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Figure 1: Animals from Images. We generate 3D textured articulated models of animals from images. Starting from an

initial coarse shape obtained with the SMAL model [31], we refine the animal shape from multiple uncalibrated images and

varying poses and capture a detailed texture map from multiple frames. We recover detailed 3D shapes for animal species

that are in the SMAL shape space (like lions and tigers) and go beyond SMAL to capture new animals like bears.

Abstract

Animals are widespread in nature and the analysis of

their shape and motion is important in many fields and in-

dustries. Modeling 3D animal shape, however, is difficult

because the 3D scanning methods used to capture human

shape are not applicable to wild animals or natural settings.

Consequently, we propose a method to capture the detailed

3D shape of animals from images alone. The articulated

and deformable nature of animals makes this problem ex-

tremely challenging, particularly in unconstrained environ-

ments with moving and uncalibrated cameras. To make this

possible, we use a strong prior model of articulated animal

shape that we fit to the image data. We then deform the ani-

mal shape in a canonical reference pose such that it matches

image evidence when articulated and projected into mul-

tiple images. Our method extracts significantly more 3D

shape detail than previous methods and is able to model

new species, including the shape of an extinct animal, us-

ing only a few video frames. Additionally, the projected 3D

shapes are accurate enough to facilitate the extraction of a

realistic texture map from multiple frames.

1. Introduction

The study of animals is important not only for science,

but for society as a whole. We need to learn more about

animals in order to protect endangered species and to im-

prove the quality of life for animals in captivity. We also

need to share this knowledge with new generations who will

increasingly acquire their awareness of nature from virtual

worlds. Computer vision can play an important role by pro-

viding methods for the 3D capture, modeling, and tracking

of animals. Unfortunately, few methods today support the

capture of realistic animal shapes and textures like those in

Figure 1.

In contrast, there are now mature tools for producing 3D

articulated shape models of the human body that are realis-

tic, differentiable, and computationally efficient. Such mod-

els support human pose, shape, and motion estimation from

images and video as well as many applications of practi-

cal and commercial interest. In comparison to the human

body, very little work has focused on modeling animals.

The availability of 3D articulated shape models of animals,

however, would open up many applications. Such models

could be employed in markerless motion capture systems,

removing intrusive markers and enabling the capture of wild
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animals. Such tools would also support research in biome-

chanics, for example to understand the locomotion of differ-

ent skeletal structures; in entertainment, where animal ani-

mation is still performed manually; in neuroscience, where

tracking animals is fundamental for understanding behavior

or for relating motion to brain activity; and in bio-inspired

robotics, where understanding how animals move can help

to design more efficient robots.

Despite extensive research on building human body

shape models, it is not straightforward to extend these meth-

ods to model animal shape. The main reason is that human

body models are built with the active collaboration of thou-

sands of individuals who are captured with a 3D scanner in

defined poses. This is clearly not practical for animals, in

particular for wild species. Animal size and shape varies

greatly, taking a scanner into the wild is impractical, getting

them into a lab is a challenge, and they would need to be

trained to adopt specific poses. Consequently, 3D training

data is not available.

What is available in large quantities are images and

videos of animals from nature photographs, animal doc-

umentaries, and webcams. Consequently, most previous

work on modeling animal shape has focused on learning

3D models from images or video. Existing methods rely on

manual intervention, as do we. Most previous approaches,

however, are unable to extract realistic animal shapes. They

either are limited to deformable but non-articulated shapes

like dolphins or use part-based models where the parts are

simple geometric primitives.

The key challenge in estimating animal shape from im-

ages is that they are articulated and deformable; in a video

sequence, we observe the animal in different poses. With

an unknown and moving camera, this problem is extremely

complex. However, even though the animal may be in dif-

ferent poses, the underlying shape is the same. Thus we

argue that the key is to explicitly disentangle the articulated

structure of the animal from its shape. Doing so allows es-

timation of a consistent shape from images of the animal

in many poses. In this work, given a collection of images,

we simultaneously solve for the camera and the articulation

parameters in each image, and a single shape of the animal

in a canonical pose, such that when the shape is posed and

projected into all the images, it matches the observed image

data.

