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Abstract

Deep generative models learned through adversarial

training have become increasingly popular for their abil-

ity to generate naturalistic image textures. However, aside

from their texture, the visual appearance of objects is sig-

nificantly influenced by their shape geometry; information

which is not taken into account by existing generative mod-

els. This paper introduces the Geometry-Aware Generative

Adversarial Networks (GAGAN) for incorporating geomet-

ric information into the image generation process. Specif-

ically, in GAGAN the generator samples latent variables

from the probability space of a statistical shape model. By

mapping the output of the generator to a canonical coordi-

nate frame through a differentiable geometric transforma-

tion, we enforce the geometry of the objects and add an

implicit connection from the prior to the generated object.

Experimental results on face generation indicate that the

GAGAN can generate realistic images of faces with arbi-

trary facial attributes such as facial expression, pose, and

morphology, that are of better quality than current GAN-

based methods. Our method can be used to augment any

existing GAN architecture and improve the quality of the

images generated.

1. Introduction

Generating images that look authentic to human ob-

servers is a longstanding problem in computer vision and

graphics. Benefitting from the rapid development of deep

learning methods and the easy access to large amounts of

data, image generation techniques have made significant ad-

vances in recent years. In particular, Generative Adversarial

Networks [14] (GANs) have become increasingly popular

for their ability to generate visually pleasing results, with-

out the need to explicitly compute probability densities over

the underlying distribution.

However, GAN-based models still face many unsolved

difficulties. The visual appearance of objects is not only

dictated by their visual texture but also depends heavily on

Figure 1: Samples generated by GANs trained on the

CelebA [24]. The first row shows some real images used

for training. The middles rows present results obtained with

popular GAN architectures, namely DCGAN [32] (row 2)

and WGAN [2] (row 3). Images generated by our pro-

posed GAGAN architecture (last row) look more realistic

and the represented objects follows an imposed geometry,

expressed by a given shape prior.

their shape geometry. Unfortunately, GANs do not allow

to incorporate such geometric information into the image

generation process. As a result, the shape of the generated

visual object cannot be explicitly controlled. This signif-

icantly degenerates the visual quality of the produced im-

ages. Figure 1 demonstrates the challenges for face gen-

eration with different GAN architectures (DCGAN [32]

and WGAN [2]) that have been trained on the celebA

dataset [24]. Whilst GANs [14, 32] and Wasserstein GANs

(WGANs) [2] generate crisp realistic objects (e.g. faces),

their geometry is not followed. There have been attempts

to include such information in the prior, for instance the

recently proposed Boundary Equilibrium GANs (BEGAN)

[4], or to learn latent codes for identities and observations

[11]. However, whilst these approaches in some cases im-

proved image generation, they still fail to explicitly model

the geometry of the problem. As a result, the wealth of ex-

isting annotations for fiducial points, for example from the
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facial alignment field, as well as the methods to automati-

cally and reliably detect those [5], remain largely unused in

the GAN literature.

In this paper, we address the challenge of incorporat-

ing geometric information about the objects into the im-

age generation process. To this end, the Geometry-Aware

GAN (GAGAN) is proposed in Section 3. Specifically, in

GAGAN the generator samples latent variables from the

probability space of a statistical shape model. By mapping

the output of the generator to the coordinate frame of the

mean shape through a differentiable geometric transforma-

tion, we implicitly enforce the geometry of the objects and

add an implicit skip connection from the prior to the gen-

erated object. The proposed method exhibits several ad-

vantages over the available GAN-based generative models,

allowing the following contributions:

• GAGAN can be easily incorporated into and improve

any existing GAN architecture

• GAGAN generates morphologically-credible images

using prior knowledge from the data distribution (ad-

versarial training) and allows to control the geometry

of the generated images

• GAGAN leverages domain specific information such

as symmetry and local invariance in the geometry of

the objects as additional prior. This allows to ex-

actly recover the lost information inherent in genera-

tion from a small latent space

• By leveraging the structure in the problem, unlike ex-

isting approaches, GAGAN works with small datasets

(less than 25, 000 images).

