
Defense against Adversarial Attacks Using

High-Level Representation Guided Denoiser

Fangzhou Liao∗, Ming Liang∗, Yinpeng Dong, Tianyu Pang, Xiaolin Hu†, Jun Zhu

Department of Computer Science and Technology, Tsinghua Lab of Brain and Intelligence,

Beijing National Research Center for Information Science and Technology, BNRist Lab

Tsinghua University, 100084 China

{liaofangzhou, liangming.tsinghua}@gmail.com, {dyp17, pty17}@mails.tsinghua.edu.cn, {xlhu, dcszj}@tsinghua.edu.cn

Abstract

Neural networks are vulnerable to adversarial examples,

which poses a threat to their application in security sensi-

tive systems. We propose high-level representation guided

denoiser (HGD) as a defense for image classification. Stan-

dard denoiser suffers from the error amplification effect, in

which small residual adversarial noise is progressively am-

plified and leads to wrong classifications. HGD overcomes

this problem by using a loss function defined as the differ-

ence between the target model’s outputs activated by the

clean image and denoised image. Compared with ensemble

adversarial training which is the state-of-the-art defending

method on large images, HGD has three advantages. First,

with HGD as a defense, the target model is more robust to

either white-box or black-box adversarial attacks. Second,

HGD can be trained on a small subset of the images and

generalizes well to other images and unseen classes. Third,

HGD can be transferred to defend models other than the

one guiding it. In NIPS competition on defense against ad-

versarial attacks, our HGD solution won the first place and

outperformed other models by a large margin. 1

1. Introduction

As many other machine learning models [2], neural net-

works are known to be vulnerable to adversarial examples

[30, 7]. Adversarial examples are maliciously designed in-

puts to attack a target model. They have small perturbations

on original inputs but can mislead the target model. Adver-

sarial examples can be transferred across different models

[30, 21]. This transferability enables black-box adversar-

ial attacks without knowing the weights and structures of

the target model. Black-box attacks have been shown to be

∗Equal contribution.
†Corresponding author.
1Code: https://github.com/lfz/Guided-Denoise.

Figure 1: The idea of high-level representation guided de-

noiser. The difference between the original image and ad-

versarial image is tiny, but the difference is amplified in

high-level representation (logits for example) of a CNN. We

use the distance over high-level representations to guide the

training of an image denoiser to suppress the influence of

adversarial perturbation.

feasible in real-world scenarios [22], which poses a poten-

tial threat to security-sensitive deep learning applications,

such as identity authentication and autonomous driving. It

is thus important to find effective defenses against adversar-

ial attacks.

Since adversarial examples are constructed by adding

noises to original images, a natural idea is to denoise ad-

versarial examples before sending them to the target model

(Figure 1). We explored two models for denoising adversar-

ial examples, and found that the noise level could indeed be

reduced. These results demonstrate the feasibility of the de-

11778

https://github.com/lfz/Guided-Denoise

noising idea. However, none of the models can remove all

adversarial perturbations, and small residual perturbation is

amplified to a large magnitude in top layers of the target

model (called “error amplification effect”), which leads to a

wrong prediction. To solve this problem, instead of using a

pixel-level reconstruction loss function as standard denois-

ers, we set the loss function as the difference between top-

level outputs of the target model induced by original and ad-

versarial examples (Figure 1). We name the denoiser trained

by this loss function “high-level representation guided de-

noiser” (HGD).

Compared with ensemble adversarial training [31] which

is the current state-of-the-art method, the proposed method

has the following advantages. First, it achieves much higher

accuracy when defending both white-box and black-box at-

tacks. Second, HGD requires much less training data and

training time, and well generalizes to other images and un-

seen classes. Third, HGD can be transferred across differ-

ent target models. We further validated the performance

of HGD in the NIPS adversarial defense competition. Our

HGD approach won the first place by a large margin, and

had faster inference speed than other top-ranked methods.

2. Background and Related Work

In this section, we first specify some of the notations

used in this paper. Let x denote the clean image from a

given dataset, and y denote the class. The ground truth la-

bel is denoted by ytrue. A neural network f : x → y is

called the target model. Given an input x, its feature vector

at layer l is fl(x), and its predicted probability of class y
is p(y|x). yx = argmaxy p(y|x) is the predicted class of

x. J(x, y) denotes the loss function of the classifier given

the input x and its target class y. For image classification,

J(x, y) is often chosen to be the cross-entropy loss. We use

x∗ to denote the adversarial example generated from x. ǫ
is the magnitude of adversarial perturbation, measured by a

certain distance metric.

