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Abstract

We present a method for inferring a 4D light field of a

hidden scene from 2D shadows cast by a known occluder

on a diffuse wall. We do this by determining how light

naturally reflected off surfaces in the hidden scene interacts

with the occluder. By modeling the light transport as a

linear system, and incorporating prior knowledge about

light field structures, we can invert the system to recover

the hidden scene. We demonstrate results of our inference

method across simulations and experiments with different

types of occluders. For instance, using the shadow cast by

a real house plant, we are able to recover low resolution

light fields with different levels of texture and parallax

complexity. We provide two experimental results: a human

subject and two planar elements at different depths.

1. Introduction

Imagine you are peering into a room through an open

doorway, and all you can see is a white wall and an object

placed just in front of it. Although you cannot see the rest

of the room directly, the object is casting complex shadows

on the wall (see Fig. 1). What information can be deduced

from the patterns these shadows make? Is recovering a 2D

picture of the room possible? What about depth recovery?

The problem of imaging scenes that are not within direct

line of sight has a wide range of applications, including

search-and-rescue, anti-terrorism and transportation [2].

However, this problem is very challenging. Previous

approaches to non-line-of-sight (NLoS) imaging have used

time-of-flight (ToF) cameras or shadows cast by ambient

light to count objects in the hidden scene [28], or to

reconstruct approximate low-dimensional images [3, 23].

In this paper, we attempt a far more ambitious class of

reconstructions: estimating the 4D light field produced by

what remains hidden. The recovered light field would allow

us to view the hidden scene from multiple perspectives and

Figure 1: Example scenario. An observer peers partially

into a room, and she is only able to see two things: a plant

and the shadow it casts on the wall. If the observer can fully

characterize the geometry of the plant, what can she learn

about the rest of the room by analyzing the shadow?

thereby recover parallax information that can tell us about

the hidden scene’s geometry.

Previous NLoS imaging methods that rely on secondary

reflections from a naturally illuminated hidden scene use

the known imaging conditions to approximate a transfer

matrix—a linear relationship between all elements in the

scene to observations on the visible reflector. They

then invert this transfer matrix while simultaneously

incorporating prior knowledge about likely scene structure,

yielding a transformation that takes these observations as

input and returns a reconstruction of the scene.

Our approach is also modeled on these principles, but

prior knowledge plays an even more important role. An

image of the white wall only provides a 2D array of

observations. If we are going to reconstruct a 4D array

of light-field samples from a vastly smaller number of

observations, we must rely much more heavily on our
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prior distribution over light fields to obtain meaningful

reconstructions. In particular, we can exploit the fact that

elements of real scenes have spectra that are concentrated at

low frequencies [4]. This allows us to reduce the effective

dimensionality of the resulting problem to the point of

tractability.

Our work also suggests that complex occluders can help

reveal disparity information about a scene, more so than

simple ones. This means that a commonplace houseplant

that has a complex structure may be a better computational

light field camera than a simpler pinspeck occluder. This

is consistent with conventional wisdom about occlusions

derived from past work in coded-aperture imaging, such as

in [15].

Even with these insights, our approach relies on having

an accurate estimate of the occluder’s geometry and direct

illumination over what remains hidden. Nevertheless, we

think that our approach provides a strong template for future

progress in NLoS imaging and compelling evidence that the

world around us is covered with subtle, but very rich, visual

information.

2. Background

2.1. NLoS Imaging

Non-line-of-sight (NLoS) imaging is the study of how to

infer information about objects that are not directly visible.

Many approaches to NLoS imaging involve a combination

of active laser illumination and ToF cameras [13, 19, 29].

These methods, called active methods, work by illuminating

a point on the visible region that projects light into the

hidden scene. Then, structure in the scene can be inferred

from the time it takes for that light to return [12, 20, 22, 24].

These methods have been used to count hidden people [28],

or to infer location, size and motion of objects [9, 11, 18].

Other recent approaches, called passive methods, rely

on ambient light from the hidden scene or elsewhere

for inference. These approaches range from using

naturally-occurring pinholes or pinspecks [7, 23] to using

edges [3] to resolve the scene. Our work can be thought

of as the extension of these same principles to arbitrary

known occluders. To our knowledge, this work is the

first to demonstrate reconstructions of 2D images from

arbitrary known occluders in an NLoS setting, let alone

reconstructions of 4D light fields.