We assessed the performance of GAGAN in Section 4

by conducting experiments on face generation. The exper-

imental results indicate that GAGAN produces superior re-

sults with respect to the visual quality of the images pro-

duced by existing state-of-the-art GAN-based methods. In

addition, by sampling from the statistical shape model we

can generate faces with arbitrary facial attributes such as

facial expression, pose, and morphology.

2. Background and related work

Generative Adversarial Networks [14] approach the

training of deep generative models from a game theory

perspective using a minimax game. That is, GANs learn

a distribution PG(x) that matches the real data distribu-

tion Pdata(x), hence their ability to generate new image

instances by sampling from PG(x). Instead of explicitly

assigning a probability to each point in the data distribu-

tion, the generator G learns a (non-linear) mapping function

from a prior noise distribution Pz(z) to the data space as

G(z; θ). This is achieved during training, where the gener-

ator G “plays” a zero-sum game against an adversarial dis-

criminator network D. The latter aims at distinguishing be-

tween fake samples from the generator’s distribution PG(x)
and real samples from the true data distribution Pdata(x).
For a given generator, the optimal discriminator is then

D(x) = Pdata(x)
Pdata(x)+PG(x) . Formally, the minimax game is:

min
G

max
D

V (D,G) =Ex∼Pdata

[

logD(x)
]

+

E z∼noise

[

log
(

1−D(G(z))
)

]

The ability to train extremely flexible generating func-

tions, without explicitly computing likelihoods or perform-

ing inference, while targeting more mode-seeking diver-

gences, has made GANs extremely successful in image gen-

eration [32, 29, 28, 39]. The flexibility of GANs has also

enabled various extensions, for instance to support struc-

tured prediction [28, 29], to train energy based models [48]

and combine adversarial loss with an information loss [6].

Additionally, GAN-based generative models have found nu-

merous applications in computer vision, including text-to-

image [33, 47], image-to-image[49, 16], style transfer [17],

image super-resolution [23] and image inpainting [31].

However, most GAN formulations employ a simple in-

put noise vector z without any restriction on the manner

in which the generator may use this noise. As a conse-

quence, it is impossible for the latter to disentangle the noise

and z does not correspond to any semantic feature of the

data. However, many domains naturally decompose into a

set of semantically meaningful latent representations. For

instance, when generating faces for the celebA dataset, it

would be ideal if the model automatically chose to allocate

continuous random variables to represent different factors,

e.g. head pose, expression and texture. This limitation is

partially addressed by recent methods [6, 26, 46, 41, 11]

that are able to learn meaningful latent spaces, explaining

generative factors of variation in the data. However, to the

best of our knowledge, there has been no work explicitly

disentangling the latent space for object geometry of GANs.

Statistical Shape Models were first introduced by Cootes

et al. in [7] where the authors argue that existing meth-

ods tend to favor variability over simplicity and, in doing

so, sacrifice model specificity and robustness during testing.

The authors propose to remedy this by building a statisti-

cal model of the shape able to deform only to represent the

object to be modeled, in a way consistent with the training

samples. This model was subsequently improved upon with

Active Appearance Models (AAMs) to not only model the

shape of the objects but also their textures [12, 8]. AAMs

operate by first building a statistical model of shape. All

calculations are then done in a shape variation-free canoni-
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Figure 2: Overview of our proposed GAGAN method. (i) For each training image I, we leverage the corresponding

shape s. Using the geometry of the object, as learned in the statistical shape model, perturbations ŝ1, · · · , ŝn of that shape are

created. (ii) These perturbed shapes are projected onto a normally distributed latent subspace using the normalised statistical

shape model. That projection Φ(s) is concatenated with a latent component c, shared by all perturbed versions of a same

shape. (iii) The resulting vectors ẑ1, · · · , ẑn are used as inputs to the Generator which generate fake images Î1, · · · , În. The

geometry imposed by the shape prior is enforced by a geometric transformation W (in this paper, a piecewise affine warping)

that, given a shape ŝk, maps the corresponding image Îk onto the canonical shape. These images, thus normalised according

to the shape prior, are classified by the Discriminator as fake or real. The final loss is the sum of the GAN loss and an ℓ1 loss

enforcing that images generated by perturbations of the same shape be visually similar in the canonical coordinate frame.