Given the complexity of the problem, we leverage a

strong prior model of animal shape. In particular we use

the articulated SMAL model, which captures a variety of

animal shapes [31]. SMAL is learned from 3D scans of toy

figurines spanning a range of animal species. We exploit

two key aspects of the SMAL model: first, its vertex-based

factorization of shape and articulation allows the estimation

of a consistent shape given that this shape should be con-

stant in all the images; second, its ability to approximate

animal shapes for novel species that are not present in the

training set. While SMAL can generalize somewhat to new

animal shapes, the reconstructed shape often lacks subject-

specific detail. Thus, we use it as a starting point for refining

the shape using image evidence. SMAL enables the repos-

ing of the body into a canonical shape space, which allow us

to combine information from multiple views and poses and

improve the shape. Our method uses a few keypoints on

the body and silhouettes of the animal in multiple images.

The animal 3D shape, represented as a mesh, is deformed to

match image evidence. In going beyond the SMAL model,

the shape is poorly constrained by just a few views. Con-

sequently, we regularize the deformation of the mesh from

SMAL to constrain the final animal shape. We call the new

model SMALR for “SMAL with Refinement” (pronounced

“smaller”).

We show that the SMALR shape is visibly detailed,

looks realistic, and resembles the specific animal instance

(Fig. 1, middle). We show that the recovered shape is ac-

curate enough to extract texture maps from multiple images

and compose them into a full texture map for the animal.

The textured results (Fig. 1, top) look quite realistic and

may be used in animation, training-data generation, and

tracking. A collection of 3D animal models are available

at [1].

2. Previous

Our goal is to learn detailed 3D shapes of animals. To

get sufficient real world data for this, we learn such mod-

els from unconstrained photographs and videos of animals

in the wild. This presents significant technical challenges,

which have not previously been addressed in the literature.

Here we describe what has been done and where the previ-

ous approaches are insufficient for our task.

Avatars from 3D scans. There is extensive work on

learning 3D, articulated, models of human bodies [2, 3, 17,

20]. This work begins with 3D surface scans of many peo-

ple in many poses. A template mesh is then aligned to all

scans, putting them into correspondence and enabling sta-

tistical modeling of shape and pose deformation. Unlike

animals, humans are cooperative subjects, who will pose

and stand still for scanning. Existing 3D scanners are not

portable and can not easily be taken into the wild or even

into zoos. Consequently, such methods do not immediately

generalize to the problem of acquiring 3D animal shape.

Zuffi et al. [31] address this by using 3D scans of toy an-

imals. They align a template mesh to a variety of animal

species and build a statistical shape model similar to previ-

ous human models [20]. They fit this model to single-view

images and show that the shape space generalizes somewhat

to new species not seen in training.

Toys, however, are limited in number and realism. Not

every animal is sufficiently popular for there to be realistic
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toys depicting it. Consequently, here we go beyond previ-

ous work to use images and video, which are plentiful and

capture the diversity of animals shapes.

In this work we also address the problem of extracting

a texture map associated with the 3D shape. This has been

done for humans in motion but only in controlled laboratory

settings with a 4D scanner [5] or RGB-D sensor [4]. With

the exception of Reinert et al. [23], there has been little work

on extracting both animal shape and texture.

Rigid scenes from images. There is extensive work on

recovering the shape of rigid scenes from sets of camera

images and videos; we do not review this here. Classical

multi-view stereo and structure from motion (SfM) methods

assume all images are captured with the same camera and

that the camera moves while the scene is static. More gen-

erally, photo tourism [25] and related methods take images

from many different cameras and reconstruct a 3D scene.

Again these methods assume the world is rigid.

Here we seek to do something similar but now the ob-

jects of interest are non-rigid and articulated; effectively

animal tourism. Like photo tourism, we do not make as-

sumptions that the camera is static, or that all images are

captured by the same camera. This problem is significantly

harder because of the non-rigid and articulated nature of an-

imals. To make it possible, we constrain the shapes using a

strong prior on animal shapes [31].

Performance capture. When multi-view stereo is ap-

plied to humans in movement, it is often called performance

capture (e.g. [7, 10, 11, 27]). There are many methods that

assume multiple static calibrated and synchronized cam-

eras; again we do not summarize this extensive literature

here. Typically such capture systems are installed indoors

in environments with controlled backgrounds and lighting.

A classical approach involves the extraction of silhouettes

and the use of space carving [19] to extract a visual hull.

