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Abstract

We study how to synthesize novel views of human body

from a single image. Though recent deep learning based

methods work well for rigid objects, they often fail on

objects with large articulation, like human bodies. The core

step of existing methods is to fit a map from the observable

views to novel views by CNNs; however, the rich articu-

lation modes of human body make it rather challenging

for CNNs to memorize and interpolate the data well. To

address the problem, we propose a novel deep learning

based pipeline that explicitly estimates and leverages the

geometry of the underlying human body. Our new pipeline

is a composition of a shape estimation network and an im-

age generation network, and at the interface a perspective

transformation is applied to generate a forward flow for

pixel value transportation. Our design is able to factor out

the space of data variation and makes learning at each step

much easier. Empirically, we show that the performance for

pose-varying objects can be improved dramatically. Our

method can also be applied on real data captured by 3D

sensors, and the flow generated by our methods can be used

for generating high quality results in higher resolution.

1. Introduction

In recent years, a number of papers have been published

on inferring 3D structures from single images using learn-

ing based approaches [9, 38, 11, 40, 28, 17, 35, 19, 7, 34,

3, 24, 21, 8]. One important task in this topic is novel-view

synthesis - predicting what a given object would look like

after a known 3D rotation is applied. In psychology, this

task is known as “mental rotation” and experiments tell us

that people excel at this task [27]. Practically, addressing

this problem would also have far-reaching impacts in image

editing, augmented reality, virtual reality, and many other

applications.

In principle, inferring 3D geometry from a single image

is an ill-defined problem. Recently, [35, 6, 40, 28, 17, 38]
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Figure 1. When dealing with pose-varying human body, previous

methods like VSAP[40] fail to predict accurate flow. In con-

trast to VSAP that directly predicts 2D flow, our method firstly

predicts the depth map, then the forward flow based framework

dramatically improve the accuracy of the flow prediction. This

architecture reflects our appearance - shape - flow strategy.

have shown that it is quite promising to learn a cross-view

synthesizer from many source/target view pairs.

While decent results have been obtained for rigid objects

like vehicles, existing approaches perform quite poorly on

human bodies, which are both articulated and deformable.

As can be seen in Figure 1, the prediction from previous

methods is often blurry or distorted. To understand why,

let’s take a closer look into these approaches. Typically,

they either directly predict each pixel in the target view

[36, 28, 38, 15, 39], or predict a flow map that represents

where pixels should be copied from in the source view

(backward flow prediction)[40, 17, 11, 16, 14]. Compared

with rigid objects, the articulation of moving parts of hu-

mans, like limbs and heads, may differ greatly from case

to case. Coupled with the orientation of human body,

part deformation and source/target view, this kind of pose

variation forms an even larger joint space for all possible

source/target sample pairs. Therefore, it becomes extremely

difficult for the network to remember and interpolate such

highly varied data from limited training samples.

Our approach, based upon the flow prediction idea, is
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a combination of deep learning and traditional geometry-

based methods. Instead of resorting to purely learning based

schemes, we consider how to explicitly leverage geometric

constraints to reduce the problem space. The basis of our

idea is that the flow across two views can be analytically

derived if corresponding 3D geometry is known.

We therefore decouple the flow prediction network into

a concatenation of shape estimation sub-network and an

image generation sub-network, each supervised separately

with additional labels. Intuitively speaking, the first sub-

network estimates a rough geometry of the human body

and the second sub-network corrects the error caused by

the inaccuracy and infers invisible regions caused by oc-

clusions. In this way, the entanglement between shape

estimation, flow estimation, and invisible region synthesis

are detached. If we take a geometric perspective, the

high-dimensional space that data samples live in has been

factored out into lower-dimensional subspaces. Between

the two sub-networks, perspective projection is applied to

propose a flow. It turns out that, this well-defined per-

spective projection is difficult to be learned implicitly by

traditional convolutional neural network according to our

experiments, which is another observation to support our

design. Empirically, our hybrid approach generates more

accurate results on standard benchmarks, compared with

state-of-the-arts.