cal coordinate frame. The texture in that coordinate frame is

expressed as a linear model of appearance. However, using

row pixels as features for building the appearance model

does not yield satisfactory results. Generally, the crux of

successfully training such a model lies in constructing an

appearance model rich and robust enough to model the vari-

ability in the data. In particular, as is the case in most

applications in computer vision, changes in illumination,

pose and occlusion are particularly challenging. There has

been extensive efforts in the field to design features robust

to these changes such as Histograms of Oriented Gradients

[9] (HOG), Image Gradient Orientation kernel (IGO) [45],

Local Binary Patterns [30] (LBP) or SIFT features [25].

The latter are considered the most robust for fitting AAMs

[1]. Using these features, AAMs have been shown to give

state-of-the-art results in facial landmarks localisation when

trained on data collected in-the-wild [43, 42, 1, 21, 44].

Their generative nature make them more interpretable than

discriminative approaches while they require less data than

deep approaches. Lately, thanks to the democratisation of

large corpora of annotated data, deep methods tend to out-

perform traditional approaches for areas such as facial land-

marks localisation, including AAMs, and allow learning

the features end-to-end rather than relying on hand-crafted

ones. However, the statistical shape model employed by

Active Appearance Model has several advantages. By con-

straining the search space, the statistical shape model allows

methods that leverage it to be trained with smaller dataset.

Generative by nature, it is also interpretable and as such can

be used to sample new sets of points, unseen during train-

ing, that respect the morphology of the training shapes.

In this work, we depart from existing approaches and

propose a new method that leverages a statistical model of

shape, built in a strongly supervised way, akin to that of

ASM and AAM, while retaining the advantages of GANs.

We do so by imposing a shape prior on the output of the

generator. We enforce the corresponding geometry on the

object outputted by the generator using a differentiable geo-

metric function that depends on the shape prior. Our method

does not require complex architectures and can be used to

augment any existing GAN architecture.

3. Geometry-Aware GAN

In GAGAN, we disentangle the input random noise vec-

tor z to enforce a geometric prior and learn a meaningful

latent representation. To do so, we model the geometry of

objects using a collection of fiducial points. The set of all

fiducial points of a sample composes its shape. Using the set

of these shapes on the training set, we first build a statistical

shape model capable of compactly representing them as a

set of normal distributed variables. We enforce that geom-

etry by conditioning the output of the generator on shape

parameter representation of the object. The discriminator,

instead of being fed the output of the generator, sees the

images mapped onto the canonical coordinate frame by a

differentiable geometric transformation (motion model).
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Figure 3: Illustration of the statistical model of shape. An

arbitrary shape can be expressed as a canonical shape plus

a linear combination of shape eigenvectors. These compo-

nents can be further interpreted as modeling pose (compo-

nents 1 and 2), smile/expression (component 3), etc.

Building the shape model Each shape, composed of m

fiducial points is represented by a vector of size 2m of their

2D coordinates x1,y1,x2,y2, · · · ,xm,ym. First, similari-

ties – that is, translation, rotation and scaling– are removed

from these using Generalised Procrustes Analysis [7]. Prin-

cipal Component Analysis is then applied to the similar-

ity free shapes to obtain the mean shape s0 and a set of

eigenvectors (the principal components) associated with the

eigenvalues . The first n−4 eigenvectors associated with the

largest eigenvalues λ1, · · · , λn are kept and these compose

the shape space. However, since this model was obtained on

similarity free-shapes it is unable to model translation, ro-

tation and scaling. We therefore mathematically build 4 ad-

ditional components to model these similarities and append

them to the model before re-orthonormalising the whole set

of vectors [27]. By stacking the set of all n components as

the columns of a matrix S of size (2m,n), we obtain the

shape model. A shape s can then be expressed as:

s = s0 + Sp, (1)

