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Visual Recognition Group, CTU in Prague1 Centre for Mathematical Sciences, Lund University2

Abstract

This paper introduces the first minimal solvers that

jointly solve for affine-rectification and radial lens distor-

tion from coplanar repeated patterns. Even with imagery

from moderately distorted lenses, plane rectification using

the pinhole camera model is inaccurate or invalid. The pro-

posed solvers incorporate lens distortion into the camera

model and extend accurate rectification to wide-angle im-

agery, which is now common from consumer cameras. The

solvers are derived from constraints induced by the conju-

gate translations of an imaged scene plane, which are in-

tegrated with the division model for radial lens distortion.

The hidden-variable trick with ideal saturation is used to

reformulate the constraints so that the solvers generated by

the Gröbner-basis method are stable, small and fast.

Rectification and lens distortion are recovered from ei-

ther one conjugately translated affine-covariant feature or

two independently translated similarity-covariant features.

The proposed solvers are used in a RANSAC-based estima-

tor, which gives accurate rectifications after few iterations.

The proposed solvers are evaluated against the state-of-

the-art and demonstrate significantly better rectifcations on

noisy measurements. Qualitative results on diverse imagery

demonstrate high-accuracy undistortion and rectification.

1. Introduction

Scene-plane rectification is used in many classic
computer-vision tasks, including single-view 3D recon-
struction, camera calibration, grouping coplanar symme-
tries, and image editing [26, 21, 15]. In particular, the affine
rectification of a scene plane transforms the camera’s prin-
cipal plane so that it is parallel to the scene plane. This re-
stores the affine invariants of the imaged scene plane, which
include parallelism of lines and translational symmetries
[9, 21]. There is only an affine transformation between the
affine-rectified imaged scene plane and its real-world coun-
terpart. The removal of the effects of perspective imaging is
helpful to understanding the geometry of the scene plane.

Wide-angle imagery that has significant lens distortion

Figure 1: Input (top left) is a distorted view of a scene plane,
and the outputs (top right, bottom) are the the undistorted
and rectified scene plane. The method is fully automatic.

is common since consumer photography is now dominated
by mobile-phone and GoPro-type cameras. High-accuracy
rectification from wide-angle imagery is not possible with
only pinhole camera models [11, 25]. Lens distortion can be
estimated by performing a camera calibration apriori, but a
fully automated method is desirable.

Several state-of-the-art planar-rectification methods as-
sume a pinhole camera model, which ignores the effect of
lens distortion [1, 4, 15, 27]. Pritts et al. [21] attempt to up-
grade the pinhole camera model with radial lens distortion
by giving an initial guess of the scene plane’s rectification
that is consistent with a pinhole camera to a non-linear op-
timization that incorporates a lens-distortion model. How-
ever, even with relaxed thresholds, a robust estimator (i.e.
RANSAC) will discard measurements that capture the most
extreme effects of lens distortion, especially around the
boundary of the image, since these measurements are not
consistent with the pinhole-camera assumption. Thus, fail-
ing to account for lens distortion while labeling the mea-
surements as outliers, as done during a RANSAC iteration,
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Figure 2: GoPro Hero 4 imagery. (top row) Input images
taken at different field-of-view settings. (bottom row) Rec-
tified results.

can give biased fits that underestimate the camera’s lens-
distortion [11], which, in turn, reduces rectification accu-
racy.

This paper introduces the first minimal solvers that
jointly solve for the affine rectification of an imaged scene
plane and a camera’s radial lens distortion. The solvers are
derived from constraints induced by the conjugate trans-
lations of an imaged scene plane (see Sec. 2 for details),
which are integrated with the division model of radial dis-
tortion [7]. Despite the simple formulation of the division
model, it is accurate for even wide-angle lenses [7]. In addi-
tion, the solvers estimate the vanishing translation direction
of the corresponded points used for input.

Two types of solvers are introduced: one-direction

solvers, which require 3 coplanar point correspondences
that translate in the same direction, and two-direction

solvers, which require 4 coplanar point correspondences, 2
of which translate in one-direction and the remaining 2 in
a different direction. Covariant feature detectors are used
to extract the needed point correspondences [14, 16, 18,
19, 24]. The solvers are used in a RANSAC-based frame-
work for robust rectification estimation. With one or two-
correspondence sampling, an accurate undistortion and rec-
tification is quickly recovered, even for difficult scenes.

