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Abstract

Many existing translation averaging algorithms are ei-

ther sensitive to disparate camera baselines and have to

rely on extensive preprocessing to improve the observed

Epipolar Geometry graph, or if they are robust against dis-

parate camera baselines, require complicated optimization

to minimize the highly nonlinear angular error objective.

In this paper, we carefully design a simple yet effective

bilinear objective function, introducing a variable to per-

form the requisite normalization. The objective function

enjoys the baseline-insensitive property of the angular er-

ror and yet is amenable to simple and efficient optimiza-

tion by block coordinate descent, with good empirical per-

formance. A rotation-assisted Iterative Reweighted Least

Squares scheme is further put forth to help deal with out-

liers. We also contribute towards a better understanding of

the behavior of two recent convex algorithms, LUD [20]

and Shapefit/kick [9], clarifying the underlying subtle d-

ifference that leads to the performance gap. Finally, we

demonstrate that our algorithm achieves overall superior

accuracies in benchmark dataset compared to state-of-the-

art methods, and is also several times faster.

1. Introduction

Modern large-scale Structure-from-Motion (SfM) sys-

tems have enjoyed widespread success in many applica-

tions [26, 33, 27, 21, 17]. Earlier methods often adopt an

incremental method by adding the cameras one by one se-

quentially as the size of the model grows up. As a con-

sequence, the quality of the result heavily depends on the

order in which the cameras are added, and the accumulated

error often leads to significant drift as the size of the mod-

el increases. Therefore, frequent intermediate bundle ad-

justments (BA) [29] have to be applied to obtain stable re-

sult, which unfortunately increases the computational cost

substantially. Given such disadvantages, the global SfM

method emerges as a serious alternative. Unlike the incre-

mental method, the global method attempts to determine the

absolute poses for all the cameras simultaneously from all

the observed pairwise Epipolar Geometry (EG) [12]. Such a

holistic approach spreads the error as uniformly as possible

to the whole model, avoiding the problem of error accumu-

lation and drift. Thus, BA needs to be run only once as a

final refinement, leading to a more efficient system.

Formally, a global SfM algorithm takes as input a view

graph G=(V,E), where each node Vi in V and edge Eij

in E represent respectively a camera and relative pose

(Rij , tij) between the camera pair i and j whose fields of

view overlap. It aims to find the absolute rotation Ri (a.k.a.

rotation averaging) and location ti (a.k.a. translation aver-

aging) for each camera (up to a gauge freedom), such that

the observed pairwise relative poses are best explained. In

the noiseless case, the following two equations hold:

R
T
i Rj = Rij ,

tj − ti

||tj − ti||2
= Ritij . (1)

Typically, rotation averaging is performed before transla-

tion averaging. In this paper, we follow this practice and

shall focus on the second equation to perform translation av-

eraging. Note that rotation is assumed to have been solved,

and henceforth, for brevity, we shall denote Ritij as vij .

Translation averaging is recognized as a hard task. One

of the reasons is that the input relative translation estimate

is sensitive to small camera baselines [7]. More important-

ly, EG only encodes the relative direction between cam-

eras without any magnitude information. This causes a re-

move of the measurement space (directions between pair-

wise cameras) from the solution space (camera locations);

this gap complicates the task much more, posing a signifi-

cant challenge for the objective function design. The geo-

metrically more meaningful objective would be to minimize

the angular error between unit direction vectors [24, 32], but

this leads to highly nonlinear functions that require compli-

cated optimization. Instead, many recent methods simply

ignore the normalization terms required for obtaining unit

vectors, thereby yielding various forms of quasi-Euclidean

distance terms in the objectives [16, 20, 9]. Often, such ex-

pediency allows the problem to be formulated as a convex

optimization problem. However, the serious qualification of

such magnitude-based objective functions is that they suffer

from unbalanced weighting on each individual term when
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the camera baselines are disparate in lengths, which may

lead to biased solutions. These methods usually employ

extensive preprocessing (e.g. outlier filtering) of the view

graph to obtain better relative translations as input. This re-

lieves but does not resolve the issue fundamentally and the

accuracy is still limited in practice.

The contributions in this paper are threefold. (1) We

show that by carefully designing the objective function,

the numerical sensitivity of the solution to different cam-

era baseline lengths can be readily removed. Specifically,

we propose a return to the geometrically more meaning-

ful, angular-error based objective function, putting forth a

simple yet accurate Bilinear Angle-based Translation Av-

eraging (BATA) framework. The key idea is to introduce

a variable that performs the requisite normalization for a

baseline-insensitive angular error term. This splits the orig-

inal problem into easier subproblems, which can be easily

optimized by block coordinate descent; empirically, the al-

gorithm converges fast and yields superior performance. (2)

To deal with outlier EG, we put forth a rotation-assisted Iter-

ative Reweighted Least Squares (IRLS) scheme that lever-

ages on the stable solution from rotation averaging as an

extra source of information to determine the reliability of

each observation in the view graph. (3) Our objective for-

mulation also lends perspective to the behavior of vari-

ous algorithms with a magnitude-based objective function

[16, 20, 9]. We reveal that the subtle difference in the s-

cale ambiguity removal strategy can nevertheless lead to

rather different performance in such algorithms. Specifical-

ly, we build the equivalence between Shapefit/kick [9] and

a slightly revised version of LUD [20], which allows us to

trace the difference between Shapefit/kick and LUD to the

scale ambiguity removal constraint. We then demonstrate

that a weaker lower-bound constraint can cause a squashing

effect on the overall shape of the recovered camera loca-

tions, especially under the presence of disparate baselines;

conversely, a stronger constraint would help desensitize the

effect of unbalanced baselines.