We define φ the mapping from the shape space to the

parameter space:

φ : R2m → R
n

s 7→ S⊤(s− s0) = p

This transformation is invertible, and its inverse, φ−1 is

given by φ−1 : p 7→ s0 + SS⊤(s− s0).
We can interpret our model from a probabilistic stand-

point [10], where the shape parameters p1, · · · ,pn are in-

dependent Gaussian variable with variance λ1, · · · , λn and

zero mean. By using the normalised shape parameters
p1√
λ1

, · · · , pn√
λn

, we enforce that they be independent and

normal distributed, suitable as input to our generator. This

also gives us a criteria to assess how realistic a shape is us-

ing the sum of its normalised parameters
∑n

k=1
pk√
λk

∼ χ2,

which follows a Chi squared distribution [10].

Enforcing the geometric prior To constrain the output

of the generator to correctly respect the geometric prior,

we propose the use of the differentiable geometric function.

Figure 4: Illustration of the piecewise affine warping

from an arbitrary shape (left) onto the canonical shape

(right). After the shapes have been triangulated, the points

inside each of the simplices of the source shape are mapped

to the corresponding simple in the target shape. Specifi-

cally, a point x is expressed in barycentric coordinates as

a function of the vertices of the simplex it lays in. Using

these barycentric coordinates, it is mapped onto x′ in the

target simplex.

Specifically, the discriminator never directly sees the output

of the generator. Instead, we leverage a motion model that,

given an image and a corresponding set of landmarks, maps

the image onto the canonical coordinate frame. The only

constraint on that motion model is that it has to be differen-

tiable. We then backpropagate from the discriminator to the

generator, through that transformation.

In this work, we use a piecewise affine warping as the

motion model. The piecewise affine warping works by map-

ping the pixels from a source shape onto the target shape. In

this work, we employ the canonical shape. This is done by

first triangulating both shapes, typically as a Delaunay tri-

angulation. The points inside each simplex of the source

shape are then mapped to the corresponding triangle in the

target shape, using its barycentric coordinates in terms of

the vertices of that simplex, and the corresponding value is

decided using the nearest neighbor or interpolation. This

process is illustrated in Figure 4.

GAGAN We consider our input as a pair of N images

I ∈ R
N×h×w and their associated shapes (or set of fiducial

points) s ∈ N
N×k×2, where h and w represent height and

width of a given image, and k denotes the number of fidu-

cial points. From each shape s(i), i = 1, . . . , N , we gener-

ate K perturbed version: ŝ(i) = (̂s
(i)
1 , . . . , ŝ

(i)
K ). We denote

p̂(i) = (p̂
(i)
1 , · · · , p̂

(i)
K ) their projection onto the normalised

shape space, obtained by p̂
(i)
j = Φ(s

(i)
j ), j = 1, · · · ,K.

We model p̂
(i)
j ∼ N (0, 1) as a set of structured latent vari-

ables which represents the geometric shape of the output

objects. For simplicity, we may assume a factored distri-

bution, given by P (p̂
(i)
1 , . . . , p̂

(i)
n ) =

∏
j P (p̂

(i)
j ), i =

1, · · · , N, j = 1, · · · , n.
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Figure 5: Random 64x64 samples from GAGAN (ours).

We now propose a method for discovering these latent

variables in a supervised way: we provide the generator

network G with both a the latent code vector p̂
(i)
j and an

associated noise vector c
(i)
j , so the form of the generator be-

comes G(c
(i)
j , p̂

(i)
j ). However, in standard GAN and given

a large latent space, the generator is able to ignore the ad-

ditional latent code p
(i)
j by finding a solution satisfying

PG(x
(i)|p

(i)
j ) = PG(x

(i)). To cope with the problem of

trivial latent representation, we propose to employ a dif-

ferentiable geometric transformation W , also called motion

model, that maps the appearance from a generated image

to a canonical reference frame. In this work, we employ

a piecewise affine warping and map onto the mean shape

s0). The discriminator only sees fake and real samples af-

ter they have been mapped onto the mean shape. Discrim-

inating between real and fake is then equivalent to jointly

assessing the quality of the appearance produced as well as

the accuracy of the shape parameters on the generated geo-

metric object. The use of a piecewise affine warping has an

intuitive interpretation: the better the generator follows the

given geometric shape, the better the result when warping to

the mean shape. For ease of notation, we denote ẑ(i) the la-

tent variable concatenating p̂(i) and c(i), ẑ(i) = (p̂(i), c(i)).