Fitzgibbon used a one-parameter division model to de-
velop a minimal solver for jointly estimating lens distortion
with a fundamental matrix or homography [7]. Kukelova et

al. [11] proposed an extension to [7] for homographies to
model two-views from cameras with different radial lens
distortions. These two-view solvers can jointly estimate
lens distortion and conjugate translations, but are overpa-
rameterized for this task, which can result in inaccurate es-
timates as is shown by the synthetic experiments in Sec. 5.
Wildenauer et al. [25] and Antunes et al. [2] are two meth-
ods that use constraints induced by imaged parallel lines to

jointly solve for their vanishing point and the division model
parameter, but but both require a multi-model estimation to
recover scene-plane rectification (i.e. 2 consistent vanishing
points).

The systems of polynomial equations induced from the
constraints arising from joint estimation of conjugate trans-
lation with the division-model parameter are solved using
an algebraic method based on Gröbner bases. Automated
solver-generators using the Gröbner basis method [10, 12]
were recently used to generate solvers for several problems
in multi-view geometry [10, 13, 12, 11]. However, straight-
forward application of an automated solver-generator to the
proposed problem resulted in unstable solvers (see Sec. 5).
Therefore, we transformed the constraints to simplify the
structure of the systems of polynomial equations, while
explicitly accounting for the parasitic solutions that arose
from the new formulation. The new formulation resulted in
solvers with increased stability and speed.

The problem of rectification is closely coupled with the
detection of coplanar repeats in a classic chicken-and-egg
scenario: rectification is easy if the repeats are grouped,
and repeats are more easily grouped if the affine invari-
ants of the rectified plane are available [21]. Most methods
tentatively group repeats from their local texture, which is
verified later by a hypothesized rectification. Methods us-
ing this approach include Schaffalitzky et al. [23], which,
similar to the solvers proposed in this paper, uses con-
straints induced by conjugate translations to recover the
scene-plane’s vanishing line, and Chum et al. [4], which
uses the constraint that coplanar repeats are equiareal in the
scene-plane’s affine-rectified image. None of these meth-
ods account for lens distortion, and do not perform well on
imagery with significant lens distortion (see Sec. 6).

2. Problem Formulation

Assume that the scene plane π and a camera’s image
plane π′ are related point-wise by the homography P, so
that αix

′

i = PXi, where αi is a scalar, Xi ∈ π and x
′

i ∈ π′.
Let Xi and X

′

i be two points on the scene plane π such that
X

′

i −Xi = t. By encoding t in the homogeneous transla-
tion matrix T, the points Xi and X

′

i as imaged by camera P
can be expressed as

αix
′

i = PX
′

i = PTXi = PTP
−1

xi = Huxi, (1)

where the homography Hu = PTP
−1 is called a conjugate

translation because of the form of its matrix decomposition
and points xi and x

′

i are in correspondence with respect to
the conjugate translation Hu, which we denote xi ↔ x

′

i

[9, 23]. Decomposing Hu into its projective components
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⊤] · xi (2)

where I3 is the 3× 3 identity matrix, and

• line l is the imaged scene plane’s vanishing line,

• point u is the vanishing direction of translation, which
must meet the vanishing line l, i.e., l⊤u = 0,

• and scalar sui is the magnitude of translation in the di-
rection u for the point correspondence x̃i ↔ x̃

′

i [23].

Note that (2) holds only for points projected by a pinhole
camera viewing a scene plane, which is parameterized by
the homography P as defined above. For every real camera,
some amount of radial distortion is always present, so for
(2) to hold, the measured image points x̃i and x̃

′

i must first
be undistorted. We use the one-parameter division model
to parameterize the radial lens distortion [7], which has the
form

f(x̃i, λ) =
(

x̃i, ỹi, 1 + λ(x̃2
i + ỹ2i )

)⊤
, (3)

where the distortion center is given; i.e., x̃i, ỹi are the
center-subtracted measurements from a feature detector.