The contributions of this paper include:

• We develop a novel approach that firstly predicts object

shape from appearance, then predicts optical flow from

the shape. The flow loss and image loss are integrated

to improve the prediction accuracy while the structure

in novel view is maintained. By using an explicit 3D

representation, we are able to handle large deformation

in shape and large changes in view direction.

• We have empirically found out that traditional con-

volutional neural network cannot fit per-pixel projec-

tion well. Combining geometric projection with CNN

is more effective than an end-to-end CNN-based ap-

proach.

• We have created a high-quality data sets for synthetic

human body images with over 2,000 different poses

and 22 different appearances. The data set has been

publicly released1.

2. Related Work

View Synthesis by 3D modeling. Traditional view syn-

thesis approaches follow the modeling - rendering pattern,

which take advantage of 3D reconstruction method[31, 10,

42, 23, 41] to generate 3D model, then render the target

1http://cite.nju.edu.cn/view_extrapolation.html

image in novel views. These methods require high-quality

3D shapes in forms of polygen meshes, point clouds, or

depth images. It is beyond the scope of this paper to discuss

the vast body of 3D reconstruction and view synthesis tech-

niques. We will focus on single-image-based techniques

here. Given the reference 3D model sets, Kholgade et al.

[20] generated the synthesis images by manually interactive

manipulating the existing 3d model sets. Su et al.[35]

proposed to synthesize new features for other views of the

same object by finding the correspondence patches from an

aligned set of 3D models. Rematas et al. [29] proposed to

fit the shape in the 3D data sets to the source image, then

synthesize the high-quality image in the novel view. These

methods require the aid of certain categories of 3D shapes

prior.

For human pose/body modeling, the generative SCAPE

model [1] has been widely used. This model and its variants

have been used to estimate 3D body shape and/or pose from

a single image (e.g., [32, 2]). However, there is no variations

in skin appearance in the these statistical models, and none

of these works address the view synthesis either. Given the

visible misalignment between the image and the 3D model,

it is unlikely that a direct rendering of the 3D model is able

to generate satisfactory results.

Recently the introduction of learning based methods

makes it possible to predict the shape from a single image

[30, 7, 34, 8]. However, low granularity of the predicted

shape limits their application in image synthesis. Another

group of work focuses on incorporating shape information

inside the neural network. Flynn et al. [9] proposed to turn

plane sweep stereo into label prediction problem, which

proceeds depth prediction and view synthesis in an end-

to-end convolutional neural network. Garg et al. [11]

proposed to predict the depth from the single image in

an unsupervised manner. Their network warps the source

image to the target image in training phase, and explicitly

predicts an image from one of the stereo pairs to the other.

Srinivasan et al. [33] proposed to synthesize the 4D light

field by first predicting ray depth, and then rendering a Lam-

bertian approximation to the light field. These two methods

explicitly take advantage of depth or disparity information

in their network. However, they focus on relatively short

base-line view synthesis, while our system could be used

in wide base-line views. Besides, the pose-varying human

body is more challenging compared with static scenes as the

human body is articulated non-rigid.

View Synthesis by 2D Flow. The core idea behind flow

is to estimate the pixel mapping from the source image

to the target image. Therefore, these approaches aim to

learn to produce a flow image or a set of mapping corre-

spondences to transform source image to target image. The

transforming auto-encoders [14] and the spatial transformer

networks [16] firstly implement this flow estimation process
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Figure 2. The full pipeline of our approach. The architecture of network is simplified, and the detailed parameters will be shown in

supplement materials.

into the neural networks, where the spatial transforming

map is learned from source image and then guides target

image synthesis. Zhou et al. [40] proposed to synthesize

from one view to another view of one certain category of

objects by predicting optical flow, namely appearance flow.

Their method achieves good results in certain categories of

objects like cars and chairs.

View Synthesis by Direct Image Generation. The

previous works presented by Tatarchenko et al. [36] and

Yang et. al [38] solved the view synthesis problem by

implementing a convolutional neural network to directly

predict target images. Their methods cannot preserve the

details, which is a common problem for direct image gen-

eration network. To generate high-quality images, novel

techniques like generative adversarial nets (GANs) [12] and

perceptual loss [18] are involved to tackle view synthesis

problems. Park et al. [28] proposed to infer the invisible

part on the base of appearance flow net [40], where an image

generation network using perceptual and adversarial loss is

supplemented to complete the invisible region. Huang et al.