We propose to solve the following affine-warping-

regularized minimax game:

min
G

max
D

V (D,G) = E I,s∼Pdata

[

logD
(

W(I, s)
) ]

+ E z̃∼N (0,1)

[

log
(

1−D
(

W(G(z̃), ŝ)
)

)

]

(2)

Local appearance preservation The generative model of

shape provides us rich information about the images being

generated. In particular, it is desirable for the appearance of

a face to be dependent on the set of fiducial points that com-

pose it (i.e. an infant’s face has a different shape and appear-

ance from that of an adult male or female face). However,

we also know that certain transformations should preserve

appearance and identity. For instance, differences in head

pose should ideally not affect appearance.

To enforce this, rather than directly feeding the train-

ing shapes to the generator, we feed it several appearance-

preserving variations of each shape, and ensure that the re-

sulting samples have similar appearance. Specifically, for

each sample, we generate several variants by mirroring it,

projecting it into the normalised shape space, adding ran-

dom noise sampled from a Gaussian distribution there, and

using these perturbed shapes as input. Since the outputs

should look different (as they have different poses for in-

stance), we cannot directly compare them. However, the ge-

ometric transformation projects these onto a canonical co-

ordinate frame where they can be compared, allowing us to

add a loss to account for these local appearance preserva-

tions.

Formally, we mirror the images and denote the cor-

responding mirrored shape and shape parameter are de-

noted by ŝ
(i)
M and p

(i)
jM . The mirrored, normalised shape

parameters p̂M are then used to build the latent space

ẑM ∼ N (0, 1). For simplicity, we define perturbed shapes

s̃ = (̂s, ŝM ), normalised parameters p̃ = (p,pM ) and la-

tent vectors z̃ = (ẑ, ẑM ) that share a common noise vector

c. Finally, we define the mirroring function m(·), that flips

every image or shape horizontally. The local appearance

preservation loss (LAP) is then defined as:

LAP =

∣

∣

∣

∣

∣

W
(

G(ẑ), ŝ
)

−W
(

m
(

G(ẑM )
)

,m (̂sM )
)
∣

∣

∣

∣

∣

1

+
∣

∣

∣

∣

∣

W
(

m
(

G(ẑ)
)

,m(̂s)
)

−W
(

G(ẑM ), ŝM

)
∣

∣

∣

∣

∣

1

(3)

Adding the local appearance preservation to the minimax
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(a) GAGAN small set (b) CelebA

Figure 6: Comparison between samples of faces generated by the baseline models and our model GAGAN for the

GAGAN-small set (left column) and celebA (right column). The first row shows some real images. The following rows

presents results obtained with our baseline models: row (2): Shape-CGAN, row (3): P-CGAN and row (4): Heatmap-CGAN.

The last row present some images generated by our proposed GAGAN architecture. The first three columns show generated

samples solely, while we visualize the shape prior, overlaid on the generated images, in the last three columns.

optimization value function, we get the final objective:

min
G

max
D

V (D,G) = E I,s∼Pdata

[

logD
(

W(I, s)
) ]

+ E z̃∼N (0,1)

[

log
(

1−D
(

W(G(z̃), s̃)
)

)

]

+ λ · LAP

(4)

A visual overview of the method can be found in Figure 2

and Figure 5 presents samples generated with GAGAN.

4. Experimental results

In this section, we introduce the experimental setting and

demonstrate the performance of the GAGAN quantitatively

and qualitatively on what is arguably the most popular ap-

plication for GANs, namely face generation. Experimental

results indicate that the proposed method outperforms exist-

ing architectures while respecting the geometry of the faces.