We demonstrate the utility of the proposed framework

by extensive experiments on both synthetic and real data.

In particular, we obtain superior performance on the bench-

mark 1DSfM dataset [32] both in terms of accuracy and effi-

ciency compared to state-of-the-art methods. The code will

be made publicly available.

2. Related Work

Rotation Averaging. Many methods exist for this task [11,

4, 15, 3, 8, 10]; we refer readers to [31] for a survey.

View Graph Preprocessing. Some methods [35, 32] utilize

loop consistency to remove outlier EG in the view graph.

Some other works attempt to refine the whole view graph

using loop consistency [28, 23] or low-rank constraint [22].

A robust re-estimation of the pairwise translation after the

recovery of absolute rotation is proposed in [20].

Translation Averaging. The pioneering work by Govindu

[10] proposes to minimize the cross product between the

relative camera location tj−ti and the observed direction

vij . An ad-hoc iterative reweighting scheme is adopted to

reduce the bias from different baseline lengths. As reported

in [32], this generates poor accuracy in challenging dataset.

Some methods aim to minimize the relaxation of the end-

point distance
∥

∥tj−ti−‖tj−ti‖2vij

∥

∥

2

2
or its variants. For

example, Moulon et al. [16] propose to minimize a relaxed

version using the L∞ norm. A similar penalty is utilized in

[20] but with a least unsquared deviations (LUD) form to

be more robust. Goldstein et al. [9] propose a Shapefit/kick

scheme based on the alternating direction method of mul-

tipliers (ADMM) to minimize the magnitude of the projec-

tion of tj−ti on the orthogonal complement of vij . Despite

its convex formulation, works such as [16, 20, 9] suffer from

bias due to the unnormalized camera baseline magnitude in

their objectives, and often have to resort to extensive pre-

processing strategies reviewed in the preceding paragraph

to take more accurate EG view graph as input.

Works that minimize the angular residual between tj−ti

and vij , denoted as θij , are relatively rare in the literature.

One of the representative works is that of Sim and Hart-

ley [24]. They show that minimizing the maximal absolute

value of tan θij from all observations, i.e. L∞ norm, can

be reformulated into a quasi-convex problem and a globally

optimal solution can be found by solving a sequence of Sec-

ond Order Cone Programming (SOCP) feasibility problem-

s. However, it is well known that L∞ is sensitive to outliers,

and solving multiple SOCP problems restricts their method

to medium-size problems. Wilson et al. [32] present an-

other attempt by minimizing the residual of sin θij/2. The

trust-region method Levenberg-Marquard is applied to op-

timize the resultant highly nonlinear function. In our work,

we present another objective function along this line of ap-

proach; it minimizes the residual of sin θij in essence, is

easily optimizable and yet achieves superior performance.

Other heuristics have been proposed. These include

coplanar constraint on triple cameras [13], reprojection er-

ror [14, 15], reducing the problem into similarity averaging

by local depth estimation [6], and others [25, 5, 30, 19, 2].

We note that existing methods often include scene points

to assist translation averaging and/or involve careful outlier

filtering step. In this paper, we demonstrate the possibility

of achieving good accuracy in practice even if we directly

process the raw view graph. Such a concise framework is

more amenable to efficient processing.

3. Method

3.1. Bilinear Angle-based Translation Averaging

Instead of penalizing the angular deviation θij between
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Figure 1: Geometric interpretation of the residuals penalized by

different objective functions. (a) θij . (b) BATA. (c) 1DSfM. (d)
∥

∥tj−ti−‖tj−ti‖2vij

∥

∥

2
. (e) Shapefit/kick and RevisedLUD. Re-

fer to the text for more details.

tj−ti and the observed vij (illustrated in Fig. 1(a)) direct-

ly, many existing algorithms adopt an objective function of

the form
∑

ij∈E

∥

∥tj−ti−‖tj−ti‖2vij

∥

∥

2

2
(Fig. 1(d)) or its

variants. Note that this objective function is not normalized

by the vector magnitude ‖tj−ti‖2, and is thus plagued by

numerical difficulties when there is large variation in the

magnitudes of tj−ti. In particular, though this objective

will yield the true solution in the absence of noise, it is not

necessarily statistically optimal under noisy condition. Let

us illustrate this point via a toy example in the 2D plane.

Referring to Fig. 2, suppose we know the ground-truth lo-

cations of three neighboring cameras to be at (-1, 0), (0, -1)

and (5, 0) and would like to localize the fourth camera, with

ground truth at (0, 0), according to its observed pairwise

directions with respect to the three neighboring cameras.