In this work we incorporate constraints induced by a con-
jugate translation as derived in (2) with the division model
defined in (3) to accurately rectify imaged scene planes
from lens-distorted cameras. Since the unknown division
model parameter is exclusively encoded in the homoge-
neous coordinate, the relation for conjugate translations can
be directly augmented to model lens distortion, namely,

αif(x̃
′

i, λ) = Huf(x̃i, λ) = [I3 + sui ul
⊤] · f(x̃i, λ), (4)

where αi is some non-zero scalar, and x̃i ↔ x̃
′

i is a point
correspondence.

3. Solvers

The model for radially-distorted conjugate translations
in (4) defines the unknown geometric quantities: (i) di-
vision-model parameter λ, (ii) scene-plane vanishing line
l =

(

l1, l2, l3
)⊤

, (iii) vanishing translation direction

u =
(

u1, u2, u3

)⊤
(see Sec. 3.2 for the two-direction ex-

tensions), (iv) scale of translation sui for correspondence
x̃i ↔ x̃

′

i, (v) and the scalar parameter αi.
The solution for the vanishing line l is constrained to the

affine subspace l3 = 1 of the real-projective plane, which
makes it unique. This inhomogeneous choice of l is unable
to represent the pencil of lines that pass through the ori-
gin. If this degeneracy is encountered, then the scale of l

is fixed by setting l2 = 1 instead. Solver variants for both
constraints are generated for all of the proposed solvers. In
practice, this degeneracy is rarely encountered. If the l3 = 1
solver variant suffers from bad numerical conditioning, then
the l2 = 1 variant can be activated and its solutions tested
for consensus with the measurements (see Sec. 4). Without
loss of generality the derivations below assume that l3 = 1.

The vanishing direction u must meet the vanishing line l,
which defines a subspace of solutions for u. The magnitude
of u is set to the translation scale su1 of the first correspon-
dence, which defines a unique solution

l
⊤
u = l1u1 + l2u2 + u3 = 0 ∧ ‖u‖ = su1 . (5)

The relative scale of translation s̄ui for each correspondence
x̃i ↔ x̃

′

i with respect to the magnitude of ‖u‖ is defined so
that s̄ui = sui /‖u‖. Note that s̄u1 = 1.

In this paper we propose four different minimal solvers
for different variants of the problem of radially-distorted
conjugate translations based on different translation direc-
tions and relative scales s̄ui . These variants are motivated
by the types of covariant feature detectors used to extract
point correspondences [14, 16, 18, 19, 24]. Each affine-
covariant feature defines an affine frame, i.e. an ordered
triplet of points. Thus, 1 affine-frame correspondence pro-
vides the 3 point correspondences that translate in the same
direction with the same scale. This is sufficient input for
the one-directional solvers. A visualization of the features
is provided in Fig. C.4 of the supplemental material. In the
case of similarity-covariant features, such as DoG [14], only
a similarity frame can be constructed. A correspondence of
similarity frames gives 2 point correspondences that trans-
late jointly. Two correspondences of similarity-covariant
features of different direction of the translation provide suf-
ficient constraints for the two directional solvers.

Two one-direction solvers are proposed, which require
3 (2.5) coplanar point correspondences that translate in the
same direction. The “3-point” solver H3lusuλ assumes that
two of the point correspondences have the same scale of
translation (i.e. s̄u1 = s̄u2 = 1), and the third point corre-
spondence has an unknown relative scale of the translation
s̄u3 . The “2.5-point” solver H2.5luλ assumes that all 3 point
correspondences have the same relative scales of transla-
tion, i.e. s̄u1 = s̄u2 = s̄u3 = 1.

In addition, two two-direction solvers are proposed,
which require 4 (3.5) coplanar point correspondences, 2 of
which translate in one-direction u and the remaining 2 in a
different direction v. Here the “4-point” solver H4luvsvλ
assumes that the first two point correspondences translate
in the direction u with the same relative scale of translation,
i.e., s̄u1 = s̄u2 = 1. The remaining two point correspon-
dence translate in the direction v with arbitrary translation
magnitudes, i.e., the relative scales of translations of these
two correspondences with respect to ‖v‖ = sv3 are s̄v3 = 1
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and an unknown relative scale s̄u4 .
The “3.5-point” H3.5luvλ solver assumes that the rela-

tive scales s̄u1 = s̄u2 = 1 with respect to ‖u‖ = su1 and
s̄v3 = s̄v4 = 1 with respect to ‖v‖ = sv3 .