2.2. Light field reconstructions

There has been ample prior work on inference of the

full light field function for directly-visible scenes. This

problem is addressed in [6], [8], [14], [21], [26], [27],

among others. Notably, the work of [21] estimates a full 4D

light field from a single 2D image of the scene. However,

this learning-based method is trained on very constrained
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Figure 2: a) Simplified 2D scenario, depicting all

the elements of the scene (occluder, hidden scene and

observation plane) and the parametrization planes for the

light field (dashed lines). (b) Discretized version of the

scenario, with the light field and the observation encoded

as the discrete vectors x and y, respectively. The transfer

matrix is a sparse, row-deficient matrix that encodes the

occlusion and reflection in the system.

domain-specific data and is unable to accurately extend to

novel images. This past work, particularly [14], heavily

informed our choice of prior over light fields, which we

discuss at length in Sec. 5.

3. Overview

In order to reconstruct light fields using secondary

reflections from the scene, our imaging method has two

main components. The first is a linear forward model

that computes observations from light fields, i.e. a transfer

matrix A, that has many columns but is sparse. The transfer

matrix for an arbitrary scene is depicted schematically in

Fig. 2.

The second is a prior distribution on light fields that

allows reducing the effective dimensionality of the inverse

problem, turning this ill-posed problem into one that is

well-posed and computationally feasible. This strategy is

better than other methods for reducing the dimensionality

of the inverse problem (for example, naively downsampling

the forward model and inverting). Light field sampling

theory [5] and novel light field priors [14] inform how we

reduce the dimensionality of the inverse problem given mild

assumptions of the elements that produce the light field to

be recovered.

In Section 4, we describe our model for how light

propagates in the scene as well as our mathematical

representations for each of its components. These choices
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inform the design of our procedure for inferring the light

field, which we explain in detail in Section 5. Finally, in

Section 6, we present the results of our system on both

simulated and real data.

4. Model

Our model of the system consists of three elements: a

hidden scene, an occluder, and an observation plane that

diffusely reflects light (see Fig. 2). We assume that the

observation plane is fully visible and the geometry of the

occluder is fully known, but that we do not have direct

line of sight of any element of the hidden scene. For

simplicity, we first formulate the model in a 2D world with

1D observations. The 2D analysis can be easily extended to

the 4D case.

The hidden scene is assumed to be composed of mostly

planar and parallel elements, which emit diffuse light with

a band-limited spectrum. These elements are positioned

at least a distance D away from the observation plane and

at a maximum distance that is unknown but bounded. We

assume that these elements are non-occlusive, i.e. that they

do not block light coming from other elements of the scene.

The occluder is a set of non-reflective objects of arbitrary

shape placed between both planes. It interacts with the light

field by blocking some of the light rays from the scene. This

produces a secondary light field, which we refer to as an

occluded light field.

The observation plane is a uniform and Lambertian

surface that diffusely reflects the light from the scene not

blocked by the occluder. The 1D projection of the 2D light

field on the plane (in the case of the 4D light field, we

observe a 2D projection) constitutes our observation.

4.1. Light field parametrization

We parameterize the 2D light field l(x, u) using the

two-plane parametrization [16], as shown in Fig. 2. For

simplicity, we place the angular plane (u) in the same

position as the observation plane, and the scene plane (x) at

a distance D from the observation plane and parallel to this.

To simplify the analysis, we neglect the distance attenuation

of light, and assume that the power of a ray remains constant

traveling along a direction (x, u). In practice, we take these

effects into consideration.

4.2. Occlusion

Without occluders, the scene alone would produce

an unoccluded light field l(x, u). When occluders are

introduced, they generate a binary visibility function

v(x, u), which is 1 if x on the scene plane has an

unobstructed view of u on the observation plane, and 0

otherwise. We express the occluded light field locc(x, u)
as follows:

Figure 3: a) Sketch of a 2D imaging scenario. (b) Resulting

unoccluded light field function l(x, u) and observation. (c)

The occluder visibility function v(x, u). (d) Resulting

occluded light field function locc(x, u) = v(x, u)l(x, u)
and observation. Note that the unoccluded observation is

constant in u, which is not true of the occluded observation.

The partial occlusion of the light field makes recovery of

the scene possible from a diffuse observation.

locc(x, u) = v(x, u) · l(x, u) (1)

In the Fourier domain, this is equivalent to:

Locc = F(v(x, u) · l(x, u)) = V (fx, fu) ∗ L(fx, fu) (2)

Thus, we can express the occluded light field spectrum

as a convolution of the light field spectrum L(x, u) with

the visibility function spectrum V (x, u). This allows

recovering albedo information of the incoming light field

from ideal diffuse reflections, as we explain in the following

section.

