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Abstract

With the aim of developing a fast yet accurate algorith-

m for compressive sensing (CS) reconstruction of natural

images, we combine in this paper the merits of two exist-

ing categories of CS methods: the structure insights of tra-

ditional optimization-based methods and the speed of re-

cent network-based ones. Specifically, we propose a nov-

el structured deep network, dubbed ISTA-Net, which is in-

spired by the Iterative Shrinkage-Thresholding Algorithm

(ISTA) for optimizing a general ℓ1 norm CS reconstruction

model. To cast ISTA into deep network form, we develop

an effective strategy to solve the proximal mapping asso-

ciated with the sparsity-inducing regularizer using nonlin-

ear transforms. All the parameters in ISTA-Net (e.g. non-

linear transforms, shrinkage thresholds, step sizes, etc.)

are learned end-to-end, rather than being hand-crafted.

Moreover, considering that the residuals of natural images

are more compressible, an enhanced version of ISTA-Net

in the residual domain, dubbed ISTA-Net+, is derived to

further improve CS reconstruction. Extensive CS experi-

ments demonstrate that the proposed ISTA-Nets outperfor-

m existing state-of-the-art optimization-based and network-

based CS methods by large margins, while maintaining

fast computational speed. Our source codes are available:

http://jianzhang.tech/projects/ISTA-Net.

1. Introduction

From much fewer acquired measurements than deter-

mined by Nyquist sampling theory, Compressive Sensing

(CS) theory demonstrates that a signal can be reconstruct-

ed with high probability when it exhibits sparsity in some

transform domain [6, 11]. This novel acquisition strategy

is much more hardware-friendly and it enables image or

video capturing with a sub-Nyquist sampling rate [34, 24].

In addition, by exploiting the redundancy inherent to a sig-

nal, CS conducts sampling and compression at the same

time, which greatly alleviates the need for high transmis-

sion bandwidth and large storage space, enabling low-cost

Figure 1. CS reconstruction results produced by our proposed

ISTA-Net method and a recent network-based CS reconstruction

method (ReconNet [21]), when the CS ratio is 25%. ISTA-Net

clearly produces a higher fidelity reconstruction.

on-sensor data compression. CS has been applied in many

practical applications, including but not limited to single-

pixel imaging [11, 33], accelerating magnetic resonance

imaging (MRI) [26], wireless tele-monitoring [50] and cog-

nitive radio communication [36].

Mathematically, the purpose of CS reconstruction is to

infer the original signal x ∈ R
N from its randomized C-

S measurements y = Φx ∈ R
M . Here, Φ ∈ R

M×N is a

linear random projection (matrix). Because M ≪ N , this

inverse problem is typically ill-posed, whereby the CS ra-

tio is defined as M
N

. In this paper, we mainly focus on CS

reconstruction of natural images. However, it is worth not-

ing that our proposed framework can be easily extended to

videos and other types of data.

In the past decade, a great deal of image CS reconstruc-

tion methods have been developed [31, 10, 15, 21]. Most

traditional methods exploit some structured sparsity as an

image prior and then solve a sparsity-regularized optimiza-

tion problem in an iterative fashion [18, 22, 46, 45, 28].

Based on some well-studied image formation models and

intrinsic image properties, these methods enjoy the advan-

tages of strong convergence and theoretical analysis in most

cases. However, they usually suffer from high computation-

al complexity, and they are also faced with the challenges

of choosing optimal transforms and tuning parameters in

their solvers. Fueled by the powerful learning ability of

deep networks, several deep network-based image CS re-
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Figure 2. Illustration of our proposed ISTA-Net framework. Specifically, ISTA-Net is composed of Np phases, and each phase strictly corresponds to

one iteration in ISTA. The forward transform F(k) is designed as a combination of two linear convolutional operators separated by a rectified linear unit

(ReLU), and the backward transform F̃(k) is designed to exhibit a structure symmetric to that of F(k). Note that F(k) and F̃(k) satisfy the symmetry

constraint F̃(k) ◦ F(k) = I, where I is the identity operator. Nf denotes the number of feature maps.

construction algorithms have been recently proposed to di-

rectly learn the inverse mapping from the CS measurement

domain to the original signal domain [30, 15]. Compared

to optimization-based algorithms, these non-iterative algo-

rithms dramatically reduce time complexity, while achiev-

ing impressive reconstruction performance. However, ex-

isting network-based CS algorithms are trained as a black

box, with limited insights from the CS domain.

In this paper, we design a novel deep architecture,

dubbed ISTA-Net, by mapping the traditional ISTA [4] for

optimizing a general ℓ1 norm CS reconstruction model into

a deep network. In particular, ISTA-Net is composed of a

fixed number of phases, each of which strictly corresponds

to an ISTA-like iteration, as illustrated in Figure 2. Rather

than traditional linear transforms, nonlinear learnable and

sparsifying transforms are adopted in ISTA-Net, and an ef-

ficient and effective strategy to solve the proximal mapping

of the nonlinear transform is developed. All the parameter-

s involved in ISTA-Net (e.g. nonlinear transforms, shrink-

age thresholds, step sizes, etc.) are learned end-to-end us-

ing back-propagation. Moreover, borrowing more insights

from the compression realm, an enhanced version, dubbed

ISTA-Net+, is derived from ISTA-Net by sparsifying natu-

ral images explicitly in the residual domain. Interestingly,

the skip connections introduced by ISTA-Net+ further facil-

itate the network training. In fact, the proposed ISTA-Nets

can be viewed as an attempt to bridge the gap between the

two aforementioned categories of CS methods.