In all proposed solvers the scalar values αi are elimi-
nated from (4). This is done by multiplying (4) by the skew-
symmetric matrix [f(x̃′

i, λ)]×. The fact that the join of a
point xi with itself [xi]×xi is 0 gives,




0 −w̃′

i ỹ′i
w̃′

i 0 −x̃′

i

−ỹ′i x̃′

i 0





×





1 + s̄ui u1l1 s̄ui u1l2 s̄ui u1

s̄ui u2l1 1 + s̄ui u2l2 s̄ui u2

s̄ui u3l1 s̄ui u3l2 1 + s̄ui u3









x̃i

ỹi
w̃i



 = 0,

(6)

where w̃i = 1 + λ(x̃2
i + ỹ2i ) and w̃′

i = 1 + λ(x̃′2
i + ỹ′2i ).

The matrix equation in (6) contains three polynomial equa-
tions from which only two are linearly independent, since
the skew-symmetric matrix [f(x̃′

i, λ)]× is rank two.
To solve the systems of polynomial equations result-

ing from the presented problems, we use the Gröbner ba-
sis method [6]. To generate efficient solvers we used the
automatic generator of Gröbner basis solvers proposed in
[10, 12]. However, for our problems the coefficients of
the input equations are not fully independent. This means
that using the default settings for the automatic generator
[10, 12] that initialize the coefficients of equations by ran-
dom values from Zp does not lead to correct solvers. To ob-
tain working Gröbner basis solvers, one has to create correct
problems instances with values from Zp for the automatic
generator initialization.

The straightforward application of the automatic gen-
erator [10, 12] to the needed constraints with correct co-
efficients from Zp resulted in large templates and unsta-
ble solvers, especially for the two-direction problems. The
Gröbner basis solvers generated for the original constraints
have template matrices with sizes 80× 84, 74× 76, 348×
354, and 730 × 734 for the H2.5luλ, H3lusuλ, H3.5luvλ
and H4luvsvλ problems, respectively. Therefore, we use
the hidden-variable trick [6] to eliminate the vanishing
translation directions together with ideal saturation [13] to
eliminate parasitic solutions. The reformulated constraints
are simpler systems in only 3 or 4 unknowns, and the solvers
generated by the Gröbner basis method are smaller and
more stable. The reduced eliminiation template sizes are
also summarized in Sec. B of the supplemental material.
Next, we describe the solvers based on the hidden-variable
trick in more detail.

3.1. One­Direction Solvers

For the “3-point” one-direction H3lusuλ solver we have
s̄u1 = s̄u2 = 1. Therefore the constraints (6) result in two

H
2l
u

H
2.
5
lu
λ

H
3l
u
s u

λ

H
3
.5
lu
v
λ

H
4
lu
v
s v

λ

H
4l
γ

H
5λ

H
5λ

1
λ
2

Reference [23] [4] [7] [10]
Distortion X X X X X X

H∞ X X X X X X

# points 2 2.5 3 3.5 4 4 5 5
# solutions 1 4 2 6 4 1 18 5

Table 1: Proposed solvers (grey) vs. state-of-the-art.

pairs of linearly independent equations without the scale pa-
rameter s̄ui for i = 1, 2, and two linearly independent equa-
tions with an unknown relative scale s̄u3 for the third point
correspondence, i.e., i = 3. Additionally, we have the or-
thogonality constraint in (5). All together we have seven
equations in seven unknowns (l1, l2, u1, u2, u3, s̄

u
3 , λ).

Note, that these equations are linear with respect to the
vanishing translation direction u. Therefore, we can rewrite
the seven equations as

M(l1, l2, s̄
u

3 , λ)









u1

u2

u3

1









= 0 (7)

where M(l1, l2, s̄
u
3 , λ) is a 7 × 4 matrix which elements are

polynomials in (l1, l2, s̄
u
3 , λ).

Since M(l1, l2, s̄
u
3 , λ) has a null vector, it must be rank

deficient. Therefore, all the 4 × 4 sub-determinants of
M(l1, l2, s̄

u
3 , λ) must equal zero. This results in

(

7

4

)

= 35
polynomial equations which only involve four unknowns.