2.1. Existing methods for adversarial attacks

Adversarial examples [30] are maliciously designed in-

puts which have a small difference from clean images but

cause the classifier to give wrong classifications. That is,

for x∗ with a sufficiently small perturbation magnitude ǫ ,

yx∗ 6= yx. We use L∞ to measure ǫ in this study.

Szegedy et al. [30] use a box-constrained L-BFGS al-

gorithm to generate targeted adversarial examples, which

bias the predictions to a specified class ytarget. More

specifically, they minimize the weighted sum of ǫ and

J(x∗, ytarget) while constraining the elements of x∗ to be

normal pixel value.

Goodfellow et al. [7] suggest that adversarial examples

can be caused by the cumulative effects of high dimensional

model weights. They propose a simple adversarial attack

algorithm, called Fast Gradient Sign Method (FGSM):

x∗ = x+ ǫ · sign(∇xJ(x, y)). (1)

FGSM only computes the gradients for once, and thus

is much more efficient than L-BFGS. In early practices,

FGSM uses the true label y = ytrue to compute the gradi-

ents. This approach is suggested to have the label leaking

[16] effect, in that the generated adversarial example con-

tains the label information. A better alternative is to replace

ytrue with the model predicted class yx. FGSM is untargeted

and aims to increase the overall loss. Targeted FGSM can

be obtained by modifying FGSM to maximize the predicted

probability of a specified class ytarget:

x∗ = x− ǫ · sign(∇xJ(x, ytarget)) (2)

ytarget can be chosen as the least likely class predicted by the

model or a random class. Kurakin et al.[16] propose an iter-

ative FGSM (IFGSM) attack by repeating FGSM for n steps

(IFGSMn). IFSGM usually results in higher classification

error than FGSM.

The model used to generate adversarial attacks is called

the attacking model, which can be a single model or an en-

semble of models [31]. When the attacking model is the

target model itself or contains the target model, the result-

ing attacks are white-box. An intriguing property of adver-

sarial examples is that they can be transferred across dif-

ferent models [30, 7]. This property enables black-box at-

tacks. Practical black-box attacks have been demonstrated

in some real-world scenarios [22, 21]. As white-box at-

tacks are less likely to happen in practical systems, defenses

against black-box attacks are more desirable.

2.2. Existing methods for defenses

Adversarial training [7, 16, 31] is one of the most ex-

tensively investigated defenses against adversarial attacks.

It aims to train a robust model from scratch on a training

set augmented with adversarially perturbed data [7, 16, 31].

Adversarial training improves the classification accuracy of

the target model on adversarial examples [30, 7, 16, 31]. On

some small image datasets it even improves the accuracy of

clean images [30, 7], although this effect is not found on

ImageNet [5] dataset. However, adversarial training is more

time consuming than training on clean images only, because

online adversarial example generation needs extra compu-

tation, and it takes more epochs to fit adversarial examples

[31]. These limitations hinder the usage of harder attacks

in adversarial training, and practical adversarial training on

the ImageNet dataset only adopts FGSM.

Preprocessing based methods process the inputs with

certain transformations to remove the adversarial noise, and

then send these inputs to the target model. Gu and Rigazio

[9] first propose the use of denoising auto-encoders as a de-

fense. Osadchy et al. [20] apply a set of filters to remove

1779

the adversarial noise, such as the median filter, averaging

filter and Gaussian low-pass filter. Graese et al. [8] as-

sess the defending performance of a set of preprocessing

transformations on MNIST digits [17], including the per-

turbations introduced by image acquisition process, fusion

of crops and binarization. Das et al. [4] preprocess images

with JPEG compression to reduce the effect of adversarial

noises. Meng and Chen [18] propose a two-step defense

model, which detects the adversarial input and then reform

it based on the difference between the manifolds of clean

and adversarial examples. Our approach distinguishes from

these methods by using the reconstruction error of high-

level features to guide the learning of denoisers. Moreover,

these methods are usually evaluated on small images. As we

will show in experiments section, some method effective on

small images may not transfer well to large images.