4.3. Diffuse reflection

For a diffuse surface, the power reflected at each position

u0 on the observation plane can be expressed as

P (u0) =

∫

x

locc(x, u0)dx

=

∫

x

∫

u

locc(x, u)δ(u− u0)dudx

(1)
=

∫

fx

∫

fu

L∗

occ(fx, fu)F(δ(u− u0))dfudfx

=

∫

fu

L∗

occ(0, fu)e
−j2πu0fudfu (3)

where (1) follows from Parseval’s theorem.
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In Eq. 3, we see that nonzero spatial frequencies have no

effect on the observation; that is, if the reflected light field

is constant in u, the observed reflectance is uniform.

We show this effect for the 2D case in Fig. 3. For a

diffuse surface, the observation at u integrates incoming

light l(x, u) from all x. In 3b, the unoccluded observation

is uniform. In 3d, the occluder introduces variations in the

observation that encodes scene information.

4.4. Discretization

We discretize the unoccluded light field l(x, u) and

visibility v(x, u) as rasterized vectors x and v. We

construct both x and v using M uniform samples from the

scene and N uniform samples from the observation plane.

As the number of samples is the same for both functions,

it must meet the sampling requirements for both: those

imposed by the expected bandwidth of the light field as well

as those imposed by the bandwidth of the visibility function.

To ensure that the number of samples we need is finite,

we assume that the visibility function is band-limited. We

know that the unoccluded light field is band-limited because

the depth of objects in the scene is assumed to be bounded

and the emission spectrum of the scene elements is assumed

to be band-limited.

In practice, we fix the amount of samples, taking into

account practical considerations such as the calibration

and capture methods (for real scenes) or the maximum

resolution of the generated light fields (for simulations).

After discretization, we can express an observation y in

terms of the unoccluded light field vector x as y = Ax for

the following N × MN transfer matrix A (schematically

depicted in Fig. 2b):

Ak,Ni+j =

{

cNi+j · vNi+j k = j

0 else
(4)

where cNi+j takes into account distance attenuation and

other near-field effects. A encodes the fact that a diffuse

reflector integrates over all the rays that arrive at a given

observation point (when k = j) but only the rays that are

not blocked by the occluder (when vNi+j 6= 0.)

5. Linear light field inference

5.1. Likelihood

Given an observation y, we seek to find an estimate

for the light field that maximizes the posterior probability

P (x|y) (i.e. producing a MAP estimate x̂ for the light field),

with x, x̂ ∈ C
MN and y ∈ C

N . We model x and y

as complex variables to keep the notation straightforward

when reformulating the problem in the Fourier domain.

We assume that our observation y is corrupted by

additive white Gaussian noise. Thus, the likelihood of an

observation y is:

P (y|x) ∼ N(Ax, σ2I) (5)

Given the spectrum of x (fx), expressed using the DFT

matrix F as:

fx = Fx (6)

fxNk+l =

M
∑

m=1

N
∑

n=1

xNm+ne
−j2π m

M
ke−j2π n

N
l (7)

The likelihood of fx is:

P (y|fx) ∼ N(Bfx, σ
2I) (8)

where:

B = AF−1 (9)

5.2. Prior on light fields

Thus, we can now express the MAP problem in terms

of the spectral variables. Supposing that we use some

zero-mean Gaussian prior on fx defined by its covariance

matrix Cfx
, the MAP estimate of the spectrum f̂x can be

expressed as:

P (fx) ∼ N(0,Cfx
) (10)

f̂x = argmax
fx

P (fx|y) = argmax
fx

P (y|fx)P (fx) (11)

To find the fx that maximizes P (fx|y), we set the

gradient of P (fx|y) over the conjugate of fx (f∗
x

) to be 0:

∇f∗
x

P (fx|y) = 0 (12)

f̂x =

(

1

σ2
BHB+CH

fx
C

fx

)

−1

BHy (13)

Given the severely ill-posed nature of the light-field

reconstruction problem, we have found the choice of

prior, defined by Cfx
, to be particularly important. Past

(direct-line-of-sight) approaches to capturing light fields

also rely heavily on a well-chosen prior for accurate

reconstruction [6, 26, 27]. A few use plenoptic cameras,

such as [1] and [17]. These cameras are designed to be able

to capture the light rays reaching the aperture from different

directions separately. Although prior distributions over

the possible hidden scenes could be used to inform these

sampling methods, these cameras usually sample uniformly

across each dimension. For our application, this isotropic

prior is sub-optimal.