[15] proposed a GAN based view synthesis system aiming

at high-quality face rotation. The generator in their network

consists of a local pathway and a global pathway, which

detects feature layout and global appearance respectively.

Zhao et al. [39] proposed a GAN in coarse-to-fine pattern

to synthesize high-resolution results. Their network aims

at multi-view cloth images from a single view image re-

gardless of the pose variation. Chen et al. [5] proposed

a cascaded architecture that predicts high-resolution street

images from semantic layouts.

Unlike all the methods above, we aim to synthesize novel

views from a single image of human body. We find both

state-of-art 2D transforming and direct image generation

methods failed to synthesize the fine result for the human

body. Our approach is based on 2D flow morphing methods,

but we incorporate an explicit 3D model and geometric

constraints to provide accurate flow to handle the large pose

variation and view-point variations.

3. Method

We propose an appearance - shape - flow strategy for

synthesizing novel views of pose-varying objects. As

demonstrated in Figure 2, we first predict the shape as a

depth map from the source image. Through the projection

layer, this depth map is transformed to a forward flow

image. Then, the flow net and mask net will predict an

optical flow and a mask simultaneously. Finally, the flow

image and mask image are combined to produce the final

synthesized images. We will explain module by module in

the following sections.

3.1. Depth Prediction Net

We describe the shape of a human body in the form of

depth images. A large body of methods have been pro-

posed to predict depth from the monocular intensity image

[3, 21, 24, 22]. We select Res-Net [13] as the backbone of

our depth image prediction net. The depth prediction net

consists of an encoder and a decoder that is adapted from

the standard ResNet-50 net. The L1 loss is adopted while

pixels in the background region are omitted. We mask out

the final predicted depth using the silhouette in the source

image.

Shape vs Appearance. Images are formed by projecting

a 3D shape to a 2D plane. Along the projection, the

majority of shape information is lost due to the lack of

depth dimension. Prior 2D transformation based network

directly predicts an optical flow from the image supervised

by the 2D appearance at the target view. When dealing with

rigid objects like cars and chairs, the appearance flow as in

[40] can be directly predicted from images. However, if the

object is articulated and deformable, we find that such direct

prediction often fails.

In fact, given a depth image, the flow can be directly

computed by perspective transformation. Therefore, we

borrow the idea of traditional synthesis methods by 3D

modeling, which explicitly produces depth as the interme-

diate result. Our experiments show that the appearance -
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shape - flow strategy outperforms the appearance - flow

strategy in the following aspects: (1) The flow prediction

accuracy is improved dramatically; (2) Better performance

is achieved when self-occlusion occurs, which is common

for pose-varying human; (3) Our system is more robust

when applied to real human subjects captured by 3D sen-

sors.

Projection Layer To combine the depth prediction net

and flow/mask prediction net, we propose the projection

layer which transforms the depth image to an optical flow.

Projection and inverse projection are the essential steps

for the transformation between 3D shapes and 2D images.

Alternatively, one may adopt convolutional neural networks

to learn the projection transformation. However, we find

that neither deep nor shallow convolutional neural networks

is able to fit per-pixel projection calculation accurately. In

our opinion, the reason why CNN doesn’t work is that the

projection involves complicated per-pixel matrix calcula-

tion and homogeneous coordinates normalization, which

are difficult for CNN to fit. Therefore, we build specific

layers to analytically compute projection and inverse pro-

jection operations.

The projection layer takes depth image and the camera

matrix in synthesis view as input to generate the forward

flow. The projection layer does not include any parameter

to learn. Given the depth image D(u, v), intrinsic matrix K,

and relative extrinsic matrix Rt from target view to source

view, the projection layer generates the forward flow image

flow(x, y) by the following calculations:

p = [
(x− cx)

fx
,
(y − cy)

fy
, 1]T ·D(x, y) (1)

ũv = K ∗Rt′ · p̃ (2)

flow(x, y) = norm(ũv)− [x, y]T (3)

where p denotes the point in 3D world coordinates of source

view. ũv is the coordinates of uv, and norm() computes a

point coordinate from the homogeneous vector. The intrin-

sic and extrinsic parameters are set according to the image

rendering setup, and keep fixed in all our experiments. The

output of the projection layer is the forward flow map,

which will be explained in the next section.