Another family of adversarial defenses is based on the

so-called gradient masking effect [22, 23, 31]. These de-

fenses apply some regularizers or smooth labels to make

the model output less sensitive to the perturbation on input.

Gu and Rigazio [9] propose the deep contrastive network,

which uses a layer-wise contrastive penalty term to achieve

output invariance to input perturbation. Papernot et al. [24]

adapts knowledge distillation [12] to adversarial defense,

and uses the output of another model as soft labels to train

the target model. Nayebi and Surya [19] use saturating net-

works for robustness to adversarial noises. The loss func-

tion is designed to encourage the activations to be in their

saturating regime. The basic problem with these gradient

masking approaches is that they fail to solve the vulnerabil-

ity of the models to adversarial attacks, but just make the

construction of white-box adversarial examples more dif-

ficult. These defenses still suffer from black-box attacks

[22, 31] generated on other models.

3. Methods

3.1. Pixel guided denoiser

In this section, we introduce a set of denoising networks

and their motivations. These denoisers are designed in the

context of image classification on ImageNet [5] dataset.

They are used in conjunction with a pretrained classifier

f (By default Inception V3 [29] in this study). Let x de-

note the clean image. The denoising function is denoted as

D : x∗ → x̂, where x∗ and x̂ denote the adversarial image

and denoised image, respectively. The loss function is:

L = ||x− x̂||, (3)

where || · || stands for the L1 norm, the following equations

also use this notation. Since the loss function is defined at

the level of image pixels, we name this kind of denoiser

pixel guided denoiser (PGD).

Figure 2: Diagrams of DAE (left) and DUNET (right).

3.1.1 Denoising U-net

Denoising autoencoder (DAE) [32] is a popular denoising

model. In a previous work [9], DAE in the form of a multi-

layer perceptron was used to defend target models against

adversarial attacks. However, the experiments were con-

ducted on the relatively simple MNIST [17] dataset. To

better represent the high-resolution images in the ImageNet

dataset, we use a convolutional version of DAE for the ex-

periments (see Figure 2 left).

DAE has a bottleneck structure between the encoder and

decoder. This bottleneck may constrain the transmission

of fine-scale information necessary for reconstructing high-

resolution images. To overcome this problem, we modify

DAE with the U-net [27] structure and propose the denois-

ing U-net (DUNET, see Figure 2 right). DUNET is dif-

ferent from DAE in two aspects. First, similar to the Lad-

der network [25], DUNET adds lateral connections from

encoder layers to their corresponding decoder layers in the

same scale. Second, the learning objective of DUNET is the

adversarial noise (dx̂ in Figure 2), instead of reconstructing

the whole image as in DAE. This residual learning [34] is

implemented by the shortcut from input to output to addi-

tively combine them. The clean image can be readily ob-

tained by subtracting the noise (adding -dx̂) from the cor-

rupted input.

3.1.2 Network architecture

We use DUNET as an example to illustrate the architecture

(Figure 3). DAE can be obtained simply by removing the

lateral connections from DUNET. C is defined as a stack of

layer sequences, and each sequence contains a 3× 3 convo-

lution, a batch normalization layer [13] and a rectified lin-

ear unit. Ck is defined as k consecutive C. The network is

composed of a feedforward path and a feedback path. The

feedforward path is composed of five blocks, corresponding

to one C2 and four C3, respectively. The first convolution

of each C3 has 2 × 2 stride, while the stride of all other

layers is 1 × 1. The feedforward path receives the image

as input, and generates a set of feature maps of increasingly

lower resolutions (see the top pathway of Figure 3).

The feedback path is composed of four blocks and a 1×1
convolution. Each block receives a feedback input from the

1780

Figure 3: The detail of DUNET. The numbers inside each cube stand for width × height, and the number outside the cube

stands for the number of channels. In all the C3 of the feedforward path, the stride of the first C is 2× 2.

feedback path and a lateral input from the feedforward path.

It first upsamples the feedback input to the same size as

the lateral input using bilinear interpolation, and then pro-

cesses the concatenated feedback and lateral inputs with a

Ck. From top to bottom, three C3 and one C2 are used.