Unfortunately, the formulation (7) introduces a one-
dimensional family of false solutions. These are not present
in the original system and corresponds to solutions where
the first three columns of M become rank deficient. In this
case there exist null vectors to M where the last element of
the vector is zero, i.e. not on the same form as in (7).

These false solutions can be removed by saturating any
of the 3 × 3 sub-determinants from the first three columns
of M. The matrix M has the following form,

M(l1, l2, s̄
u

3 , λ) =





















m11 m12 0 m14

m21 m22 0 m24

m31 0 m33 m34

m41 0 m43 m44

m51 m52 0 m54

m61 0 m63 m64

l1 l2 1 0





















(8)

where mij are polynomials in l1, l2, s̄
u
3 and λ. We choose to

saturate the 3×3 sub-determinant corresponding to the first,
second and last row since it reduces to only the top-left 2×2
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sub-determinant, i.e. m11m22 − m12m21, which is only a
quadratic polynomial in the unknowns. The other 3× 3 de-
terminants are more complicated and leads to larger polyno-
mial solvers. Using the saturation technique from Larsson
et al. [13] we were able to create a polynomial solver for
this saturated ideal. The size of the elimination template is
24 × 26. Note that without using the hidden-variable trick
the elimination template was 74× 76.

For the H2.5luλ solver we can use the same hidden-
variable trick. In this case s̄u1 = s̄u2 = s̄u3 = 1 and therefore
the matrix M in (7) contains only three unknowns l1, l2 and
λ. The minimal number of point correspondences necessary
to solve this problem is 2.5. Therefore, for this problem we
can drop one of the equations from (6), e.g., for i = 3, and
the matrix M in (7) has size 6 × 4. In this case all 4 × 4
sub-determinants of M result in 15 equations in 3 unknowns.

Similar to the 3 point case, this introduces a one-
dimensional family of false solutions. The matrix M has a
similar structure as in (8) and again it is sufficient to sat-
urate top-left 2 × 2 sub-determinant. For this formulation
we were able to create a solver with template size 14 × 18
(compared with 80×84 without using hidden-variable trick)

3.2. Two­Direction Solvers

In the case of the two-direction H4luvsvλ solvers, the
input equations for two vanishing translation directions u =
(

u1, u2, u3

)⊤
and v =

(

v1, v2, v3
)⊤

can be separated into
two sets of equations, i.e., the equations containing u and
the equations containing v. Note that in this case we have
two equations of the form (5), i.e., the equation for the di-
rection u and the equation for the direction v and we have
an unknown relative scale s̄v4 . Therefore, the final system
of 10 equations in 10 unknowns can be rewritten using two
matrix equations as

M1(l1, l2, λ)









u1

u2

u3

1









= 0, M2(l1, l2, s̄
v

4 , λ)









v1
v2
v3
1









= 0 (9)

where M1 and M2 are 5× 4 matrices where the elements are
polynomials in (l1, l2, λ) and (l1, l2, s̄

v
4 , λ) respectively.

Again all 4× 4 sub-determinants of M1 and M2 must con-
currently equal zero. This results in 5+ 5 = 10 polynomial
equations in four unknowns (l1, l2, s̄v4 , λ). In this case, only
39 additional false solutions arise from the hidden-variable
trick. The matrices M1 and M2 have a similar structure as in
(8) and again it is sufficient to saturate the top-left 2 × 2
sub-determinants to remove the extra solutions. By saturat-
ing these determinants we were able to create a solver with
template size 76× 80 (previously 730× 734).

Finally, for the “3.5-point” two-direction H3.5luvλ
solver s̄u1 = s̄u2 = 1 and s̄v3 = s̄v4 = 1 so we can drop
one of the equations from the constraint (6), e.g., for i = 4.

Therefore, the matrix M2 from (9) has size 4× 4 and it con-
tains only 3 unknowns (l1, l2, λ). In this case all 4× 4 sub-
determinants of M1 and M2 result in 5 + 1 = 6 polynomial
equations in three unknowns (l1, l2, λ).

For this case we get 18 additional false solutions. In-
vestigations in Macaulay2 [8] revealed that for this particu-
lar formulation it was sufficient to only saturate the top-left
2× 2 sub-determinant of M1 and the top-left element of M2.
Saturating these we were able to create a polynomial solver
with a template size of 54× 60 (previously 348× 354).