Each silhouette provides a constraint on the body shape. We

also use silhouettes but with a single moving camera and a

moving animal. Consequently, in each frame, both the pose

and the shape of the animal in the camera view is unknown

and must be solved for.

There is less work on outdoor performance capture.

Robertini et al. [24] take a scan of a person and deform it

to fit multi-camera image evidence from calibrated outdoor

cameras. The requirement of a pre-existing 3D scan of the

actor to be captured is a significant limitation for animals.

Animals from images. Cashman and Fitzgibbon [8]

learn a deformable model of animals from several images.

They show an example of modeling a bear but with signif-

icantly lower fidelity than we show here (Fig. 2, left versus

Fig. 1, right). Vincente and Agapito [29] use two views of

a deforming object to recover a rough shape. Kanazawa et

al. [18] learn separate animal models for cats and horses.

They capture deformation using a variable stiffness model.

Figure 2: Previous work. Examples from [8] (left), [21]

(middle) and [23] (right) .

All of these models are limited in their ability to model ani-

mal shape because they do not explicitly model articulation.

Ntouskos et al. [21] formulate a part-based model of an-

imals. The shape of each part may be estimated from mul-

tiple segmented images and then assembled into a complete

model. The final results retain the shapes of the parts and

lack the realism of 3D scans (Fig. 2, middle).

Zuffi et al. [31] learn a parametric model of animal shape

from figurines. Unlike the work above, this explicitly mod-

els articulation separately from animal shape. They learn a

shape space that spans multiple animals and are able to fit

the model to landmarks and silhouettes. The final fits are

more realistic than previous methods but are overly smooth

and generic. They are not adapted to the individual.

Animals from video. Video provides a potentially rich

source of information about animal shape. Bregler et al. [6]

show the estimation of the shape of a giraffe’s neck and its

modes of deformation from a video sequence using non-

rigid structure from motion. They did not deal with articu-

lation. Torresani et al. [28] estimate 3D structure from 2D

point tracks. They show this for deformable objects like

dolphins but the approach does not explicitly model articu-

lation and does not estimate a 3D mesh. Ramanan et al. [22]

build 2D models of animals from video using simple rect-

angular parts. Xu et al. [30] estimate animate gait cycles

from a single image of multiple animals in different poses.

Their method is only 2D and does not build a shape model

of the animal. Similarly Favreau et al. [13] extract animal

gait from video but not shape.

Most relevant here is the work of Reinert et al. [23] who

show the extraction of a rough animal shape from video in

terms of generalized cylinders. The animal shape is quite

approximate due the the restriction of the parts to gener-

alized cylinders. They also recover a texture map from

one video frame but do not combine textures from multi-

ple frames/views (Fig. 2, right).

Learning 3D models from images. There is recent

work using CNNs to produce 3D models (typically voxel

representations) from images [9, 16, 12]. So far these have

focused on rigid objects like cars and chairs, where training

data is plentiful. With animals there are few good 3D artic-

ulated models from which to train CNNs, which is why we

aim to recover them from images and video.

In summary, our work occupies a unique position, com-
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bining ideas from several fields to solve the challenging

problem of uncalibrated 3D, articulated, animal shape es-

timation from several images.

3. Method

The SMAL model [31] we begin with can represent

animals from 5 different families of quadrupeds: Feli-

dae, Canidae, Equidae, Bovidae and Hippopotamidae. The

shape of an animal is represented by a set of shape variables

that define the vertex deformation applied to the model

template to obtain a subject-specific shape. Formally, let

β be a row vector of shape variables, then vertices of

a subject-specific shape are computed as: vshape(β) =
vtemplate,0 + Bsβ, where vtemplate,0 represents the ver-

tices of the SMAL model template and Bs is a matrix of

deformation vectors. Given a set of pose variables r and

global translation t, the model generates 3D mesh vertices

v(β, r, t) in the desired pose with linear blend skinning.

In this work, as illustrated in Fig. 3, given a set of images

of an animal annotated with landmarks and silhouettes, we

obtain its 3D shape as follows. First, we align the SMAL

model to the images, obtaining an estimate of the animal

shape and its pose in each image. The shape estimate will

be good for animals that are included in the SMAL shape

model, and poor for animals that are not in the SMAL set.