Along the feedback path, the resolution of feature maps is

increasingly higher. The output of the last block is trans-

formed to the negative noise −dx̂ by a 1 × 1 convolution

(See the bottom pathway of Figure 3). The final output is

the sum of the negative noise and the input image:

x̂ = x∗ − dx̂. (4)

3.2. High­level representation guided denoiser

A potential problem with PGD is the amplification ef-

fect of adversarial noise. Adversarial examples have neg-

ligible differences from the clean images. However, this

small perturbation is progressively amplified by deep neu-

ral networks and yields a wrong prediction. Even if the de-

noiser can significantly suppress the pixel-level noise, the

remaining noise may still distort the high-level responses of

the target model. Refer to Section 5.1 for details.

To overcome this problem, we replace the pixel-level

loss function with the reconstruction loss of the target

model’s outputs. More specifically, given a target neural

network, we extract its representations at l-th layer activated

by x and x̂, and define the loss function as the L1 norm of

their difference:

L = ||fl(x̂)− fl(x)||. (5)

The corresponding model is called HGD, in that the super-

vised signal comes from certain high-level layers of the tar-

get model and carries guidance information related to im-

age classification. HGD uses the same U-net structure as

DUNET. They only differ in their loss functions.

We propose two HGDs with different choices of l. For

the first HGD, we define l = −2 as the index of the topmost

convolutional layer. The activations of this layer are fed to

the linear classification layer after global average pooling,

so it is more related to the classification objective than lower

convolutional layers. This denoiser is called feature guided

denoiser (FGD) (see Figure 4a). The loss function used by

FGD is also known as perceptual loss or feature matching

loss[26, 14, 6]. For the second HGD, we define l = −1
as the index of the layer before the final softmax function,

i.e., the logits. This denoiser is called logits guided denoiser

(LGD). In this case, the loss function is the difference be-

tween the two logits activated by x̂ and x (see Figure 4b).

We consider both FGD and LGD for the following reason.

The convolutional feature maps provide richer supervised

information, while the logits directly represent the classifi-

cation results.

All PGD and these HGDs are unsupervised models, in

that the ground truth labels are not needed in their training

process. An alternative is to use the classification loss of the

target model as the denoising loss function, which is super-

vised learning as ground truth labels are needed. This model

is called class label guided denoiser (CGD) (see Figure4c).

4. Experimental settings

Throughout experiments, the pretrained Inception v3

(IncV3) [29] is assumed to be the target model that attacks

attempt to fool and our denoisers attempt to defend. There-

fore this model is used for training the three HGDs illus-

trated in Figure 4. However, it will be seen that the HGDs

trained with this target model can also defend other mod-

1781

(a) FGD (b) LGD (c) CGD

Figure 4: Three different training methods for HGD. The square boxes stand for data blobs, the circles and ovals stand for

networks. D stands for denoiser. CNN is the model to be defended. The parameters of the CNN are shared and fixed.

els (see Section 5.3). All our experiments are conducted on

images from the ImageNet dataset. Although many defense

methods have been proposed, they are mostly evaluated on

small images and only adversarial training is thoroughly

evaluated on ImageNet. We compare our model with en-

semble adversarial training, which is the state-of-the-art de-

fense method of defending large images.

4.1. Dataset

For both training and testing of the proposed method,

adversarial images are needed. To prepare the training set,

we first extract 30K images from the ImageNet training set

(30 images per class). Then we use a bunch of adversarial

attacking methods to distort these images and form a train-

ing set of adversarial images. Different attacking methods

including FGSM and IFGSM are applied to the following

models: Pre-trained IncV3, InceptionResnet v2 (IncResV2)

[28], ResNet50 v2 (Res) [11] individually or in combina-

tions (the same model ensemble as the work of Tramer et

al. [31]). For each training sample, the perturbation level

ǫ is uniformly sampled from integers in [1, 16]. See Table

1 for details. As a consequence, we gather 210K images in

the training set (TrainSet).

To prepare the validation set, we first extract 10K images

from the ImageNet training set (10 images per class), then

apply the same method as described above. Therefore the

size of the validation set (ValSet) is 70K.

Two different test sets are constructed, one for white-

box attacks (WhiteTestSet)2 and the other for black-box

attacks (BlackTestSet). They are obtained from the same

clean 10K images from the ImageNet validation set (10 im-

ages per class) but using different attacking methods. The

WhiteTestSet uses two attacks targeting at IncV3, which is

also used for generating training images, and the BlackTest-

Set uses two attacks based on a holdout model pre-trained

Inception V4 (IncV4) [28], which is not used for generating

training images. Every attacking method is conducted on

2The white-box attacks defined in this paper should be called oblivious

attacks according to Carlini and Wagner’s definition [3]

Table 1: Adversarial images generated by different models

for training and testing.