4.1. Experimental setting

Datasets To train our method, we used widely established

databases for facial landmarks estimation, namely Helen

[13], LFPW [3], AFW [50] and iBUG [38]. In all cases

we used 68 landmarks, in the Multi-Pie configuration [15]

as annotated for the 300-W challenge [37, 38]. We also

used the test set of the 300−W challenge [34] and sampled

frames from the video of the 300-VW challenge [40], as

well as the videos of the AFEW-VA dataset [22]. We coin

the set of all these images and shapes the GAGAN-small set.

To allow for comparison with other traditional GAN meth-

ods, we also used the CelebA dataset [24], which contains

202, 599 images of celebrities. Finally, to demonstrate the

versatility of the method, we apply it to the cat faces dataset

introduced in [35, 36]

Pre-processing All images where processed in the fol-

lowing way: first the shape in the image was rescaled to

a size of 60× 60. The corresponding image was resized us-

ing the same factors and then cropped into a size of 64× 64
so that the shape is in the center with a margin of 2 pixels

on all sides. Since the celebA dataset is only annotated for

5 fiducial points, we use the recent deep learning based face

alignment method introduced in [5] to detect these. This

method has been shown to provide remarkable accuracy, of-

ten superior to that of humans annotators [5].

Implementation and training details We used a stan-

dard DC-GAN architectures as defined in [32], with input

images of size 64× 64. The latent vector z of the generator

has size 100 and is composed of the 50 normalised shape

parameters concatenated with i.i.d. random noise sampled

from a normal distribution. We trained our model using

Adam [18], with a learning rate of 0.0002 for the discrimi-

nator and a learning rate of 0.001 for the generator. Model

collapse has been observed with high learning rates. Re-

ducing the learning rate was sufficient to avoid this issue.
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(a) Varying the shape parameters (b) Varying the appearance parameters

Figure 7: Images obtained by varying only the parameters from the shape prior (left) or non geometric prior (right).

In (7a), we vary only a few shape parameters, while keeping all others fixed. The components of the statistical shape space

can easily be interpreted in term of pose, morphology, smile, etc. Conversely, by varying only the non geometric latent vector

c and keeping the shape parameters fixed (7b), we can control appearance and generate more diverse images.

We used λ in range [0.0, 1.0, 2.5, 5.0]. We found 2.5 to be

the best regularization factor in terms of quality of gener-

ated images. All experiments were ran on a single GPU on

Amazon Web Services, with an NVIDIA VOLTA GPU.

Baseline models For our baselines, we used 3 models,

which the same architecture as DCGAN [32]:

Shape-CGAN is a Conditional GAN (CGAN) [28], mod-

ified to generate images conditioned on shapes s by

channel-wise concatenation.

P-CGAN is a CGAN conditioned on the normalised shape

parameters p (as used by GAGAN and introduced pre-

viously) by channel-wise concatenation.

Heatmap-CGAN is a novel model, based on a CGAN con-

ditioned on shapes by heatmap concatenation. First a

heatmap with value 1 at the expected position of land-

marks, and 0 everywhere else is created. This is then

used as an additional channel and concatenated to the

image passed on to the discriminator. For the genera-

tor, the shapes are flattened and concatenated to the la-

tent vector z obtained from our statistical shape model.

4.2. Qualitative results

Figure 5 shows some representative samples drawn from

z at a resolutions of 64 x 64. We observe realistic images

that closely follow the imposed shape prior, for a wide range

of poses, expression, gender and illumination. Though we

observed fewer older people, the proportion between men

and women sampled appears to be balanced. Interestingly,

the model was able to generate accessories, such as glasses,

during sampling.

We also compared the quality of images generated by

GAGAN and our baseline models (Fig. 6), on the GAGAN

small set and CelebA datasets. When trained on GAGAN

small set, (Fig. 6a), Shape-CGAN fails to generate any

meaningful image. P-CGAN, on the other hand, generates

images of faces that respect the shape parameters, validat-

ing the use of such a representation. However, the generated

images are highly pixelated and textures are rudimentary.