Second, we optimize a regularized deformation of the ini-

tial mesh to better match the silhouette and landmark anno-

tations. Given an improved shape, we also update the pose

in each image. Finally, we extract the texture of the animal

from the images, resulting in a full, textured 3D model of

the subject. We use 28 landmarks: 4 feet points, 4 knees

points, 4 ankle points, 2 shoulder points, tail start, tail tip,

neck, chin, 2 eye points, 2 nostril points, 2 cheeks points, 2

mouth points and 2 ear tip points (See Fig. 3, left).

SMAL Alignment to Images. Let {I(i)} be the set of N

images of an animal obtained, for example, from frames

of a video where the animal is seen in different poses and

viewpoints. Let {S(i)} be the set of N silhouette images

obtained by background subtraction or manual segmenta-

tion. Let {v(β(i), r(i), t(i))} be the set of mesh vertices of

N SMAL models, one for each frame, i, where the param-

eters are the shape variables β(i) ∈ R
20, global translation

t(i) = (tx, ty, tz) and 3D pose parameters r(i). r is a con-

catenation of the relative rotation of 33 joints in a kinematic

tree in axis-angle parameterization. The first 3 values cap-

ture the global rotation r0. Let {K(i)} be the set of nK 2D

landmarks K(i) = {k
(i)
j }nK

j=1, manually annotated on each

image. Each landmark is associated with a set of vertices

on the 3D model, that we denote as {vK,j}
nK

j=1.The num-

ber of model vertices associated with the j-th landmark is

indicated as nH(j).

We model the camera with perspective projection, where

{c(f(i), r
(i)
c , t

(i)
c )} is the set of cameras defined by focal

length f = (fx, fy), 3D rotation rc, and translation tc. We

fix the extrinsic parameters to be at identity, and instead

solve for the global pose r0 and translation t of the animal.

We set the principal point of the camera to be the image cen-

ter. We also define shape priors and pose priors as in [31].

We use two shape priors: one defined for generic animals,

and the family-specific shape prior of the SMAL model. We

scale all images such that the maximum image dimension is

480 pixels. We first estimate the translation and the global

rotation of the animal in each image by using a subset of

the 2D landmarks corresponding to the animal torso. We

initialize the pose of the N SMAL models to the mean pose

in the pose prior and translation to zero. The shape vari-

ables β are initialized to zero or to the mean of the SMAL

family-specific shape prior. For brevity, we drop arguments

from functions when they are not being optimized over.

We first estimate the translation along the z axis. This is

obtained as:

t̂z
(i)

= f (i)
x median([

||vK,h − vK,l||2

||k
(i)
h − k

(i)
l ||2

]), (1)

where vK,h is the mean of the nH(h) 3D model vertices as-

sociated with the h-th landmark, and (h, l) are indices of

any combinations of two visible landmarks. Here the cam-

era focus is set at fx = fy = 1000.

Then, we obtain estimates for translation and global ro-

tation by solving an optimization problem:

t̂
(i)
, r̂

(i)
0 = arg min

t(i),r
(i)
0

αz(t
(i)
z − t̂(i)z ) + (2)

ñ
(i)
K∑

j=1

||k
(i)
j −

1

nH(j)

nH(j)∑

h=1

Π(v(r(i), t(i))K,j,h, c(i))||2,

where Π is the projection operator, and ñ
(i)
K is the number

of annotated landmarks on the i-th image.

Once we have obtained estimates for global rotation and

translation for each image, we solve an optimization prob-

lem to estimate the articulated pose and shape parameters.

We minimize an energy over all model parameters and the

focal length on all images. Let Θ(i) = (β(i), r(i), t(i), f(i))
be the unknowns for the i-th image. Our objective is:

Θ̂(i) = arg min
β,r,t,f

N∑

i=1

(Ekp(Θ
(i)) + (3)

E
(i)
β (β) + Ecam(f(i)) + Esil(Θ

(i)) +

Elim(r(i)) + Epose(r
(i)) + Eshape(β

(i)).