Attacking

method
Attacked model ǫ

TrainSet

and ValSet

FGSM IncV3

[1,16]

FGSM IncResV2

FGSM Res

FGSM IncV3/IncResV2/Res

IFGSM2 IncV3/IncResV2/Res

IFGSM4 IncV3/IncResV2/Res

IFGSM8 IncV3/IncResV2/Res

WhiteTestSet
FGSM IncV3

{4,16}
IFGSM4 IncV3/IncResV2/Res

BlackTestSet
FGSM IncV4

{4,16}
IFGSM4 IncV4

two perturbation levels ǫ ∈ {4, 16}. So both WhiteTestSet

and BlackTestSet have 40k images (see Table 1 for details).

4.2. Implementation details

The denoisers are optimized using Adam [15]. The

learning rate is initially set to 0.001, and decay to 0.0001

when the training loss converges. The model is trained on

six GPUs and the batch size is 60. The number of training

epochs ranges from 20 to 30, depending on the convergence

speed of the model. The model with the lowest validation

loss is used for testing.

5. Results

5.1. PGD and the error amplification effect

The results of DAE and DUNET on the test sets are

shown in Table 23. The original IncV3 without any de-

fense is used as a baseline, denoted as NA. For all types

of attacks, DUNET has much lower denoising loss than

DAE and NA, which demonstrates the structural advantage

3For detailed results of each attack in Table 2-5, please refer to the

supplementary material.

1782

Table 2: Denosing loss and classification accuracy of differ-

ent PGD methods on the test sets. Denosing loss is the L1

distance between the input image and the denoised image.

NA means no defense. Clean stands for original images.

Defense Clean
WhiteTestSet BlackTestSet

ǫ = 4 ǫ = 16 ǫ = 4 ǫ = 16

NA 0.0000 0.0177 0.0437 0.0176 0.0451

DAE 0.0360 0.0359 0.0360 0.0360 0.0369

DUNET 0.0150 0.0140 0.0164 0.0140 0.0181

NA 76.7% 14.5% 14.4% 61.2% 41.0%

DAE 58.3% 51.4% 36.7% 55.9% 48.8%

DUNET 75.3% 20.0% 13.8% 67.5% 55.7%

0 2 4 6 8 10 12 14

Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
l(
x
p
,x

)

Adversarial

Random noise

PGD

LGD

Figure 5: Layerwise perturbation levels of the target model.

Adversarial, Random noise, PGD and LGD correspond to

the El for adverarial images, Gaussian noise perturbed im-

ages, PGD denoised images, and LGD denoised images, re-

spectively.

of DUNET. DAE does not perform well on encoding the

high-resolution images, as its accuracy on clean images sig-

nificantly drops. DUNET slightly decreases the accuracy

of clean images, but significantly improves the robustness

of the target model to black-box attacks. In what follows,

DUNET is used as the default PGD method.

A notable result is that the denoising loss and classifica-

tion accuracy of PGD are not so consistent. For white-box

attacks, DUNET has much lower denoising loss than DAE,

but its classification accuracy is significantly worse. To in-

vestigate this inconsistency, we analyze the layer-wise per-

turbations of the target model activated by PGD denoised

images. Let xp denote a perturbed image. The perturbation

level at layer l is computed as:

El(xp, x) = ||fl(xp)− fl(x)||/||fl(x)||. (6)

The El for PGD denoised images, adversarial images,

and Gaussian noise perturbed images are shown in Fig-

ure 5. The latter two are used as baselines. The curves

are the averaged results on 30 randomly picked adversar-

ial images generated by the ensemble attack ”IFGSM4 x

Table 3: The classification accuracy on test sets obtained by

different defenses. NA means no defense.