4. Robust Estimation

The solvers are used in a LO-RANSAC-based robust-
estimation framework [5]. Affine-covariant features are
extracted from the image for input to the solvers. Affine-
covariant features are highly repeatable on the same imaged
scene texture with respect to significant changes of view-
point and illumination [17]. Their proven robustness in
the multi-view correspondence problem makes them good
candidates for representing the local geometry of repeated
textures. In particular, for the real-image experiments in
Sec. 6, we use the Maximally-Stable Extremal Region and
Hesssian-Affine detectors [16, 18]. The detections are pa-
rameterized as 3 distinct points, which define an affine co-
ordinate frame in the image space [20]. These detections
are visualized in Fig. C.4 of the supplemental material.

Affine frames are labeled as repeated texture based on
the similarity of their appearance, which is given by the
RootSIFT embedding of the image patch local to the affine
frame [3, 14]. The RootSIFT descriptors are agglomera-
tively clustered, which establishes pair-wise tentative corre-
spondences among the connected components linked by the
clustering. Each appearance cluster has some proportion
of its members that correspond to affine frames that give
the geometry of imaged repeated scene content, which are
the inliers of that appearance cluster. The remaining affine
frames are the outliers.

LO-RANSAC samples pairs of affine frames from the ap-
pearance cluster, which are inputted to the proposed mini-
mal solvers. Each pair of affine frames across all appear-
ance clusters has an equi-probable chance of being drawn.
The consensus with the minimal sample is measured by the
number of pairs of affine frames within appearance groups
that are consistent with the hypothesized model, normalized
by the size of each respective group. A non-linear optimizer
following [21] is used as the local optimization step of the
LO-RANSAC estimator.

5. Synthetic Experiments

The proposed solvers are evaluated across several bench-
marks on synthetic data against state-of-the-art solvers. In-
cluded in the benchmarks are two single-view solvers: H2lu
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Figure 3: Stability study. Hidden-variable trick solvers are
solid; standard solvers are dashed. The log10 transfer error
is reported. The hidden-variable trick increases stability.

[23], which also incorporates constraints from conjugate
translations, and H4lγ [4], which solves for rectification and
change-of-scale, and also two full-homography and radial
distortion solvers, H5λ [7] and H5λ1λ2 [11], which we use
for conjugate translation and lens-istortion estimation. The
bench of state-of-the-art solvers is summarized in Table 1).

The benchmarks are evaluated for 1000 synthetic images
of 3D scenes with known ground-truth parameters. A cam-
era with a random but realistic focal length is randomly ori-
ented and positioned with respect to a 10x10 square meter
scene plane such that the plane is mostly in the camera’s
field-of-view. Image resolution is set to 1000x1000 pixels.
Conjugately translated affine frames are generated on the
scene plane such that their scale with respect to the scene
plane is realistic. This modeling choice reflects the use of
affine-covariant feature detectors for real images. The con-
jugately translated features are distorted according to the di-
vision model, and, for the sensitivity experiments, isotropic
white noise is added to the distorted affine frames at increas-
ing levels. Performance is characterized by the relative error
of the estimated distortion parameter and by the transfer and
warp errors, which measure the accuracies of the estimated
conjugate translation and rectification (see Sec. 5.1 - 5.4).
The proposed solvers have an average solve time from 0.3
to 2 milliseconds over the 1000 synthetic scenes (see also
Sec. B of the supplemental material).

5.1. Transfer Error

The geometric transfer error jointly measures the accu-
racy of an the estimated conjugate translation and lens dis-
tortion. The scene plane is tesselated by a 10x10 square
grid of points {Xi}. Let the translation on the scene plane
induced by the noiseless pre-images of the point correspon-
dences used to estimate Ĥu and λ̂ be t. Then the grid points
are translated by t/‖t‖ to {X′

i}. The grid and its trans-
lation are imaged by the ground-truth lens-distorted cam-

era parameterized by matrix P and division-model parame-
ter λ. The imaged grid is given by x̃i = fd(PXi, λ) and
the translated grid by x̃

′

i = fd(PX′

i, λ), where fd is the
the function that transforms from pinhole points to radially-
distorted points. Then the geometric transfer error is defined
as