The term Ekp is the keypoint reprojection loss, defined as
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images and the 

different poses 

refine the shape 
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the input data 
 

update pose 

TEXTURE EXTRACTION SMALR 

Figure 3: Overview of the proposed pipeline. We recover the instance-specific shape of an animal from multiple views,

where the animal may be in a different pose in each image. We do this by first fitting SMAL to each image, which disentangles

the pose (articulation) from the shape. Then we update the shape in a canonical pose, allowing it to deviate from SMAL,

such that the recovered 3D shape, when articulated, better explains the image evidence in all views. We also update the pose

to obtain a better fit to each image. The approach recovers a more accurate and detailed shape, which allows us to extract a

coherent texture map from the images.

in [31] as Ekp(Θ
(i)) = αkp

ñ
(i)
K∑

j=1

ρ(||k
(i)
j −

1

nH(j)

nH(j)∑

h=1

Π(v(β(i), r(i), t(i))K,j,h, c(f(i))||2), (4)

Rather than estimate a single shape for all frames, the op-

timization is better behaved if we estimate different shapes

for each frame but add a penalty on their difference; i.e. reg-

ularizing the shapes in all frames to be the same:

E
(i)
β (β) = αβ |β(i−1) − β(i)| for i > 1. (5)

The term Ecam is a penalty for fx and fy to have the

same value. We also add priors that encourage the cam-

era focal length to be greater than 500 and the 3D shape

to be in front of the camera. The terms Esil, Elim, Epose,

Eshape are defined as in [31]. Specifically, the silhouette

term Esilh(Θ
(i)) =

αsilh(
∑

x∈Ŝ(i)

DS(x) +
∑

x∈S(i)

ρ( min
x̂∈Ŝ(i)

||x − x̂||2)), (6)

where Ŝ is the projected model silhouette, DS is the L2

distance transform field of the data silhouette such that if

point x is inside the silhouette DS = 0. The prior for joints

limits, Elim(r(i)) =

αlim(max(r(i) − rmax, 0) + max(rmin − r(i), 0)). (7)

rmax and rmin are the maximum and minimum range of

values for each dimension of r, respectively.

The pose prior Epose is defined as the squared Maha-

lanobis distance using the mean and covariance of SMAL

training poses. The shape prior Eshape is the squared Ma-

halanobis distance with zero mean and covariance given by

the SMAL shape space. When the animal family is known,

we use the mean and the covariance of the training samples

of the particular family.

At the end of the SMAL alignment we obtain estimates

of pose, translation and shape for all the images. The

penalty in Equation 5 encourages the shape variables to be

the same for all images. We simply set the first shape to be

the final shape β̂.

SMALR Shape Recovery from Images. In this phase we

capture more accurate 3D shape from images by estimating

a deviation from the SMAL fit. For each animal, we define

a vector of vertex displacements dv that modifies the SMAL

model as follows:

vshape(dv) = vtemplate,0 +Bsβ̂ + dv. (8)

In this way we assign deformations to the 3D meshes that

represent the animal in each image before the articulation

is applied. With some abuse of notation, let Ekp and Esil

from above be redefined in the obvious way to take dv as an

argument, while keeping the pose, translation, camera and

shape parameters fixed and set to the value of the previous

optimization, Θ̂(i). Then, to estimate dv, we minimize:

Eopt(dv) =
N∑

i=1

(E
(i)
kp (dv) + E

(i)
sil(dv)) + (9)

Earap(dv) + Esym(dv) + Elap(dv).

The terms Earap, Esym and Elap are regularization

terms, which are necessary to constrain the optimization.

Namely, Earap implements the as-rigid-as-possible defor-

mation energy, which favors mesh deformations that are lo-

cally rigid rotations [26]. This regularization term is weaker

for the head and mouth. The term Esym favors the mesh
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Figure 4: SMALR. Silhouette image (left), SMAL (mid-

dle) and SMALR (right). Here the silhouette image drives

SMALR to produce a larger cheek on the animal’s left side

compared with the SMAL initialization. The symmetry

constraint also enlarges the right cheek, which is not con-

strained by the silhouette.

to be symmetric with respect to the main axis of the ani-

mal body. The term Elap implements Laplacian smooth-

ing [14]. Note that the Laplacian smoothing is defined over

the displacement vector dv and not on the vertices, there-

fore avoiding shrinking the mesh. The key idea here is that

the data terms tries to move the vertices of the N models to

fit the silhouette images and landmark positions. This hap-

pens under the constraint that the deformation should better

explain all the silhouette images and landmarks positions

jointly, while keeping the animal mesh smooth and sym-

metric. Figure 4 illustrates this with an example from a set

of tiger images.