Due to noise, suppose all these observed directions devi-

ate from their true direction by 3◦. We use the red dot to

denote the best location (found by exhaustive search on 2D

grid) that minimizes the preceding magnitude-based residu-

al. We also use the black star to denote the best location that

minimizes the squared angular deviation
∑

ij∈E θ2ij . Clear-

ly, the solution in the former case is much worse off com-

pared to that in the latter. In the former case, the objective

function is essentially trying to determine the intersection

point of the three direction vectors (in some least squares

sense). This process is highly susceptible to errors when

one or more cameras are far away. It follows that using such

a magnitude-based objective function for the translation av-

eraging problem would also experience similar sensitivity

issue when there are disparate camera baseline distances.

In view of the foregoing discussion, we propose the fol-

lowing angle-based objective function instead:

min
ti,i∈V,
dij ,ij∈E

∑

ij∈E

ρ(||(tj − ti)dij − vij ||2), (2)

s.t.
∑

i∈V

ti = 0,
∑

ij∈E

〈tj − ti,vij〉 = 1,

dij ≥ 0, ∀ij ∈ E,

where ρ(·) stands for a robust M-estimator function to be

discussed in the next section. dij is a non-negative variable.

The first two constraints on t are to remove the inherent po-

sitional and scale ambiguity. We now show that the optimal

(-1,0)

(0,-1)

(5,0) X

Y
Neighbouring Cameras 
Ground-truth Location 
Observed Directions 
Magnitude-based Estimate 
Angle-based Estimate------------

Figure 2: A toy example showing the sensitivity of different ob-

jectives to disparate baselines. See text for more explanations.

solution of this problem essentially minimizes an angular

error
∑

ij∈E ρ(h(θij)), where

h(θij) =

{

sin θij , θij ≤ 90◦;

1, θij > 90◦.
(3)

First, note that for any given candidate solution t̂, each dij
serves to scale the relative location vector t̂j−t̂i such that

the Euclidean distance between the endpoint of (t̂j−t̂i)dij
and the unit vector vij is minimized. It follows that if the

angle between t̂j−t̂i and vij is less than 90◦, the optimal

value dij would be such that (t̂j−t̂i)dij equals to the pro-

jection of vij onto the direction along t̂j−t̂i and the penalty

amounts to sin θij (Fig. 1(b)). The constraint dij > 0 pre-

vents dij from overcompensating when θij > 90◦, other-

wise the objective would decrease when θij increases from

90◦ to 180◦. With this constraint, the optimal dij when

θij > 90◦ would be 0 and the penalty would be 1.

As an alternative viewpoint, we could have regard-

ed our objective function as a functional lifting and re-

laxation of the formulation in 1DSfM [32] which is

an unconstrained minimization of the objective function
∑

ij∈E ρ(
∥

∥(tj−ti)/‖tj−ti‖2−vij

∥

∥

2
). The scale factor

1/‖tj−ti‖2 is replaced with the variable dij together with a

relaxation of the constraint from dij=1/‖tj−ti‖2 to dij>0.

We note that since the scale factor in 1DSfM always nor-

malizes the vector tj−ti to a unit vector, its objective

amounts to the penalty term 2 sin(θij/2) (Fig. 1(c)), which

bears a close resemblance to the sin θij established in (3). It

is clear that without any prior knowledge on the noise distri-

bution, there is no reason for one to claim superiority over

the other. Thus, while one can regard our objective function

as a relaxation of that of 1DSfM, one should not see the re-

laxed version as a poorer cousin of the two, since there is

nothing sacrosanct about 2 sin(θij/2) over sin θij in terms

of its geometrical meaning. We also note that the relaxation

reduces the original highly nonlinear term into a bilinear

one that permits simple alternating optimization; compared

to the solution of 1DSfM from Ceres [1], we empirically ob-

serve that BATA can generally recover the camera locations

more reliably in real Internet photo collections, especial-

ly for those challenging sparsely connected cameras. Also

note that our penalty term in (3) levels off after θij>90◦,

and this might bestow greater robustness to our formulation.
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3.2. Robust Rotation-Assisted IRLS

As the estimated EG view graph often contains gross

outliers, we thus embed the least squares objective into

a M-estimator ρ(·). Iterative Reweighted Least Squares

scheme is often used to optimize such objective, whereby

a weighted least squares problem is solved in each itera-

tion. The weight function, denoted as φ(·) here, returns

a value proportional to the goodness of fit of an observa-

tion ij, evaluated at the last iteration. Note that the specif-

ic form of φ(·) depends on the M-estimator function ρ(·)
being used, e.g. for Cauchy ρ(ε)=log(1 + ε2/α2) and

φ(ε)=α2/(α2 + ε2), where ε denotes the residual for each

observation and α is the loss width. Since it is well known

that rotation averaging can often be computed more reli-

ably [11, 4], a natural idea is to leverage its result to assist

the reliability assessment or weighting for each observed

EG. We thus use for this purpose the following residual

ε = (‖(tj−ti)dij−vij‖
2
2+β‖RT

i Rj−Rij‖
2
2)

1/2, whereby

the goodness of fit of the rotation estimate also contributes

to the weighting process. Here, β is a predefined weighting

factor (set as 1 for all the experiments). It turns out that this

strategy can generally improve the accuracy and speed up

the convergence of BATA. For each IRLS iteration, we use

Block Coordinate Descent (BCD) to optimize t and d, as

summarized in Algo. 1.

Algorithm 1 IRLS-BCD solver

Input: View Graph G = (V,E), Rotation Averaging Result.

Output: Camera Locations ti, ∀i ∈ V .