∆xfer
i = d(fd([I3 +

1

‖t‖
(Ĥu − I3)]f(x̃i, λ̂1), λ̂2), x̃

′

i),

(10)
where d(·, ·) is the Euclidean distance. All solvers except
H5λ1λ2 have the constraint that λ̂1 = λ̂2 [11]. The root-
mean-square of transfer errors ∆xfer

RMS for correspondences
{ (x̃i, x̃

′

i) } is reported. For two-direction solvers, the trans-
fer error in the second direction is included in ∆xfer

RMS. The
transfer error is used in the stability study, where the solvers
are tested over varying division model parameters and in the
sensitivity study, where the solvers are tested over varying
noise levels with fixed division model parameter. The solver
H4lγ of [4] does not estimate conjugate translations, so it is
not reported. For a derivation of (10) see Sec. A in the sup-
plementary material.

5.2. Numerical Stability

The stability study measures the RMS transfer error
of solvers (see Sec. 5.1) for noiseless affine-frame corre-
spondences across realistic scene and camera configura-
tions generated as described in the introduction to this sec-
tion. The ground-truth parameter of the division model λ is
drawn uniformly at random from the interval [−6, 0]. For
a reference, the division parameter of λ = −4 is typi-
cal for wide field-of-view cameras like the GoPro where
the image is normalized by 1

width+height
. Fig. 3 reports

the histogram of log10 RMS transfer errors. For all new
solvers we evaluate a solver generated from constraints de-
rived with (solid histogram) and without (dashed histogram)
the hidden-variable trick. The hidden-variable trick sig-
nificantly improves the stability of the proposed solvers.
The increased stabilities of the hidden-variable solvers most
likely result from the reduced size of the G-J elimination
problems needed by these solvers. The hidden-variable
solvers are used for the remainder of the experiments.

5.3. Noise Sensitivity

The proposed and state-of-the-art solvers solvers are
tested with increasing levels of white noise added to the
affine correspondences induced by the ground-truth conju-
gate translation and lens distortion parameter. The white
noise is parameterized by the standard-deviation of a zero-
mean isotropic Gaussian distribution, and the solvers are
tested at noise levels of σ ∈ {0.1, 0.5, 1, 2}. The ground
truth division model parameter is set to λ = −4, which is
typical for GoPro-type imagery. The solvers are wrapped in
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Figure 4: Comparison of the transfer error (left, see Sec. 5.1) and the relative radial distortion error (right) after 25 iterations
of a simple RANSAC for different solvers over increasingly noisy measurements for 1000 scenes.
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Figure 5: Warp-error comparison (see Sec. 5.4) after 25 it-
erations of a simple RANSAC for different solvers over in-
creasingly noisy measurements for 1000 scenes.

a simple RANSAC-loop, which minimizes the RMS
transfer error ∆xfer

RMS over 25 sampled affine-frame corre-
spondences. Results are calculated from the estimate given
by RANSAC and summarized for the 1000 generated scenes
as boxplots. The interquartile range is contained within the
extents of a box, and the median is the horizontal line divid-
ing the box.

As shown in Fig. 4 the proposed solvers give the
most accurate joint estimation of conjugate translation
and division model parameter as measured by the RMS
transfer error ∆xfer

RMS and relative error of estimated divsion
model parameter. As expected, the minimal parame-
terization of the radially-distorted conjugate translation
solvers—H2.5luλ, H3lusuλ, H3.5luvλ, H4luvsvλ—show
significantly less sensitivity to noise than the overparme-
terized radially-distorted homography solvers H5λ and
H5λ1λ2 for both measures. The solver H2lu shows signifi-
cant bias (see the transfer error boxplots in Fig. 4) since it
does not model lens distortion.

5.4. Warp Error

Since the accuracy of scene-plane rectification is a pri-
mary concern, we also report the warp error for rectifying
homographies proposed by Pritts et al. [22], which we aug-
ment with the division model for radial lens distortion. A
rectifying homography H∞ of an imaged scene plane is con-
structed from its vanishing line l (see [9]). A round trip be-
tween the image space and rectified space is made by undis-
torting and rectifying imaged coplanar points by the esti-
mated lens distortion λ̂ and rectifying homography Ĥ∞ and
then re-warping and distorting the rectified points into the
image by a synthetic camera constructed from the ground-
truth lens distortion λ and rectifying homography H∞. Ide-
ally, the synthetic camera constructed from the truth would
project the undistorted and rectified points onto the original
points.