Heatmap-GAN correctly generates faces according to the

shapes and the textures are more realistic than P-CGAN, but

the geometry is distorted. Our model, GAGAN, generates

the most realistic images among all models and accurately

follows the shape prior. On CelebA, generation is better

for all models, including ours (Fig. 6b). As observed on

the small set, the baseline models can generate meaningful

images that approximately follow the shape prior, but infe-

rior to that of GAGAN, either low quality (Shape-CGAN),

or highly distorted (P-CGAN, Heatmap-CGAN). The dif-

ference in performance between the two datasets can be ex-

plained by their size, CelebA being about ten times as large

as GAGAN small set. As is known, deep learning methods,

including GANs, typically work best with large datasets.

4.3. Quantitative results

The facial landmark detector introduced in [5] is reported

to detect fiducial points with an accuracy in most cases

higher than that of human annotators. Our model takes as
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input a shape prior and generates an image that respects that

prior. Therefore, we propose to assess the quality of the

results by running the landmark detector on the produced

images and measuring the distance between the shape prior

and the actual detected shape. We directly run the detector

on 10, 000 images created by the generator of our GAGAN,

heatmap-CGAN and P-CGAN, all trained on CelebA.

Performance is evaluated in terms of the well-established

normalised point-to-point error (pt-pt-error), as introduced

in [50] and defined as the RMS error, normalised by the

face-size. Following [19, 43, 50, 20, 44, 21], we produced

the cumulative error distribution (CED) curve, Fig. 8. It de-

picts, for each value on the x-axis, the percentage of images

for which the point-to-point error is lower than this value.

As a baseline (ground-truth), we run the facial landmark de-

tector on our challenging GAGAN-small-set, and compute

the errors with the annotations provided with the data.

Figure 8: Cumulative Error Distribution. We plot the er-

ror between the landmarks estimated by the detector and

those used as prior to generate the images, for GAGAN

(red), heatmap-CGAN (green) and P-CGAN (orange), all

trained on CelebA. As a baseline, we evaluate the perfor-

mance of the landmark detector on our GAGAN-small set

(ground-truth, blue).

As can be observed, the images generated by GAGAN

accurately follow the given geometric prior used for gener-

ation, with an accuracy similar to that of the landmark de-

tector. While heatmap-CGAN and P-CGAN also generate

images that follow the prior, they do so with a significantly

lower accuracy, which might also be due to the lesser qual-

ity of the images generated.

4.4. Generality of the model

To demonstrate the versatility of the model, we apply it

to the generation of cats faces, using the dataset introduced

in [35, 36]. Specifically, we used 348 images of cats, for

which 48 facial landmarks were manually annotated [35],

including the ears and boundaries of the face. We build a

statistical shape space as previously done for human faces

and condition GAGAN on the resulting shape parameters.

We present some examples of generated images, along

with the geometrical prior used for generation in Figure 9.

Figure 9: Samples generated by our model trained on the

cats dataset, overlaid with the geometric prior used for gen-

eration (red points).

5. Conclusion and future work

We introduced GAGAN, a novel method that can be used

to augment any existing GAN architecture to incorporate

geometric information. Our generator samples from the

probability distribution of a statistical shape model and gen-

erates faces that respect the induced geometry. This is en-

forced by an implicit connection from the shape parameters

fed to the generator to a differentiable geometric transform

applied to its output. The discriminator, being trained only

on images normalised to a canonical image coordinates is

able to not only discriminate on whether the produced fakes

are realistic but also on whether they respect the geometry.

As a result, our model is the first one, to wit, able to pro-

duce realistic images conditioned on an input shape. Going

forward, we are currently working on extending our method

in several ways by, i) applying it to the generation of larger

images, ii) exploring more complex geometric transforma-

tions that have the potential to alleviate the deformations

induced by the piecewise-affine warping and iii) augment-

ing traditional CNN architectures with our method for facial

landmark detection.
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