Contributions. The main contributions of this paper are

summarized as follows: 1) We develop a novel ISTA-Net,

which adopts the structure of ISTA update steps to design a

learnable deep network manifestation, where all parameters

are discriminately learned instead of being hand-crafted or

fixed. By learning sparsifying transforms in the residual do-

main, an enhanced version ISTA-Net+ is derived to further

improve CS performance. As such, ISTA-Nets enjoy the

advantages of fast and accurate reconstruction with well-

defined interpretability. 2) The proximal mapping problem

associated to a nonlinear sparsifying transform is solved in

a general and efficient way, which actually enables map-

ping other optimization algorithms into deep network form.

3) Extensive experiments on natural image and MRI CS re-

construction clearly show that ISTA-Net significantly out-

performs the state-of-the-art, while maintaining attractive

computational complexity.

2. Related Work

We generally group existing CS reconstruction method-

s of images into two categories: traditional optimization-

based CS methods and recent network-based CS methods.

In what follows, we give a brief review of both and focus on

the specific methods most relevant to our own.

Optimization-based CS reconstruction: Given the lin-

ear measurements y, traditional image CS methods usually

reconstruct the original image x by solving the following

(generally convex) optimization problem:

min
x

1

2
‖Φx− y‖22 + λ‖Ψx‖1, (1)

where Ψx denotes the transform coefficients of x with re-

spect to some transform Ψ and the sparsity of the vector

Ψx is encouraged by the ℓ1 norm with λ being the (gener-

ally pre-defined) regularization parameter.

Since natural images are typically non-stationary, the

classic fixed domains (e.g. DCT, wavelet [31], and gradi-

ent domain [22]) usually result in poor reconstruction per-

formance. Many works incorporate additional prior knowl-

edge about transform coefficients (e.g. statistical dependen-

cies [18, 51], structure [13], etc.) into the CS reconstruc-

tion framework. Furthermore, some elaborate priors ex-
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ploiting the non-local self-similarity properties of natural

images have been proposed to improve CS reconstruction

[48, 46, 10, 52]. Metzler et al. propose to integrate the well-

defined BM3D denoiser into the approximate message pass-

ing (AMP) framework for CS reconstruction [28]. Quite

recently, some fast and effective convolutional neural net-

work (CNN) denoisers are trained and integrated into the

half quadratic splitting (HQS) [49] and the alternating di-

rection method of multipliers (ADMM) [7] to solve image

inverse problems. However, all these traditional image CS

methods require hundreds of iterations to solve Eq. (1) by

means of various iterative solvers, which inevitably gives

rise to high computational cost thus restricting the applica-

tion of CS. In addition, the selected image prior (e.g. op-

timal transform) or the optimization parameters (e.g. step

size and regularization parameter) are usually hand-crafted

and quite challenging to pre-define.

Network-based CS reconstruction: Inspired by the pow-

erful learning capability of deep networks [42] and it-

s success in computer vision tasks [20, 25], several deep

network-based image CS reconstruction algorithms have re-

cently been proposed [30, 15, 21, 29]. Mousavi et al. first

propose to apply a stacked denoising auto-encoder (SDA)

to learn the representation from training data and to recon-

struct test data from their CS measurements [30]. Adler

et al. and Iliadis et al. separately propose to utilize fully-

connected neural networks for image and video CS recon-

struction [2, 15]. Kulkarni et al. further develop a CNN-

based CS algorithm, dubbed ReconNet, which learns to

regress an image block (output) from its CS measuremen-

t (input) [21]. Mousavi and Baraniuk recently propose

an all-convolutional network for image CS reconstruction

[29]. A main feature of network-based image CS meth-

ods is that they are non-iterative, which dramatically re-

duces time complexity as compared with their optimization-

based counterparts. However, this is done with either fully-

connected or repetitive convolutional layers. We believe

that their lack of structural diversity, which originates from

the absence of CS domain specific insights inherent to

optimization-based methods, is the bottleneck for further

performance improvement.

The tremendous success of deep learning for many im-

age processing applications has also led researchers to con-

sider relating iterative optimization methods to neural net-

works [16, 39, 43, 32]. For instance, in the context of sparse

coding, Grefor and LeCun propose a fast algorithm to calcu-

late good approximations of optimal sparse codes by intro-

ducing the Learned ISTA (LISTA), in which two matrices

in classical ISTA are learned instead of using pre-computed

ones [12]. Mark et al. extend approximate message pass-

ing (AMP) algorithms to so-called Learned AMP network-

s for solving sparse linear inverse problems [5]. Relying

on LISTA, some sparse-coding based networks for image

super-resolution and deblocking are proposed [41, 40, 23].