Note that there is an affine ambiguity, denoted A, be-
tween Ĥ∞ and H∞, which is folded into the expression for
the synthetic camera, namely P(A) = (AH∞)−1, and esti-
mated during computation of the warp error,

∆warp = min
Â

∑

i

d2(x̃i, f
d(P(Â)Ĥ∞f(x̃i, λ̂)), λ̂), (11)

where d(·, ·) is the Euclidean distance, and {x̃i} are the im-
aged grid points of the scene-plane tesselation as defined
in Sec. 5.1. The root mean square warp error for { x̃i } is
reported and denoted as ∆warp

RMS. The vanishing line is not di-
rectly estimated by solvers H5λ of [7] and H5λ1λ2 of [11],
so they are not reported.

The proposed solvers—H2.5luλ, H3lusuλ, H3.5luvλ,
H4luvsvλ—estimate rectifications with less than 5 pixel
RMS warp error ∆warp

RMS, even at the 2 pixel noise level, see
Fig. 5. The need to model radial lens distortion is shown by
the biased fits for the solvers H2lu, H4γ.

1999



Original image H2lu + LO; 11.2% inliers H2.5luλ+LO; 20.4% inliers H3.5luvλ+LO; 20.2% inliers

Figure 6: GoPro Hero 4 at the wide setting for different solvers. Results from LO-RANSAC (see Sec. 4) for H2lu, which
omits distortion, and the proposed solvers H2.5luλ and H3.5luvλ. The top row has rectifications after local optimization
(LO); The bottom row has undistortions estimated from the best minimal sample. LO-RANSAC cannot recover from the poor
initializations by H2lu (column 2). The proposed solvers in columns 3 and 4 give a correct rectification. The bottom left has
a chessboard undistorted using the division parameter estimated from the building facade by H2.5luλ+LO.

6. Real Images

In the qualitative experiments on real images shown in
Figs. 1 and 2, we tested the proposed solvers on Go-
Pro4 Hero 4 images with increasing field-of-view settings,
namely narrow, medium and wide, where a wider field-of-
view setting generates more extreme radial distortion since
the boundary of the lens is used. The proposed method gen-
erates high-quality rectifications at all the field-of-view set-
tings. More real-image experiments, including results for
cameras with radial distortions that are typical for mobile
phone cameras and fisheye lenses (e.g., 8mm lens) can be
found in Sec. C in the supplementary material.

The experiment shown in Fig. 6 compares the per-
formance of two of the proposed solvers, H2.5luλ and
H3.5luvλ, to H2lu in a state-of-the-art local-optimization
(LO) framework (see Sec. 4) on an GoPro Hero 4 image at
the wide field-of-view setting. The two proposed solvers
accurately estimate the division-model parameter (see the
undistorted reference chessboard in Fig. 6) and the rectifi-
cation, while the LO-variant using the H2lu solver is unable
to recover the lens distortion parameter. See Fig. C.2 in the
supplemental material for results on an image at the medium
field-of-view setting.

7. Conclusions

This paper proposes the first minimal solvers that jointly
solve for the affine rectification of an imaged scene plane
and a camera’s radial lens distortion from coplanar repeated
patterns. Rectification and radial lens distortion are recov-

ered from only one conjugately translated affine-covariant
feature or two independently translated similarity-covariant
features. Synthetic experiments demonstrate the good sta-
bility and superior robustness to noise with respect to mea-
sures of rectification accuracy and lens-distortion estima-
tion of the proposed solvers as compared to the state-of-
the-art. However, the polynomial constraint equations that
arise from conjugate translations distorted by the division
model need to be transformed with the hidden-variable
trick to generate stable solvers, though. Qualitative real-
image experiments demonstrate high-quality rectifications
for highly-distorted wide-angle lenses, which was not pos-
sible using the state-of-the-art. Future work could include
conditionally sampling the measurements during robust es-
timation to take into account their size, relative distance
from each other, or distance from the distortion center. We
expect these factors have a big impact on rectification qual-
ity, but this study was beyond scope for this paper.
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