Once we have solved for dv, we have the animal shape,

vshape(dv), and again perform the SMAL pose estimation

step, keeping the shape fixed. The argument for this is that

with a better shape, the pose estimate should improve.

Finally, after recovering detailed shapes of many ani-

mals, we take the new shapes and relearn the SMAL shape

space, enabling it to capture a wider range of animal shapes.

We do not illustrate this here.

Texture Recovery. In order to recover an animal’s texture

from the images, we define a UV map of texture coordinates

for the SMAL model. Given each image and correspond-

ing estimated mesh, we define texture images and visibility

weights for each texel. We combine the texture maps taking

their weighted average. At this point we may have regions

of the texture image that are not defined as the correspond-

ing animal body surface is not visible in any of the images.

We exploit the symmetry of the SMAL model to define a

texture map corresponding to a symmetric mesh, where left

and right side of the animal are swapped. Given the sym-

metric texture image, we can use it in two ways: we can

assign to left/right corresponding texels the value of their

average to recover a symmetric texture map, or we can fill

in texels that are not defined with their corresponding ones

in the symmetric texture image. We apply the first strategy

to most of the animals, with the exception of animals with

stripes or large spots, which have large appearance differ-

ences between their left and right side. In the case a texel is

undefined in both texture maps, we assign the median value

of the colors of the body part to which it belongs. Figure 3

(right) illustrates the texture map obtained for the tiger.

4. Experiments

We evaluate SMALR quantitatively on a synthetic task,

where we estimate the shape of an animal with known 3D

shape, and qualitatively on challenging real images.

4.1. Synthetic Experiment

In this experiment we consider two scans of toy ani-

mals: a horse and a rhino. The horse species belongs to the

Equidae family, which is represented in the SMAL model;

the rhino species, on the contrary, is not represented in the

SMAL model. Given a 3D scan, we can automatically gen-

erate sets of synthetic silhouette images and corresponding

2D keypoint annotations. However, if we just project the

scans, this will not simulate the condition of different poses

on different images that we assume in our work: we need

to be able to animate them. To this end we define SMAL

models where we replace the model template with the scans

after registration to the SMAL template, and set the β shape

variables to zero.

For each animal, we generate 4 sets of 5 silhouette im-

ages in random poses, where poses are sampled from a pose

prior. In addition, we generate one set of five images with

the animal in a canonical pose at fixed global poses: a side

view, a top view, and three lateral views at different angles.

We also generate the corresponding 2D landmarks annota-

tions. We assume all the landmarks are visible.

We run our method on the synthetic images considering

image sets of different size from 1 to 5. Figure 5 shows the

silhouette images for the side views (left) with SMAL fit

(middle) and SMALR fit (right).

We evaluate the mean distance between the estimated

meshes and the ground-truth meshes for the estimates ob-

tained with SMAL and with our SMALR method. Given

that we do not fix the global translation and camera focus,

the resulting meshes have a different scale with respect to

the ground-truth meshes. In order to compute the mean dis-

tance between the results and ground-truth, we estimate a

scale factor for the estimated meshes as the median ratio of

vertex values for centered meshes.

Figure 5 shows the error in the estimation of the ground-

truth meshes for the horse and rhino. The plot shows that

with the method we can use a limited set of images with

varying articulated pose and camera view to improve the

estimate of the 3D animal shape.
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Figure 5: Synthetic experiment. (left) Example of syn-

thetic silhouettes (1st col.), SMAL fit (2nd col.) and

SMALR fit (3rd col.). These pictures refer to the case where

two images are used, and the second view was from the top.

(right) Error is average distance between estimated 3D mesh

and ground truth mesh.

Figure 6: Rhino. We show the SMAL model fit (silver,

left), the shape recovered by SMALR (gold, middle) and

the recovered texture (top right) with input images (right).

The SMAL model was not able to generate the horn, but

this is recovered by SMALR.

4.2. Experiment on Real Images

We apply our method to generic animal images for the

estimation of articulated 3D models with texture. We con-

sider 14 animals: tiger, lion, bear, polar bear, panda, chee-

tah, wolf, dog, pig, horse, cow, cougar, and rhino. We also

apply our method to an extinct animal, the Tasmanian tiger,

for which a small amount of video exists. A summary pic-

ture of the animals considered is shown in Figure 8.