1: Initialize ti, ∀i ∈ V,Wij , ∀ij ∈ E; Set n = 0;

2: while n < IRLSIter AND not converged do

3: m = 0;

4: while m < BCDIter do

5: Update dij : dij = max(
〈tj−ti,vij〉
||tj−ti||

2

2

, 0);

6: Update ti : Solve a sparse, weighted, constrained linear least

squares system of equations collected from (2) by Cholesky de-

composition (see supp. material for more details);

7: m = m+ 1;

8: end while

9: Update Wij : Wij = φ(ε), where

ε = (‖(tj−ti)dij−vij‖
2

2
+β‖RT

i Rj−Rij‖
2

2
)
1

2 ;
10: n = n+ 1;

11: end while

3.3. Why does Shapefit/kick outperform LUD?

Using the same geometric analysis, we are now ready to

clarify why Shapefit/kick [9] outperforms LUD [20] (if run

on the same problem instances), as reported in [9] and veri-

fied by our experiments. For ease of discussion, we present

their respective formulations below.

LUD:
min

ti,i∈V ;
dij ,ij∈E

∑

ij∈E

||tj − ti − dijvij ||2, (4)

s.t.
∑

i∈V

ti = 0; dij ≥ c, ∀ij ∈ E,

where dij is deemed as a relaxation of ‖tj − ti‖2.

Shapefit/kick:

min
ti,i∈V

∑

ij∈E

‖P
v
⊥

ij
(tj − ti)‖2, (5)

s.t.
∑

i∈V

ti = 0,
∑

ij∈E

〈tj − ti,vij〉 = 1,

where P
v
⊥

ij
denotes the projection onto the orthogonal com-

plement of the span of vij .

To tease out the connection between these formulations,

we replace the LUD’s constraint dij ≥ c, which is for re-

moving scale ambiguity and preventing all cameras from

collapsing to a single point (under such case the penal-

ty cost vanishes), with the one used in Shapefit/kick, i.e.
∑

ij∈E〈tj−ti,vij〉=1. We claim that the resultant opti-

mization problem, denoted as RevisedLUD, has exactly the

same optimal solution as that of Shapefit/kick. To verify

this, we note that removing the constraint dij ≥ c reduces

dij to a completely free variable. Similar to the analysis

for our formulation (2), for a set of estimates t̂i, ∀i ∈ V ,

the optimal dij would be such that dijvij equals to the pro-

jection of t̂j−t̂i onto the direction along vij . It is imme-

diately clear that the residual being minimized in Revised-

LUD is ‖tj−ti‖2 sin θij (Fig. 1(e)) for any θij . It is also

clear that ‖P
v
⊥

ij
(tj−ti)‖2 coincides with ‖tj−ti‖2 sin θij

and this establishes our claim. We note here that Revised-

LUD can also be assisted by rotation when optimized with

IRLS in Algo. 1 with small changes (e.g. step 4 becomes

dij= 〈tj−ti,vij〉). We will have occasion to use this later

when a convex initialization for BATA is called for.

Given the above equivalence, we can restrict our at-

tention to the sole difference between the two algorithms,

namely in the constraints discussed above, with a view to

elucidating the impact that different formulations of these

constraints have on performance. First observe that while

the constraint used in RevisedLUD fixes the overall scale to

a constant value, the one in LUD, i.e. dij ≥ c, only im-

poses a lower bound on the scale. We note that the latter is

a weaker constraint, in the sense that while it prevents the

collapsing of cameras all the way to a single point, it still

allows a partial shrinking to occur, i.e. shrinking without

respecting the overall global shape. To see the difference

more explicitly, suppose we feed the optimal solution t
S

obtained from the more strongly constrained (5) into (4).

The solution space in (4) can be conceptually distinguished

into two optimization regimes 1 and 2. Regime 1 admits

solution of the form γtS where γ is a scale to be optimized

together with dij’s. Clearly, the optimal solution in regime

1 is essentially identical to that of (5). However, it is gener-

ally not the optimal solution if we permit regime 2, which

solves the original (4) without the γtS restriction. As a con-

sequence, the total residual may be further reduced by ad-

justing the scale of each residual term individually without

respecting the overall global shape. In particular, those i−j
terms representing large baselines often have larger residu-
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camera 1: (0,1)

camera 2: 
   (-1,0)

camera 3: 
   (0,-1)

camera 4:     

(10,0)

Ground Truth Shapefit/kick LUD
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(b) (c) 

Figure 3: A toy example illustrating the squashing effect. (a) True

and estimated camera locations (for better shape comparison, the

three sets of camera configurations are aligned at camera 2 and

normalized to have the same perimeter in the triangle formed by

camera 1-3). (b)-(c) ‖tj−ti‖2 and ‖tj−ti−dijvij‖2 plotted a-

gainst i−j, which denotes the edge between camera i and j.