Defense Clean
WhiteTestSet BlackTestSet

ǫ = 4 ǫ = 16 ǫ = 4 ǫ = 16

NA 76.7% 14.5% 14.4% 61.2% 41.0%

PGD 75.3% 20.0% 13.8% 67.5% 55.7%

ensV3 [31] 76.9% 69.8% 58.0% 72.4% 62.0%

FGD 76.1% 73.7% 67.4% 74.3% 71.8%

LGD 76.2% 75.2% 69.2% 75.1% 72.2%

CGD 74.9% 75.8% 73.2% 74.5% 71.1%

IncV3/IncResV2/Res (ǫ = 16)”. For convenience, these

El are abbreviated as PGD perturbation, adversarial pertur-

bation, and random perturbation. Although the pixel-level

PGD perturbation significantly suppressed, the remaining

perturbation is progressively amplified along the layer hier-

archy. At the top layer, PGD perturbation is much higher

than random perturbation and close to adversarial perturba-

tion. Because the classification result is closely related to

the top-level features, this large perturbation well explains

the inconsistency between the denoising performance and

classification accuracy of PGD.

5.2. Evaluation results of HGD

Compared to PGD, LGD strongly suppress the error am-

plification effect (Figure 5). LGD perturbation at the final

layer is much lower than PGD and adversarial perturbations

and close to random perturbation.

HGD is more robust to white-box and black-box adver-

sarial attacks than PGD and ensV3 (Table 3). All three

HGD methods significantly outperform PGD and ensV3 for

all types of attacks. The accuracy of clean images only

slightly decreases (by 0.5% for LGD). The difference be-

tween these HGD methods is insignificant. In later sections,

LGD is chosen as our default HGD method for it achieves

a good balance between accuracy on clean and adversarial

images. When facing powerful ensemble black-box attacks,

LGD also significantly outperforms ensV3 (see supplemen-

tary material).

Compared to adversarial training, HGD only uses a small

fraction of training images and is efficient to train. Only

30K clean images are used to construct our training set,

while all 1.2M clean images of the ImageNet dataset are

used for training ensV3. HGD is trained for less than 30

epochs on 210K adversarial images, while ensV3 is trained

for about 200 epochs on 1.2M images [31].

To summary, with less training data and time, HGD

significantly outperforms adversarial training on defense

against adversarial attacks. These results suggest that learn-

ing to denoise only is much easier than learning the coupled

task of classification and defense.

1783

Table 4: The transferability of HGD to different model.

Resnet is used as the target model.

Denoiser for

Resnet
Clean

WhiteTestSet BlackTestSet

ǫ = 4 ǫ = 16 ǫ = 4 ǫ = 16

NA 78.5% 63.3% 38.4% 67.8% 48.6%

IncV3 guided

LGD
77.4% 75.8% 71.7% 76.1% 72.7%

Resnet guided

LGD
78.4% 76.1% 72.9% 76.5% 74.6%

Table 5: The transferability of HGD to different classes.

The 1000 ImageNet classes are separated in training and

test test.

Defense Clean
WhiteTestSet BlackTestSet

ǫ = 4 ǫ = 16 ǫ = 4 ǫ = 16

NA 76.6% 15.4% 15.3% 61.5% 41.7%

LGD 76.3% 73.9% 65.7% 74.8% 72.2%

5.3. Transferability of HGD

The learning objective of HGD is to remove the high-

level influence of adversarial noises. In other words, HGD

works by producing anti-adversarial perturbations on input

images. From this point of view, we expect that HGD can

be transfered to defend other models and images.

To evaluate the transferability of HGD over different

models, we use the IncV3 guided LGD to defend Resnet

[10]. As expected, this LGD significantly improves the ro-

bustness of Resnet to all attacks. Furthermore, it achieves

very close defending performance as the Resnet guided

LGD. (Table 4)

To evaluate the transferability of HGD over different

classes, we build another dataset. Its key difference from

the original dataset is that there are only 750 classes in the

TrainSet, and the other 250 classes are put in ValSet and

TestSets. The number of original images in each class in all

datasets are changed to 40 to keep the size of dataset un-

changed. It is found that although the 250 classes in the test

set are never trained, the LGD still learns to defend against

the attacks targeting at them (Table 5).

5.4. HGD as an anti­adversarial transformer

HGD is derived from a denoising motivation. However,

HGD denoised images have larger pixel-level noise than ad-

versarial images (see Figure 5), indicating that HGD even

elevates the overall noise level. This is also confirmed by

the qualitative result in Figure 6. LGD does not suppress

the total noise as PGD does, but adds more perturbations to

the image.