3.2. Flow Prediction Net

We base our work on the idea of predicting the flow

to transport pixel value across views. VSAP[40] predicts

a backward flow map to denote where pixels in the target

image should be copied from in the source image, and then

produce the target image by remapping the source image

using the flow map. Different from previous works, our

network takes forward flow instead of intensity image as

the input.

Forward flow. First let us formally define the forward

flow and backward flow. Both forward flow and backward

source image forward flow

backward flow target image

value

point to

value 

point to

coordinate

registered

coordinate

registered

visible region

invisible region

flow (red is origin)

Figure 3. The forward flow and backward flow.

flow are two channel floating point arrays. Here, ‘forward’

means a flow that denotes the pixel-wise correspondences

from source image to target image, and ‘backward’ means

the reverse orientation of correspondences. As shown in

Figure 3, the forward flow is registered to source image, and

the value in each pixel is the coordinate of the correspond-

ing point in the target view image, [u, v]. The backward

flow is defined the other way around.

To convert forward flow and backward flow from one to

the other, we have to consider the occlusion problem. As

shown in Figure 3, the dark yellow regions in forward flow

or backward flow are invisible to the other, while only the

blue part which are visible in both target view and source

view can be transformed by copying the coordinate and

value of every pixel. In our forward-to-backward transfor-

mation process, we call the transformation result as trans-

formed flow. If one coordinate in the transformed flow is

allocated with more than one value from the source image,

we will select the value whose corresponding depth to the

target view is the smallest. In practice, given the target view

coordinate, we set four closest neighboring pixels in the

transformed flow to be the source coordinate. So after the

projection layer, the flow occlusion problem in the source

view will be solved. However, there will be blank regions

in the transformed flow map that correspond to the invisible

region in the target view. We will complete the transformed

flow in the flow prediction net.

Previous works [16, 14, 40] choose to directly predict

the backward flow. However, we find that in our problem of

view extrapolation for human bodies, it is better to gener-

ate the forward flow first. Compared with backward flow

prediction, forward flow will benefits from two aspects:

(1) The coordinate of the forward flow is registered to the

source, thus the forward flow can be transformed from depth

image and camera parameters without ambiguity. (2) The

introduction of forward flow separates and simplifies the

occlusion problem. In this way, the depth prediction net will

not need to address occlusion problem. When the forward

flow is generated from the projection layer, the occlusion
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can be resolved with z-buffering. As shown in the next

part, the flow net merely needs to focus on completing those

missing regions and refining the flow. According to our

experiment, we find that this strategy significantly improves

the flow predicting accuracy, especially in complicated re-

gions with self-occlusion.

Net architecture As discussed above, the aim of the flow

net is no longer to extract the flow from the source, but to

refine the transformed flow to predict the final backward

flow and image. As pointed out by a few recent papers

[40, 28, 38, 36], traditional encoder-decoder network may

lose details in the source image and thus generate blurry im-

ages. We also observed the same problem appearing in flow

prediction. We select the image restoration network [25] as

the backbone structure to address our backward flow com-

pletion problem. Experiments show that this architecture

efficiently restores the blank region in the flow with better

preservation of details.

We propose to integrate image loss and flow loss in the

flow net, as image loss alone is often affected by texture

ambiguity. The loss function is formulated as:

loss = ηy

m∑

i∈M

|y(i) − ŷ(i)|+ ηf

n∑

i∈N

|f (i) − f̂ (i)| (4)

where y(i) is the RGB image and f (i) is the masked

ground truth flow. ŷ(i) and f̂ (i) are the corresponding

ground truth image and backward flow used in training

phase. ηy and ηf are the the weight of image loss term

and flow loss term separately. M is the pixel set including

all foreground pixels. N is the pixel set including all

pixels with valid backward flow, which means the invisible

pixels at the source view will not count. The ground truth

backward flow is generated by projecting the 3D vertices

movement to the target view. Our experiments show that the

‘image loss + flow loss’ improves the prediction accuracy

compared with ‘single image loss’.