als as any slight deviation of the solution from the obser-

vation is scaled by the baseline magnitude. As the cor-

responding dij’s are less likely to have reached the lower

bound c (since the optimal dij=min(
〈

t̂j − t̂i,vij

〉

, c) for

the solution t̂), it thus pays to scale those larger baselines

||tj−ti||2 and dij’s down by shrinking camera i and j clos-

er together as long as the reduction in residuals at these i−j
terms can more than make up for the increase in residuals

in other terms. The best solution would therefore exhibit a

partial shrinking effect, with the overall shape of the cam-

era configuration squashed. We give a concrete toy exam-

ple to illustrate how disparate baselines would exacerbate

this tendency. For simplicity, let us look at a four-camera

2D case where the true camera locations are at (0, 1), (-1,

0), (0, -1) and (10, 0), and all their pairwise relative direc-

tions are observed with a 3◦ noise. We first visualize the

solutions obtained from (4) and from (5) together with the

ground truth in Fig. 3(a). As can be seen, the distant camera

4 gravitates significantly towards cameras 1-3 in the solu-

tion of (4). We also plot the pairwise camera distances and

the residuals of the best solutions (with c=1) from regime 1

(optimized by linearly searching γ) and 2 in Fig. 3(b)&(c),

respectively. Fig. 3(b) corroborates what we said above:

compared to the solution of regime 1, regime 2 tends to pull

those well-separated camera pairs closer together. Note that

for those camera pairs that have short baselines, their corre-

sponding dij has already reached the lower bound, and thus

the ti and tj cannot shrink in tandem with those of the well-

separated cameras without ‖tj−ti‖2 deviating too far from

the dij , leading to squashing effect in the camera configu-

ration. Referring to Fig. 3(c), first note that in this toy ex-

ample the solutions of both regime 1 and 2 agree with most

of the observations exactly; we attribute this to the fact that

the objectives of (4) and (5) are actually based on a group-

sparsity term [34, 18], i.e. L2,1 norm, which favors sparse

residuals. Note also that regime 2 achieves a lower total

residual (0.727) compared to regime 1 (0.747) by suppress-

ing the large residual (the lone yellow peak) at the expense

of the small residuals, validating our analysis above.

This observation is generally useful and applicable to

other methods where such lower bound exists (e.g. [16]),

or latter works based on LUD framework (e.g. [22, 27]).

4. Experiments

4.1. Synthetic Data Experiments

We first study the performance of different methods on

synthetic data. To synthesize the view graph, we first gener-

ate the ground-truth camera locations t̄i, ∀i ∈ V , by draw-

ing i.i.d. samples from N(0, I3×3). Denoting the num-

ber of cameras as n (set as 200 here), the pairwise edges

E are then drawn randomly from the Erdős-Rényi model

G(n, p), meaning each edge is observed with probability p,

independently of all other edges. We then perturb the ob-

served pairwise directions to mimic the effect of noises and

outliers. As opposed to [20, 9] where Gaussian noises are

added to the endpoint of the direction vector followed by a

normalization to be of unit norm, we directly add noise to

the orientation of the pairwise direction; we believe this to

be more reflective of the actual perturbation. Specifically,

we obtain each corrupted pairwise direction vij as follows,

vij =











v
u
ij , with probability q,

R(σθgij ,h
u
ij)

t̄j − t̄i

||t̄j − t̄i||
, otherwise;

(6)

where vu
ij and h

u
ij are i.i.d. unit random vectors drawn from

uniform distribution on the unit sphere and the orthogonal

complement of the span of
t̄j−t̄i

‖t̄j−t̄i‖2

, respectively. θgij is

drawn from i.i.d. N(0, 1) and σ is a scale controlling the

noise level. R(σθgij ,h
u
ij) is a rotation matrix around the

aixs h
u
ij for an angle σθgij (counter-clockwise). Like [20],

we use the normalized root mean square error (NRMSE)

to evaluate the accuracy: NRMSE=
√

∑

i∈V ‖t̂i − t̄i‖22,

where t̂i, ∀i ∈ V is the set of estimated locations. Both t̂

and t̄ are centralized and normalized, i.e.
∑

i∈V t̂i = 0,
∑

i∈V ‖t̂i‖
2
2 = 1 and the same is true of t̄.

We compare the performance of different objectives in-

cluding LUD [20], Shapefit/kick [9], the nonlinear objec-

tive from 1DSfM [32], and BATA. We follow 1DSfM to

use Huber as the robust scheme for BATA. For 1DSfM and

BATA, we evaluate both random initialization and initial-

ization from RevisedLUD. In the latter, we run a few iter-

ations (IRLSiter=10 & BCDiter=1) of naı̈ve IRLS for Re-

visedLUD to bootstrap the 1DSfM and BATA (the results

are denoted as “Con.Init.+1DSfM” and “Con.Init.+BATA”).

We use Ceres [1] for the optimization of 1DSfM. LUD and

Shapefit/kick are optimized by IRLS and ADMM. All meth-

ods are run until they are well converged (we fix the number

of iterations for BATA as IRLSiter=20 & BCDiter=5).