To further investigate this issue, we plot the 2D his-

togram of the adversarial perturbation (dx∗ = x∗ − x) and

the predicted perturbation (dx̂ = x∗− x̂) by PGD and LGD

(Figure 7), where x, x∗ and x̂ denote the clean, adversarial

and denoised images, respectively. The ideal result should

be dx̂ = dx∗, which means the adversarial perturbations are

completely removed.

Two lines dx̂ = kdx∗ are fit for PGD and LGD, respec-

tively (the red lines in Figure 7). The slope of PGD’s line

is lower than 1, indicating that PGD only removes a portion

of the adversarial noises. In contrast, the slope of LGD’s

line is even larger than 1. Moreover, the estimation is very

noisy, which leads to high pixel-level noise.

These observations suggest that HGD defends the target

model by two mechanisms. First, HGD indeed reduces the

adversarial noise level, which is revealed by the strong cor-

relation between adversarial noise dx∗ and HGD induced

perturbation dx̂ (Figure 7). Second, HGD adds to the im-

age some favorable perturbation which defends the target

model. In this sense, HGD can also be seen as an anti-

adversarial transformer, which does not necessarily remove

all the pixel-level noises but transforms the adversarial ex-

ample to some easy-to-classify example.

5.5. Results in NIPS adversarial defenses competi­
tion

In NIPS 2017 competition track, Google Brain organized

competition on adversarial attacks and defenses 4. The

dataset used in this competition contains 5000 ImageNet-

compatible clean images unknown to the teams. In the de-

fenses competition, each team submits one solution, which

are then evaluated on the attacks submitted by all teams.

In total there are 91 non-targeted attacks and 65 targeted

attacks. The evaluation is conducted on the cloud by orga-

nizers, and a normalized score is calculated based on the

accuracy on all attacks.

We used a FGD based solution. To train FGD, we

gathered 14 kinds of attacks, all with ǫ = 16. Most of

them were iterative attacks on an ensemble of many models

(for details, please refer to supplementary file). We chose

four pre-trained models (ensV3[31], ensIncResV2[31],

Resnet152[10], ResNext101[33]) and trained a FGD for

each one. The logits output of the four defended models

were averaged, and the class with the highest score was cho-

sen as the classification result.

Our solution won the first place among 107 teams and

significantly outperformed other methods (Table 6). More-

over, our model is much faster than the other top methods,

measured by average evaluation time.

6. Conclusion

In this study, we discovered the error amplification effect

of adversarial examples in neural networks and proposed to

use the error in the top layers of the neural network as loss

4https://goo.gl/Uyz1PR

1784

https://goo.gl/Uyz1PR

x x ∗ x̂ (PGD) x̂ (LGD)

0.00 0.05 0.10

|x ∗ − x| |x̂− x| (PGD) |x̂− x| (LGD)

Figure 6: x, x∗ and x̂ denote the clean, adversarial and denoised images, respectively. The first row is an original image

(1st column), adversarial image (2nd column), denoised adversarial image generated by PGD (3rd column) and LGD (4th

column). The second row shows zoomed in images. The third row visualizes the L1 norm of differences between the original

image and the last three images in the second row, respectively.

0.3 0.2 0.1 0.0 0.1 0.2 0.3

dx ∗
0.3

0.2

0.1

0.0

0.1

0.2

0.3

d
x̂

PGD
dx̂=0. 48dx ∗

0.3 0.2 0.1 0.0 0.1 0.2 0.3

dx ∗
0.3

0.2

0.1

0.0

0.1

0.2

0.3
LGD

dx̂=1. 05dx ∗

Figure 7: The relationship between dx∗ and dx̂ in PGD and

HGD.

functions to guide the training of an image denoiser. This

method turned to be very robust against both white-box and

black-box attacks. The proposed HGD has simple training

procedure, good generalization, and high flexibility.

In future work, we aim to build an optimal set of training

attacks. The denoising ability of HGD depends on the rep-

resentability of the training set. In current experiments, we

used FGSM and iterative attacks. Incorporating other dif-

ferent attacks, such as the attacks generated by adversarial

Table 6: Results of the top five teams in NIPS defense com-

petition. Time stands for average evaluate time.

Team/Method Rank Normalized Score Time(s)

iyswim 2 0.9235 121.83

Anil Thomas 3 0.9148 95.29

erko 4 0.9120 86.44

Stanford & Suns 5 0.9106 127.39

FGD (ours) 1 0.9532 50.24

transformation networks [1], probably improves the perfor-

mance of HGD. It is also possible to explore an end-to-end

training approach, in which the attacks are generated online

by another neural network.