The prior we propose instead is derived using the

following simple assumptions: the scene is composed of

mostly planar and diffuse elements that do not occlude each

other, whose textures are produced by a random process that

is independent of their position.
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Figure 4: Light field reparametrization by a displacement

of the scene plane. For any u, x, and a, la(x, u) = l(x +
u−x
1+a a, u).

These assumptions can be easily formulated in the

Fourier domain and factored into two Gaussian and

independent terms, which we refer to as a 3D manifold term

(Pm) and a texture term (Pt), respectively. With this, the

PDF of each spectrum coefficient f i
x

is also Gaussian and

independent, following:

P (f i
x
) ∝ Pm(f i

x
)Pt(f

i
x
) (14)

Reparametrization of light fields. To characterize

our assumptions, it is necessary to model light field

reparametrization of the scene plane. Given a light field

l(x, u), we define the reparametrized light field la(x, u)
as that containing the same radiance as l(x, u), but whose

scene plane x is displaced a distance aD further away from

the u plane as seen in Figure 4. The relation between la and

l(x, u) is:

la(x, u) = l

(

x+
u− x

1 + a
a, u

)

(15)

This reparametrization causes a shear of the spectrum
in the angular domain and a scaling in the spatial domain
(similar to the effect of a refocus, and first derived in [10]),
following:

La(fx, fu) = (1 + a)L((1 + a)fx, fu − afx) (16)

Dimensionality gap of 4D light fields. The 2D light field

parametrized at a′ (La′ ) created by a single 1D diffuse

texture at depth a = a′ has non-zero power only at fu =
0 (as it is constant over u under this parametrization).

Following the light field reparametrization derived in 16,

the spectrum for this same light field but parametrized at

depth a = 0, is a sheared (and scaled) version of La′ .

The spectrum L for this texture is thus non-zero only in the

region corresponding to that shear (i.e. fx = a′fu)

Extending this to the 4D case with planar and parallel

textures, the spectrum La′(fx, fy, fu, fv) of a texture at

depth a = a′ has non-zero power when both fu = 0 and

fx = 0. The shear caused by the reparametrization L is

proportional to a′ in both dimensions, and follows:

fx = a′fu

fy = a′fv (17)

Considering only planar and parallel textures at any a,

Eqs. 17 describe a 3D manifold of the full 4D light field

space, as first derived in [14]. Using this relationship,

we model spectrum coefficients outside this manifold as

zero-mean Gaussian variables with low variance, while

coefficients inside the manifold are modeled with high

variance. If we know that the objects of interest within the

scene lie within a known range of possible depths (that is,

knowing the set of a’s where the objects of interest are) we

can further limit the coefficients with high variance using

Eqs. 17.

Prior on textures. Our model assumes that the hidden

scene consists of parallel textures, or planes of unknown

albedo, at arbitrary depths. We model the textures of

these planes as realizations of the same random process

and assume that the process is independent of the planes’

depths.

Following [4], we model the albedo of each texture as a

realization of a random process with 1/fγ spectral density

(for γ = 2). Taking into account that these textures are

diffuse, the light field la created by a single texture at the

scene plane has power given by:

{

1/fγ
x if fu = 0

0 else

}

(18)

Thus the probability density function for each spectral

component of this light field is given by:

P (La(fx, 0)) = N(0, 1/fγ
x ) (19)

This equation expresses the fact that, if we had a light

field created by a single planar element at depth a and we

placed the scene plane at depth a, the equivalent light field

la(x, u) would consist of a typical texture with expected

frequency distribution 1/fγ
x over x, for all u.

Taking into account the reparametrization of light fields

formulated in Eq. 16 and the relationship between a, fx and

fu (a = fx
fu

), we extend the principle of Eq. 20 to the whole

light field, assuming no mutual occlusions between parallel

textures occur (even though the real scene may have mutual

occlusions).
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L(fx, fu) =
1

1 + a
La

(

1

1 + a
fx, 0

)

Pt(L(fx, fu)) = N



0,

(

1

1 + fx
fu

)1−γ

f−γ
x



 (20)

The previous probability density function is extended to

the 4D case, assuming the spectral density of 2D textures is

(f2
x + f2

y )
−γ/2:

Pt(L(fx, fy, fu, fv)) =

N



0,

(

1

1 + fx
fu

)1−γ

(f2
x + f2

y )
−γ/2



 (21)

5.2.1 Inverse problem limitations

Finally, we find it informative to illustrate the ill-posed

nature of the inverse problem, and how it is affected by

the assumed depth range of the elements in the scene. It is

also worth discussing the advantages and disadvantages of

even attempting a 4-dimensional reconstruction as opposed

to something more conservative.