3.3. Mask Prediction Net

The mask prediction net produces a silhouette of the

object in the target view. We follow the appearance flow

network[40] that predicts mask and flow simultaneously,

and then fuse them to build the final predicted image.

In their network, the mask is directly predicted using an

encoder-decoder network with cross-entropy loss. How-

ever, we find that this mask prediction net does not work

well for pose-varying human body. The prediction tends to

degrade in limbs parts as shown in Figure 4.

To improve the performance of mask prediction for the

pose-varying human body, we explore different methods

and make two modifications. The first is using the spatial

transformer to predict binary mask instead of traditional

EDN with softmax classifier which directly predicts the per-

pixel labels. The input of modified net is the binary mask

(b) (c) (d)(a)

Figure 4. The result of different mask prediction network and

corresponding error image. Green indicates that the algorithm

shrinks compared with ground truth, and red means the prediction

exceed ground truth. The contents from left to right are: (a) Source

/ target image; (b) Image restoration net; (c) Encode-decode net;

(d) Residual mask prediction on the base of (c).

of source image, and the coordinate flow is computed as

intermediate tensor. The final predicting result is not the

per-pixel foreground probability like VSAP network, but a

binary foreground mask. Because of this, our mask predic-

tion cannot be used to fuse multi-view synthesis result as it

does not produce probability, but in return it predicts better

mask for pose-varying humans.

The second modification is to take advantage of the

predicted forward flow, which robustly reflects the structure

in the front side. Experimentally, we find that when the

pose is complicated, the flow based transforming net often

fails to maintain detailed structures and tends to produce

over-smoothed mask margin, as shown in Figure 4 (c). We

propose to extract the mask of the transformed forward flow

from the target mask, and merely predict the remaining part,

namely residual mask. In the training phase, the loss in

the transformed flow region is masked out. We denote the

mask M(x, y) as binary image, with 1 as foreground and

0 as background. Given the transformed mask Mtran(x, y)
and target mask Mtgt(x, y), the residual mask MR(x, y) is

denoted as

MR(x, y) = Mtgt(x, y)⊗ (∼ Mtran(x, y)) (5)

where ⊗ is the per-pixel Boolean and operation, and ∼
is the per-pixel Boolean not operation. In post-processing,

we apply morphological close operation to eliminate tiny

interval space in the residual mask. The final prediction

mask Mfinal(x, y) is generated by

Mfinal(x, y) = Mpred(x, y)⊕Mtran(x, y) (6)

where Mpred(x, y) is the mask produced by flow based

transforming net. ⊕ is per-pixel Boolean or operation.

In our experiments, we tried two kinds of network input:

the source mask together with transforming vector (denoted

in VSAP) and single forward flow. Both inputs achieve

the similar mask prediction accuracy, so we choose the

forward flow as the input to avoid introducing redundant

transforming vectors.
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Figure 5. Comparison of low resolution result.
Table 1. Quantitative comparison with previous methods.

Method
image accuracy flow accuracy mask accuracy

MSE ↓1 SSIM ↑ MSE ↓ δ1.25 ↑ NCC ↑ IoU ↑
EDN+L1 [36] 96.83 0.9488 — — — 0.7528

TVSN[28] 85.35 0.9519 — — — 0.8344

VSAP [40] 131.6 0.9527 34.04 0.5222 0.8093 0.7903

VSAP+M. 90.44 0.9596 34.04 0.5222 0.8093 0.8907

VSAP+M.+F. 87.34 0.9617 13.01 0.6288 0.8687 0.8831

Ours 72.86 0.9670 2.207 0.8630 0.9636 0.9109
1 For each metrics, ↑ means the larger the better and ↓ means the smaller the better.