We investigate the performance under six combinations

of observation ratio p and outlier ratio q, each with increas-

ing noise level σ, as shown in Fig. 4. The results are aver-
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Figure 4: NRMSE from different methods under different view

graph setup (p, q) and noise level σ.
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Figure 5: r1 and r2 from the (p, q)=(0.3, 0.2) case.

aged over 20 independently generated view graphs. As we

can see, angle-based objective functions generally achieve

lower NRMSE compared to the magnitude-based counter-

parts. In particular, both 1DSfM and BATA can achieve

better performance than LUD and Shapefit/kick even with

random initialization, with the difference more notable un-

der larger noises. Additionally, we observe that a good ini-

tialization is not important for 1DSfM here. We also ob-

serve that although 1DSfM and BATA tend to perform e-

qually well in the outlier-free configurations, BATA, if boot-

strapped with a good initialization, achieves higher accura-

cies when the camera configuration becomes increasingly

ill-conditioned with lower p and higher q, e.g. the bottom-

left case. We attribute this to the leveling off in the objec-

tive of BATA. Next, we demonstrate the partial shrinking

bias caused by the lower-bound constraint in LUD. Under

increasing noise, we monitor the following two ratios

r1=pct({Sij |ij∈E}, 75)/pct({Sij |ij∈E}, 25),

r2=pct({‖ti‖2|i ∈ V }, 75)/pct({‖ti‖2|i ∈ V }, 25),

to measure the extent of the partial shrinking bias, where

Sij=‖tj−ti‖2 and pct(a, b) denotes the b-th percentile of

a. We plot the result for the (p, q)=(0.3, 0) case in Fig. 5

and leave other cases to the supp. material. As can be seen,
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Figure 6: (a) Illustration of the two camera clusters. (b)-(c) N-

RMSE and r3. Both are averaged over 20 trials.

compared to those in Shapefit/kick, both r1 and r2 in LUD

become increasingly smaller than the ground truth under in-

creasing noise level, indicating a squashing effect.

Finally, we test the sensitivity of the algorithms to

an unbalanced distribution in the baseline magnitudes.

For this purpose, the true camera locations are sam-

pled from two separate clusters N([−L/2, 0, 0], I3×3) and

N([L/2, 0, 0], I3×3), as illustrated by the dots in Fig. 6(a).

The larger the L is, the more significant the unbalance in the

baseline magnitudes is. We fix (p, q)=(0.3, 0.2) and σ=10,

and increase the value of L from 0 to 10. For each solution,

we compute NRMSE1 and the ratio r3 = l12/(l1 + l2). l12
denotes the distance of the two cluster centers. l1 and l2
denote the median value of the set of distances from each

point to their centers in the two clusters respectively. Note

that r3 explicitly measures the squashing effect caused by

the different shrinking rates experienced by the longer inter-

cluster baselines versus that of the shorter intra-cluster base-

lines. As shown in Fig. 6(b)-(c), under increasing L, the N-

RMSE’s from the two magnitude-based methods, especial-

ly LUD, increase more significantly, meaning that they are

more susceptible to the disparate baselines; it is also clear

that r3 from LUD decreases substantially compared to the

ground truth, indicating a significant squashing effect.

4.2. Real Data Experiments

We now present the results on real unordered photo col-

lections provided by the 1DSfM dataset [32] (see Fig. 7(a)

for examples). The raw largest connected view graph re-

leased along with the dataset is used as our input. Similar

to [32, 9, 6, 20], we apply the method of [4] to perform ro-

tation averaging. To quantitatively evaluate the quality of a

translation averaging estimate, it is compared with the gold

standard output by Bundler [26]; the two sets of camera po-

sitions are robustly registered using the codes of [32].

We evaluate the performance of a few different setups

under BATA to understand its behavior. The first case of in-

terest is to simply run BATA from random initialization in

two settings, without or with rotation involved in the IRL-

S re-weighting (denoted as “R.I. w/o R.” and “R.I. w R.”).

Next, we use as initialization the moderately accurate output

of a convex algorithm: to this end, we run a few rotation-

1Here, we centralize and normalize two clusters separately to avoid the

inherent decreasing of NRMSE while increasing L.
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(b) LUD (c) Shapefit/kick (d) BATA (e) Bundler (a) Example images 

Figure 7: Visualization of the point clouds after final BA on the NYC Library data. (a) depicts two images of the scene, with the red ellipses

highlighting two sculptures. (b)-(e) show the resultant point clouds by the respective methods.

Data 1DSfM[32] LUD[20] Shapefit/kick[9] Cui[6]
BATA

R.I. w/o R. R.I. w R. Con. Init. w/o Rot. w Rot.

Name Nc ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē #iter ẽ ē #iter ẽ ē ẽ ē #iter ẽ ē #iter

Piccadilly (PIC) 2508 1.4 6e3 - - 1.2 15 1.3 2.5 4.3 13.8 100 1.5 7.5 78 3.0 5.0 1.0 5.2 100 1.0 4.2 57

Union Sq. (USQ) 930 5.0 2e3 - - 8.9 47 5.5 12.7 7.2 15.4 100 6.3 14.9 100 6.2 11.9 4.3 12.4 100 4.3 12.3 100

Roman For. (ROF) 1134 3.2 2e4 - - 4.3 25 2.9 9.4 3.2 24.2 100 2.4 23.7 100 9.4 20.8 1.6 9.9 100 1.6 16.3 88

Vienna Cath. (VNC) 918 2.1 3e4 5.4 10 1.9 11 2.7 5.9 2.5 18.2 100 2.0 16.5 77 6.1 13.1 1.9 12.1 99 1.9 13.3 74

Piazza Pop. (PDP) 354 3.0 54.2 1.5 5 3.6 5.9 2.0 2.7 2.1 11.0 100 1.9 8.9 96 1.4 6.5 1.7 6.7 100 4.2 6.2 62