In order to be consistent with the SMAL model we only

consider quadrupeds. Given that SMAL does not model ar-

ticulated ears, we also consider animals or images with ears

in a neutral position. In the case of the bears, we remove the

tail from the SMAL model mesh.

In the case of the tiger, lion, cougar and cheetah, we con-

sider frames extracted from different videos of the same an-

imal captured against a green-screen background.1 This en-

ables the automatic extraction of accurate silhouettes. For

all the other animals, except the pig, we extract frames from

videos downloaded from YouTube. For the pig we use static

1Data source: GreenScreenAnimals.com LLC.

images of the same animal. The number of frames used for

each animal varies from 3 to 7, depending on the availabil-

ity of different poses and views. For the frames with arbi-

trary background we perform manual segmentation of the

frames. All images are also annotated for landmark posi-

tions using an annotation tool. This process is quite simple

and fast, as only a few images are necessary. For the chee-

tah we did not annotate all the face landmarks because the

animal face is very small in the images. We optimize the

SMAL model to approximate the animal shape and pose in

each frame. It is important for the success of SMALR fit-

ting that the pose is correctly estimated. We achieve good

pose estimation in the majority of the cases. In a few frames

the pose estimation failed because the poses were not well

represented in our pose prior. In these cases we simply re-

placed the frames with different ones.

Detailed results for some of the animals considered are

reported in Figures 1, 6, 7. For most of the animals con-

sidered, SMALR was able to recover a shape (gold color

meshes) that better fits the input data compared with the

SMAL initialization (silver colored meshes). In particu-

lar in the case of the rhino (Fig. 6), the horn is recovered,

and the ears have a shape that better matches the picture.

For the Tasmanian tiger (Fig. 7) our result produces a thin-

ner snout compared with SMAL and slimmer hindquarters,

which better resemble the animal.

Failure cases. It is important that the pose estimated

by the SMAL fitting stage is correct, so that mismatches

between silhouettes and landmark locations are imputable

only to shape differences between SMAL and the actual an-

imal shape. Further failure cases are when the silhouette im-

ages do not contain enough information to correctly recover

shape details that characterize a specific species. Moreover,

given in SMAL the ears are not articulated, and because we

enforce mesh symmetry, errors occur if the animal has the

ears in very different poses.

5. Conclusions

The 3D capture, modeling and tracking of animals has a

wide range of applications where computer vision can play

a major role by: making processes that are today performed

mostly manually more automatic; allowing current studies

to be performed at larger scales; stimulating new investi-

gations in disciplines like biology, neuroscience, robotics;

allowing fast creation of content for virtual and augmented

worlds. All these tasks call for the availability of 3D ar-

ticulated models of animal shape and appearance. In this

work we have presented the first method that is able to

capture high-quality 3D animal shape and appearance for

different animals from images with little manual interven-

tion. We do not assume multi-view capture nor calibrated

cameras; our only assumption is that we can reliably esti-

mate articulated pose. This is effectively a problem of non-
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Figure 7: Tasmanian tiger. We show the SMAL model fit (silver, middle), the shape recovered by SMALR (bottom, gold)

and the recovered texture (top right) with input images (top left). In this example the quality of the texture is compromised

by the low quality of the video, captured in 1933 at the Hobart zoo, and from the absence of color information. The original

animal was brown with black stripes. Here we are also not certain that the frames refer to the same individual.

Figure 8: Results. We show, for all the animals considered, the reconstructed 3D mesh (top), the mesh with texture applied

(middle) and the image with the corresponding pose (bottom).

rigid structure from motion from unknown, moving, and

uncalibrated cameras. As such it is extremely challenging.

The key idea that makes this possible is that we exploit re-

cent advances in modeling articulated animals to make the

task of recovering accurate shape and texture from images

tractable. We have shown the application of our method to

a range of different animals. Here we focus on recovering

intrinsic animal shape and assume generic pose-dependent

deformations provided by SMAL. Future work should ex-

plore whether we can also learn pose-dependent deforma-

tions from images and video. Also, here we rely on man-

ually segmented images and clicked feature points. Both

of these processes could be automated with deep learning

with sufficient training data. We plan to explore using our

models to generate such training data synthetically. Finally

we plan to exploit the SMALR models to capture the 3D

motion animals in video sequences and expand the shape

collection to a wider range of animal morphologies.
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