4. Experiments

Since there is no publicly available dataset for a large

number of 3D human body models (with different clothes

and appearances), we create a synthetic dataset using the

Poser software2. The access link to the dataset could be

found at the end of Section 1. Specifically, human models

with 22 different appearances are generated and each of

them is deformed into 200 to 1200 different poses, forming

a dataset with over 10,000 human models. We render the

textured mesh of a human model with each specific pose to

images, depth and flow respectively, and we select the front

view as the source view, i.e. pose with 0◦, while set other

17 views in the range of [−90◦, 80◦] with interval 10◦ as

the target views. Each pair of source view and target view

contains corresponding masks, depth images and ground

truth backward flow from target view to source view. We

randomly select 80% of the pairs as training data and the

rest as testing data.

For training and evaluation, images, ground truth masks,

depths and flow maps are rendered with a resolution of

200× 200, which eases the learning of the networks. After

the model is trained, for visualization, we re-render a source

image with a resolution of 500× 500, and upsample the es-

timated backward flow map to the same size to perform the

view synthesis, yielding visually more satisfactory results.

Training details. In the training phase, the depth net

is firstly trained, during which we augment the training

data by randomly rotating the front view pose between

[−30◦, 30◦] with a interval of 5◦. Then, given the predicted

2http://my.smithmicro.com/poser-3d-animation-software.html

depth results, the flow net and mask net are additionally

trained. We use the ‘Adam’ optimizer to train the three

networks, with an initial learning rate as 1−4, and we reduce

it by a ratio of 0.5 at every 50,000 iterations. For flow net,

the loss weight of image ηy and flow ηf in Equation 4 are

10−6 and 1 separately.

4.1. Quantitative Results

For evaluation, we randomly selected 2000 pairs from

our testing data to compare different algorithms. The met-

rics for evaluating synthesized images, backward flow and

human mask are,

• Mean Squared Error(MSE), which is used to measure

color difference between synthesized image/flow and

ground truth image/flow. For backward flow, only the

pixels with valid ground truth flow are counted.

• Structural SIMilarity (SSIM) Index [37, 26], which

has value in [−1, 1], measuring the structural similarity

between synthesized image and ground truth.

• Percentage of correctness under threshold δ: Formally,

for predicted flow fi at pixel i, given ground truth

fi, it is regarded as correct if max( fi
fi
, fi

fi
) < δ is

satisfied. We count the portion of correctly predicted

pixels. Here we set δ = 1.25.

• Normalization Cross Correlation (NCC), which has

value in the range of [−1, 1], measuring the correctness

of backward flow direction.

• Intersection over Union (IoU), which has value in the

range of [0, 1], measuring the quality of segmented

mask.

4455
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Figure 6. Comparison of high resolution result. We recommend to zoom in the figure to see the detailed performance.

-90 ° -60 ° -30° source +30 ° +60 ° +80 °

Figure 7. Results on synthesizing full viewpoints.

We compare our approach against several deep learning

based state-of-the-art algorithms. As introduced at Section

2, EDN + L1 [36] directly synthesizes image pixels without

intermediate representations using L1 loss. VSAP [40]

takes advantage of spatial transformer to produce interme-

diate backward flow for synthesis. TVSN [28] is a cascade

system consists of a spatial transformer net (DOAFN) and

a completion net. The DOAFN has the same structure with

VSAP, generating an appearance flow based synthesis result

together with a visibility map. Then the completion net

refines it by hallucinating the invisible region.

We compare our method with previous methods in the

quality of image, backward flow and segmented human

mask. The comparison results are shown in Table 1.

For evaluating the human segmentation mask, since EDN,

TVSN does not have explicit mask produced, we use the

non-zeros area from their predicted images.

Though VSAP has proven its superiority towards

EDN+L1 on rigid objects like chairs and cars[40], our ex-

periments show that VSAP performs poorer than EDN+L1

on pose-varying human dataset. The main problem is

the poor mask prediction result, so we provide VSAP the

masks from flow based mask prediction net, which makes it

achieve lower MSE loss comparing to EDN+L1. Addition-

ally, we supplement the ground truth flow as supervision

in training, denoted by ‘VSAP+M+F’, yielding even better

results from finding correct pixels at source images. TVSN

takes advantages of both adversarial and perceptual loss to

improve on the base of VSAP, but its effectiveness is limited

as it cannot improve the region where VSAP fails. At the

last row, our model produces the best results. Through

the flow evaluation we can see that our flow accuracy is

markedly higher than VSAP+M.+F., which contributes a lot

to prediction quality improvement.