NYC Library (NYC) 376 0.9 1e4 2.0 6 1.4 162 0.8 1.9 1.0 9.1 100 0.7 6.6 87 1.1 3.3 0.7 3.2 83 0.6 2.7 61

Alamo (ALM) 627 0.8 1e3 0.4 2 0.9 5.0 0.5 2.0 0.6 7.2 85 0.6 6.2 49 1.8 3.9 0.5 3.4 61 0.6 3.3 40

Metropolis (MDR) 394 3.8 6e4 1.6 4 6.0 81 2.7 10.6 3.6 34.1 100 2.1 24.5 85 4.5 15.7 4.0 15.3 97 1.8 12.1 64

Yorkminster (YKM) 458 1.7 1e4 2.7 5 - - 2.3 5.7 1.2 15.9 100 1.0 15.2 98 4.4 12.8 1.3 8.4 100 0.9 8.0 85

Montreal N.D. (MND) 474 0.8 5e4 0.5 1 0.8 1.7 0.4 0.7 1.0 4.0 94 0.5 1.8 69 1.0 1.7 0.4 0.8 64 0.3 0.7 45

Tow. London (TOL) 508 3.1 6e3 4.7 20 2.3 164 1.9 11.2 2.5 25.2 100 2.3 18.5 99 5.1 22.9 2.1 13.5 100 2.2 16.0 100

Ellis Island (ELS) 247 1.8 9.8 - - 1.9 12 2.5 5.5 1.6 22.5 97 1.5 15.8 53 2.2 9.7 1.4 11.1 80 1.5 13.4 39

Notre Dame (NOD) 553 0.2 1e3 0.3 0.8 0.2 1.5 0.2 0.6 0.4 5.7 100 0.2 4.5 76 3.1 4.1 0.3 1.8 96 0.2 2.1 70

Trafalgar (TFG) 5433 5.0 3e3 - - - - 5.4 8.9 6.2 23.2 100 4.1 18.8 92 8.8 14.7 3.9 12.2 89 3.4 11.7 65

Table 1: Comparison of the accuracy of different methods in real data. Nc is the number of cameras in the view graph. ẽ and ē respectively

denote the median and mean distance error in meter unit. #iter denotes the number of outer iterations (the value of n in Algo. 1) required

for convergence, bounded by 100. ‘-’ indicates that the result is not available from the corresponding paper.

assisted IRLS iterations (IRLSiter=50 & BCDiter=1) of Re-

visedLUD (denoted as “Con. Init.”). Again, BATA is run in

the above two settings (denoted as “w/o Rot.” and “w Rot.”).

We set IRLSIter=100 & BCDIter=5 with convergence con-

dition being |f c−f l|/f l<10−5, where f l and f c are the

objective values of two consecutive iterations. All results

are averaged over 20 trials.

We show these results in Tab. 1, together with those

from four other state-of-the-art methods. Empirically We

find BATA works well with a few different robust schemes,

and here we only report the best results from Cauchy with

α=0.1; other results (e.g. Huber) are given in supp. mate-

rial. Since Shapefit/kick [9] provides multiple results with

different combinations of preprocessing strategies, we only

cite the overall best one. The errors are given in terms of

median distance error ẽ and mean distance error ē between

the estimated and the reference camera locations. The me-

dian distance error is used as a main measurement of quality

since it better captures the accuracy of the overall shape of

camera locations. As can be seen, BATA obtains good ac-

curacies even from random initialization. If bootstrapped

by the convex method, the results generally improve. Com-

pared to the naı̈ve IRLS, the rotation-assisted IRLS gener-

ally improves the accuracies, especially in the case of ran-

dom initialization. Also, “#iter” shows that it consistently

reduces the number of iterations required for convergence.

We now compare BATA’s result from the “w Rot.” case to

those from the other four cited methods. The lowest medi-

an distance error is bolded for each scene. As can be seen,

there is not one single best method for all the scenes. How-

ever, BATA gives the overall best performance in the sense

that it achieves the lowest median distance errors ẽ in ten

out of all the fourteen scenes. We note that the method

of [6] generally achieves the lowest mean distance errors,

which might be due to the local BA involved in their frame-

work, making the estimation for those sparsely connected

cameras less unstable. Also note that 1DSfM suffers from

large mean errors. Next, we compare the ratio r1 and r2
computed from the LUD and Shapefit/kick result run on the

raw view graph. As shown in Tab. 2, LUD generally return-

s a lower value of r1 and r2, indicating a squashing effect

on the shape of the recovered camera locations. In view of

the similarity of 1DSfM to BATA, we also test it on the raw

view graph. We find that although it can recover those well-

conditioned cameras well, BATA generally recovers those s-

parsely connected camera positions more reliably even with

naı̈ve IRLS. To show this, we plot the distribution of errors

in the NYC Library scene in Fig. 8. As highlighted by the

ellipses, BATA achieves higher accuracies on those cam-

eras with relatively large errors and we find these cameras
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Data LUD Shapefit/kick

Name r1 r2 r1 r2
PIC 2.26 2.43 2.71 2.81

USQ 2.27 2.60 6.54 3.08

ROF 2.54 2.19 4.62 2.57

VNC 2.42 2.85 2.73 2.63

PDP 2.48 2.57 2.87 2.33

NYC 2.33 2.22 2.69 2.34

ALM 2.24 2.65 2.55 2.82

MDR 2.28 2.22 6.95 10.2

YKM 2.46 2.24 3.21 2.86

MND 2.83 2.13 3.65 1.74

TOL 2.41 2.73 3.12 2.38

ELS 1.86 2.26 2.09 3.19

NOD 2.43 2.34 2.96 2.58

TFG 2.27 2.24 2.63 3.03

Table 2: Comparison of r1 and r2
from LUD and Shapefit/kick.