First, we note that the system we propose can be easily

used to obtain a single diffuse 2D reconstruction of the

hidden scene at no additional cost. When the depth range at

which we reconstruct is negligible compared to the distance

to the first element, we can assume that the spectrum is

non-zero only for a = 0, which corresponds to fu = fv =
0, derived from Eqs. 17. This effectively corresponds to a

2D reconstruction, where all the points in the observation

plane see the same image.

As we increase the depth range at which elements can

be placed, we give our model more expressive power with

which to describe a wider range of scenarios, but we expose

ourselves to an increasingly ill-posed problem—a variety of

equally-plausible light fields, only one of which is true, all

explaining the data equally well.

6. Experimental results

6.1. Practical considerations

Using the closed-form solution to the MAP problem

derived in Eq. 13 for the full light-field spectrum is

computationally infeasible. To overcome this, we solve

the inference problem by assuming that only the K
highest-variance spectral components of L have non-zero

variance, and that the remaining NM−K coefficients have

exactly 0 variance.

To help prevent the appearance of artifacts caused by

the elimination of spectral components, we assume that the

original light field is zero-padded in the scene plane and

mirror-padded in the observation plane. When we compute

the Fourier-domain transfer matrix B from A (Eq. 9),

we replace the inverse DFT matrix F−1 with its padded

version.

For both real experiments and simulations, we

reconstruct a volume with depth range between a = 0 and

a = 0.5 (meaning that all elements of interest are assumed

to be within a factor of 1.5 of the minimum depth D).

This allows us to recover reasonable light fields for certain

occluders (like spheres and plants). However, the enforced

depth range yields poor reconstructions for some occluders

(like the single pinhole) that work well for 2D images at

known depth or in the far-field.

6.2. Simulations

For our simulations, we use an observation plane of

150×225 samples and scene plane of 30×30 samples. The

complete light field thus has approximately 3 × 107 light

ray components. We use a rendering engine to generate the

light fields of simulated scenes at this resolution. However,

during inference, we limit our reconstructions to K = 104

spectral components, for computational feasibility.

We compute the transfer matrix A using the fully known

geometry of the occluder. For simple occluders (e.g.

spheres), we compute the visibility v analytically; for

complex occluders (e.g. plants) we do this by rendering

the equivalent v from a CAD model of the occluder.

These transfer matrices are then used to project generated

light fields and generate the observations, to which we

add Gaussian noise to achieve a peak signal-to-noise ratio

(PSNR) of 20dB.

In Fig. 5, we consider a simple hidden scene of two

squares, one green placed at a depth a = 0 (no parallax),

and one red placed at depth a = 0.3 (some parallax). We

compare the reconstruction quality of light fields recovered

with different occluders. Our results indicate that the

quality of the recovery method improves as we use more

complex occluders. This is consistent with the findings

of past work on coded-aperture cameras, which found

that complicated occlusion patterns generally yield better

reconstructions than simple ones [15, 30].

We further show in Fig. 7 the recovered light field of

a more complex hidden scene consisting of a single head,

for the best performing occluder previously tested (a set of

plants).

6.3. Real experiments

Experimental Setup. For all experimental measures, we

use a Canon EOS 6D with a Canon EF 24-105mm f/4L

lens, set at ISO 100 and f/4.0. We construct y by averaging

5 RAW captures with 5s exposure and then subtracting a

background image taken without the hidden scene in place.
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Three views from each light field

a)

Scenarios

b)

c)

d)

e)

f)

14.09dB

18.16dB

20.78dB

21.21dB

11.37dB

Figure 5: Recovered light fields for a simulated scene and

different occluders. For each occluder, we provide three

views of a horizontal slice of the recovered light field

and the PSNR of these views. (a) Ground-truth. (b)-(f)

Simulated scenario and recovered views for (b) a pinspeck,

(c) a sphere, (d) two pinspecks at different depths, (e)

multiple spheres, and (f) multiple plants.

Figure 6: Reconstruction PSNR plotted against observation

PSNR, for simulated scenarios (e) and (f) from Fig. 5. We

also show three reconstructions of the scene using the setup

from (f), for three different values of the PSNR.