We also compare our method with VSAP[40] on rigid

objects by following their experimental setup using the ‘car’

and ‘chair’ categories derived from ShapeNet[4]. Different

from our setting for human body, the range of target views

to synthesize are expanded to [−180◦, 170◦] with an inter-

val of 20◦, and no front view assumption is applied. We

keep the image size as 200 × 200 according to our model

setup. The quantitative comparison in Table 2 shows that

our method is comparable or slightly better than VSAP

for rigid objects. We believe it is because the cars and

chair share similar shape that reduce the variation space,

which alleviate the difficulty for a network to learn a good
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Figure 8. Synthesized results using real images. The image in the dashed box is the input image, and on its right there are (1) Our fine-tuned

result; (2) Our result without fine-tuning; (3) VSAP+M. result. The box with yellow dashed line indicates the failure case.

Table 2. Comparison with rigid objects.

Method
car chair

MSE SSIM MSE SSIM

VSAP 265.1 0.9061 499.3 0.8890

Ours 263.4 0.9058 464.3 0.8904

representation even without 3D geometry constraints.

4.2. Visualization

Figure 5 and Figure 6 visualize the prediction result

of ours and other methods in low resolution 200 × 200
(LR) and high resolution 500 × 500 (HR) respectively. As

indicated before, The LR result is directly generated from

the network, while the HR prediction is warped from HR

source image using an up-sampled backward flow with bi-

cubic interpolation. EDN+L1 and TVSN are not shown

in the figure because these two methods don’t produce the

explicit flow for HR image synthesis. As expected, previous

methods tend to have the wrong texture in parts of arms and

legs, especially when self-occlusion occurs. Our method

does much better in tackling these issues as we leverage

the geometry of the underlying human body. From the HR

results, we can see more details on faces are well preserved,

demonstrating the accuracy of the predicted flow. Finally,

Figure 7 gives the prediction from a source view to all 17

target views, i.e. −90◦ to +80◦.

4.3. Model Transfer to Real Images.

Besides synthesized examples, we took many real world

images using Kinect2 for testing the effectiveness of our

model trained on synthetic data. Here, we re-size the

recorded images to fit the network input. Specifically, we

only fine-tune the depth network by 8,000 frames of RGB-D

images for handling the domain transfer issue, while keep-

ing the rest of the networks the same. As shown in Figure

8, we compare the predictions with/without handling depth

net domain transfer, and the prediction from ’VSAP+M.’

which is presented before. The first observation is that

depth net with domain transfer handled does improve the

visual quality, while the model without fine-tuning can still

maintain the pose structure. In contrast, VSAP is much

more sensitive to unfamiliar appearances and shape from

real data. This demonstrates that our model with 3D con-

straints mines more meaningful cues from the synthesized

data, yielding better robustness.

5. Conclusion

We present a novel method that synthesizes novel views

of the human body from a single image. Previous methods

like image generation network[36] and spatial transforming

network[40] are based on the assumption that the objects

share similar shapes. The articulated and deformable hu-

man body renders previous methods ineffective. We apply

a strategy that first predicts shape from appearance, and

then synthesizes the optical flow and mask. A novel sys-

tem architecture is developed, in which the flow and mask

prediction networks follow a depth prediction network. The

two networks are linked via a perspective projection layer in

which geometric principles are explicitly applied. We show

that our approach significantly improves the view synthesis

quality for pose-varying human body.

Our method can still be improved in some aspects. The

lack of inference ability of our network makes our synthesis

results are implausible when the rotation angle is larger than

90◦. Though TVSN[28] explored this problem, we find that

the proposed approach does not work well for pose-varying

human data. Besides, prior on human body may be used to

further improve view synthesis quality.
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