Data 1DSfM[32] LUD[20] Shapefit/kick[9] Cui[6] BATA

Name Tp Tt TΣ Tp Tt TΣ Tp Tt TΣ Tp Tt TΣ Tini Tt TΣ

PIC 122 366 488 - - - 424 40 464 207 121 328 52.9 60.6 113.5

USQ 20 75 95 - - - 24 3.7 27.7 35 6 41 2.5 7.5 10.0

ROF 40 135 175 - - - 52 9.5 61.5 99 32 131 8.1 20.9 29.0

VNC 60 144 204 265 255 520 66 8.2 74.2 102 15 117 12.6 17.2 29.8

PDP 9 35 44 18 35 53 4.6 1.9 6.5 40 3 43 2.0 2.2 4.2

NYC 13 54 67 18 57 75 8.6 2.2 10.8 34 4 38 1.7 2.1 3.8

ALM 29 73 102 96 186 282 16 11 27 67 11 78 11.1 13.0 24.1

MDR 8 20 28 13 27 40 6.9 2.4 9.3 27 4 31 2.0 2.4 4.4

YKM 18 93 111 33 51 84 - - - 41 5 46 2.4 6.3 8.7

MND 22 75 97 91 112 203 15 3.5 18.5 57 5 62 5.4 4.1 9.5

TOL 14 55 69 23 41 64 15 2.8 17.8 46 6 52 2.1 4.4 6.5

ELS 7 13 20 - - - 2.9 1.4 4.3 34 3 37 1.4 1.0 2.4

NOD 42 59 101 325 247 572 23 7.1 30.1 61 9 70 11.7 11.7 23.4

TFG - - - - - - - - - 441 583 1024 168.9 389.1 558.0

Table 3: Comparison of running time in seconds. Tp, Tini, Tt, and TΣ respectively denote the

preprocessing time, initialization time, translation averaging time, and total time.
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Figure 8: (a) Errors distribution (sorted in increasing order) for

all cameras. (b) Errors in the 5th-95th percentile (50th percentile

would be the median).

often have a smaller number of links to others. This seems

to indicate that BATA is more superior in handling sparse-

ly connected cameras. To corroborate this, we have tested

their performance under increasingly sparser view graph by

manually removing the observed edges. We plot the median

error, the 90th percentile error and the ratio of cameras with

large error (>20m, termed as bad positions) against the ra-

tio of edges removed in Fig. 9. As we can see, although the

difference in median error is small, (b)&(c) show that the

two methods deviate from each other largely in their abili-

ty to localize those more “problematic” cameras, especial-

ly when the view graph becomes increasingly sparser and

more cameras become sparsely connected. We leave more

results from other scenes to the supp. material.

Next, we feed the initial poses obtained from differen-

t methods into a final BA step, using the Ceres[1]-based

pipeline in Theia [27]. We present an example of the BA

results on the NYC Library scene. We note that although d-

ifferent final BA schemes may give results of different qual-

ities, adopting the same pipeline means that the results are

only affected by, and thus indicate, the accuracy of the ini-

tial camera poses. We compare our result to that from the

two magnitude-based methods. We use the implementation

in [27] to obtain the camera pose estimates from the full

pipeline of LUD method. The results of Shapefit/kick were

provided by the authors. As shown in Fig. 7, although all the

methods can reconstruct the main building reasonably well,

not all can reconstruct the detailed structures of the two s-

culptures nearby. As highlighted by the red ellipses, LUD
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Figure 9: Different error quantities plotted against the ratio of the

observed edges removed.

fails to recover both of them, and Shapefit/kick is able to re-

cover only the left one while the point cloud of the right one

is somewhat blurred and shifted. BATA can recover both

of them successfully and yields the most similar results to

those of the Bundler.

Finally, we compare the running time of different meth-

ods. Ours are obtained on a normal PC with a 3.4 GHz

Intel Core i7 CPU and 16GB memory. The results are giv-

en in Tab. 3. Tp denotes the general preprocessing time,

which may include outlier filtering and pairwise translation

re-estimation to improve the input quality [32, 20, 9], or lo-

cal depth estimation and local BA [6]. Tini denotes the time

for convex initialization in our method, Tt the time for solv-

ing the translation averaging optimization, and TΣ the total

time. As can be seen, since BATA directly processes the

raw EG view graph and the sequence of sparse linear sys-

tem of equations involved can be solved by highly efficient

libraries, it is generally faster by several times.

5. Conclusion

In this paper, we advocate a return to angle-based ob-

jectives for translation averaging, proposing a simple yet

effective bilinear formulation with a rotation-assisted IRLS

scheme, achieving good empirical performance. This for-

mulation also contributes to a better understanding of the

behavior of the existing convex methods.
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