, Z. Lin, J. Brandt, X. Shen, and G. Hua. Efficient

boosted exemplar-based face detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1843–1850, 2014. 8

[15] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5325–5334, 2015. 8

[16] J. Li and Y. Zhang. Learning surf cascade for fast and ac-

curate object detection. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3468–3475, 2013. 1, 2

[17] Y. Li, B. Sun, T. Wu, and Y. Wang. face detection with end-

to-end integration of a convnet and a 3d model. In European

Conference on Computer Vision, pages 420–436. Springer,

2016. 1, 2, 8

[18] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In CVPR, 2017. 4

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014. 1

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016. 1, 2, 8

[21] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face recog-

nition. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), volume 1, 2017. 1

[22] P. M. R. M. Koestinger, P. Wohlhart and H. Bischof. Anno-

tated facial landmarks in the wild: A large-scale, real-world

database for facial landmark localization. 2011. 2, 7

[23] S. Mallat. A wavelet tour of signal processing. Academic

press, 1999. 5
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