Acknowledgements

The work is supported by the National NSF of China

(Nos. 61620106010, 61621136008, 61332007, 61571261 and

U1611461), Beijing Natural Science Foundation (No. L172037),

Tsinghua Tiangong Institute for Intelligent Computing and the

NVIDIA NVAIL Program, and partially funded by Microsoft Re-

search Asia and Tsinghua-Intel Joint Research Institute.

1785

References

[1] Shumeet Baluja and Ian Fischer. Adversarial transformation

networks: Learning to generate adversarial examples. arXiv

preprint arXiv:1703.09387, 2017.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-

son, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and

Fabio Roli. Evasion attacks against machine learning at

test time. In Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, pages 387–402,

2013.

[3] Nicholas Carlini and David Wagner. Adversarial examples

are not easily detected: Bypassing ten detection methods.

arXiv preprint arXiv:1705.07263, 2017.

[4] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred

Hohman, Li Chen, Michael E Kounavis, and Duen Horng

Chau. Keeping the bad guys out: Protecting and vaccinat-

ing deep learning with jpeg compression. arXiv preprint

arXiv:1705.02900, 2017.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 248–255, 2009.

[6] Alexey Dosovitskiy and Thomas Brox. Generating im-

ages with perceptual similarity metrics based on deep net-

works. In Advances in Neural Information Processing Sys-

tems, pages 658–666, 2016.

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

[8] Abigail Graese, Andras Rozsa, and Terrance E Boult. As-

sessing threat of adversarial examples on deep neural net-

works. In Machine Learning and Applications (ICMLA),

2016 15th IEEE International Conference on, pages 69–74,

2016.

[9] Shixiang Gu and Luca Rigazio. Towards deep neural net-

work architectures robust to adversarial examples. arXiv

preprint arXiv:1412.5068, 2014.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645, 2016.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, pages 448–456, 2015.

[14] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European Conference on Computer Vision, pages 694–711.

Springer, 2016.

[15] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial machine learning at scale. arXiv preprint

arXiv:1611.01236, 2016.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] Dongyu Meng and Hao Chen. Magnet: a two-pronged de-

fense against adversarial examples. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 135–147, 2017.

[19] Aran Nayebi and Surya Ganguli. Biologically inspired pro-

tection of deep networks from adversarial attacks. arXiv

preprint arXiv:1703.09202, 2017.

[20] Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson,

Orr Dunkelman, and Daniel Pérez-Cabo. No bot expects

the deepcaptcha! introducing immutable adversarial exam-

ples with applications to captcha. IACR Cryptology ePrint

Archive, 2016:336, 2016.

[21] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow.

Transferability in machine learning: from phenomena to

black-box attacks using adversarial samples. arXiv preprint

arXiv:1605.07277, 2016.

[22] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami. Prac-

tical black-box attacks against machine learning. In ACM

Asia Conference on Computer and Communications Secu-

rity, pages 506–519, 2017.

[23] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and

Michael Wellman. Towards the science of security and pri-

vacy in machine learning. arXiv preprint arXiv:1611.03814,

2016.

[24] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,

and Ananthram Swami. Distillation as a defense to adver-

sarial perturbations against deep neural networks. In IEEE

Symposium on Security and Privacy (SP), pages 582–597,

2016.

[25] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri

Valpola, and Tapani Raiko. Semi-supervised learning with

ladder networks. In Advances in Neural Information Pro-

cessing Systems, pages 3546–3554, 2015.

[26] Karl Ridgeway, Jake Snell, Brett Roads, Richard S Zemel,

and Michael C Mozer. Learning to generate images with per-

ceptual similarity metrics. arXiv preprint arxiv:1511.06409,

2015.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In International Conference on Medical Image Computing

and Computer-Assisted Intervention, pages 234–241, 2015.

1786

[28] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI, pages

4278–4284, 2017.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2818–2826,

2016.

[30] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

[31] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan

Boneh, and Patrick McDaniel. Ensemble adversarial train-

ing: Attacks and defenses. arXiv preprint arXiv:1705.07204,

2017.

[32] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In International Con-

ference on Machine learning, pages 1096–1103, 2008.

[33] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. arXiv preprint arXiv:1611.05431, 2016.

[34] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 2017.

1787