The hidden scene is illuminated with two Lowel ID-Light

100W placed between both parametrization planes, one on

each side. The observation is 24 × 36in, the scene plane

is 14 × 23in and D is equivalent to 45in. The camera is

24.83dB24.83dB

a) b)

c) d)

Figure 7: Recovered light field of another simulated scene,

using the same occluder as in scenario (f) of Fig. 5. (a)

Simulated scenario and (b) the resulting observation. In (c)

we show selected views from the ground truth light field

and in (d) the same views for the recovered light field. This

illustrates the performance of our method for an arbitrary

scene, with self-occlusions and non-planar elements.

OccludersScene plane
Observation

plane

Figure 8: Experimental setup used to calibrate complex

occluders. An impulse at a single position on an LCD

screen placed at the scene plane casts a shadow. This

shadow is used to compute the visibility function of that

scene position and all observation positions. This process is

done for each possible position in the scene.

positioned as seen in Fig. 8, having a full unoccluded view

of the observation plane and at the height of the setup.

Calibration of the visibility function. In these

experiments, we use two desk plants as occluders, as shown

in Fig. 8. The geometry of these occluders is not readily

available, and we must empirically measure each element

of the visibility vector v. To do so, we first capture

the observation obtained by lighting up each location on

the scene plane with an LCD monitor, and then convert

these observations into binary masks by thresholding pixel
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b) Observation

d) Selected views of recovered light field

c) Selected views of true scenea) Scene setup

a = 0.5

Scene

Occluders

Observation

Figure 9: Reconstructions of an experimental scene with

two rectangles, one blue at a = 0 and one red at a =
0.5. (a) Schematic of the setup. (b) Observation plane

after background subtraction. (c) Six views of the true

scene, shown to demonstrate of what the true light field

would look like. These are taken with a standard camera

from equivalent positions on the observation wall. (d)

Reconstructions of the light field for these views. The blue

and red targets measure 8× 12in and 6× 8in.

intensities. These masks approximately encode which light

field rays reach the observation plane, and thus v. The

full transfer matrix is computationally derived according to

Eq. 4 using the measured v and using ck = cos2(θ)/r2

to model near-field effects, where θ is the angle between

the light field ray k and the observation plane and r is the

distance between the two points at which the ray intersects

the parametrization planes. We note that directly using the

captured observations to construct the full transfer matrix

would capture the directivity spectrum of the calibration

device (in our case, the LCD screen).

Real reconstructions. In Figs. 9 and 10, we show six

selected views of recovered light fields for two hidden

scenes, with different levels of spatial (texture-related) and

angular (parallax-related) complexity. Both are obtained

using the same prior, without adapting the depth range

to recover the particulars of the scene. The results

demonstrate consistent reconstruction of both texture and

parallax information with respect to the expected light fields

of the hidden scenes. In Fig. 9, we see the blue and

red squares of the true scene. Moreover, we see the red

square being increasingly hidden by the blue square as the

“camera” moves right, and the red square moving lower

relative to the blue square as the “camera” moves down.

Similarly, in Fig. 10, we see the blue and orange of the

man’s coat, and as the “camera” moves right and down, we

can see an increasing amount of his face.

a) Observation

c) Selected views of recovered light field

b) Selected views of true scene

Figure 10: Reconstructions of an experimental scene with a

seated subject at the scene plane. (a) Observation plane after

background subtraction. (b) Six views of the true scene,

captured in the same manner as in Fig. 9 (c) Reconstructions

of the light field for the same views as in (b).

7. Conclusions

Our proposed method allows linear inference of light

fields in passive NLoS settings, using the geometry and

position of a known occluder and plausible assumptions

about typical light fields. Ours is the first method known to

us to infer full light fields when the scene is totally hidden

from direct view, and the first to use arbitrary occluders to

reconstruct even 2D representations of scenes.

We believe that these methods are an exciting first

step towards a richer class of NLoS reconstructions. Past

efforts in NLoS imaging, including active approaches, have

generally focused on learning only part of the information

available in the scene. For instance, [11], [18], and [25]

focus on extracting the size, motion, and shape of objects,

while [3] attempts a 1D reconstruction of a moving scene.

In contrast, our proposed method provides a reconstruction

for the light field, which can then be used to approximate

some of the previous methods, either computationally or by

human inspection.

Our methods and experimental results demonstrate that

the hidden patterns of shadows on walls can, if they are

properly interpreted, reveal a rich world of previously

invisible visual information.
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