For image denoising and deconvolution, Schmidt and Roth

propose to learn the linear filters and shrinkage function-

s under the framework of half-quadratic optimization [35].

Chen et al. propose a trainable reaction diffusion model by

learning several parameterized linear filters and influence

functions for image denoising and deblocking [8]. In the

context of CS for sparse signals, Kamilov and Mansour pro-

pose to learn the optimal thresholding functions for ISTA

based on a B-spline decomposition [17].

Recently, Yang et al. propose a so-called ADMM-Net

architecture by reformulating ADMM for CS magnetic res-

onance imaging (CS-MRI) using deep networks [44]. Al-

though both ADMM-Net and our proposed ISTA-Net have

similar inspirations, they are quite different. In fact, there

are two main differences between both methods. First,

ADMM-Net is specifically designed and developed for CS-

MRI based on ADMM, while our ISTA-Net is much more

general, since it works well for both general CS and CS-

MRI based on ISTA. Second, ADMM-Net only utilizes sev-

eral linear filters, while ISTA-Net goes beyond that to adop-

t nonlinear transforms to more effectively sparsify natural

images and develops an efficient strategy for solving their

proximal mapping problems. The detailed comparison with

ADMM-Net for CS-MRI can be found in Section 5.3.

In a nutshell, the proposed ISTA-Net can be essential-

ly viewed as a significant extension of LISTA [12], from

the sparse coding problem to general CS reconstruction.

Compared with traditional optimization-based CS methods,

ISTA-Net is able to learn its optimal parameters, i.e. thresh-

olds, step sizes as well as nonlinear transforms, without

hand-crafted settings. In addition, ISTA-Net has the same

computational complexity as several iterations of tradition-

al ISTA, which is more than 100 times faster than existing

methods of this category. Compared with network-based C-

S methods, ISTA-Net borrows insights from traditional op-

timization methods to allow for interpretability in its net-

work design and it utilizes the structural diversity originat-

ing from the CS domain. Extensive experiments demon-

strate that ISTA-Net significantly outperforms the existing

optimization-based and network-based CS methods, even

when compared against methods that are designed for a spe-

cific domain (e.g. CS-MRI).

3. Proposed ISTA-Net for Compressive Sensing

In this section, we first briefly review traditional ISTA

optimization for image CS reconstruction, and then elabo-

rate on the design of our proposed ISTA-Net.

3.1. Traditional ISTA for CS

The iterative shrinkage-thresholding algorithm (ISTA) is

a popular first order proximal method, which is well suit-

ed for solving many large-scale linear inverse problems.
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Specifically, ISTA solves the CS reconstruction problem in

Eq. (1) by iterating between the following update steps:

r(k) = x(k−1) − ρΦ⊤(Φx(k−1) − y), (2)

x(k) = argmin
x

1

2
‖x− r(k)‖22 + λ‖Ψx‖1. (3)

Here, k denotes the ISTA iteration index, and ρ is the step

size. Eq. (2) is trivial, while Eq. (3) is actually a special

case of the so-called proximal mapping, i.e. proxλφ(r
(k)),

when φ(x) = ‖Ψx‖1. Formally, the proximal mapping of

regularizer φ denoted by proxλφ(r) is defined as

proxλφ(r) = argmin
x

1

2
||x− r||22 + λφ(x). (4)

Solving proxλφ(r) in an efficient and effective way is

critical for ISTA [47], as well as for other optimization

methods, such as ADMM [3] and AMP [28]. For exam-

ple, when φ(x) = ‖Wx‖1 (W is wavelet transform ma-

trix), we have proxλφ(r) = W⊤soft(Wr, λ) due to the

orthogonality of W. However, it remains non-trivial to ob-

tain x(k) in Eq. (3) for a more complex non-orthogonal (or

even nonlinear) transform Ψ. In addition, ISTA usually re-

quires many iterations to obtain a satisfactory result, suffer-

ing from extensive computation. The optimal transform Ψ

and all the parameters such as ρ and λ are pre-defined (do

not change with k), and very challenging to tune apriori.

3.2. ISTA­Net Framework

By taking full advantage of the merits of ISTA-based and

network-based CS methods, the basic idea of ISTA-Net is

to map the previous ISTA update steps to a deep network

architecture that consists of a fixed number of phases, each

of which corresponds to one iteration in traditional ISTA.

In order to improve reconstruction performance and in-

crease network capacity and instead of the hand-crafted

transform Ψ in Eq. (1), ISTA-Net adopts a general nonlin-

ear transform function to sparsify natural images, denoted

by F(·), whose parameters are learnable. In particular and

inspired by the powerful representation power of CNN [9]

and its universal approximation property [14], we propose

to design F(·) as a combination of two linear convolutional

operators (without bias terms) separated by a rectified lin-

ear unit (ReLU). As illustrated in Figure 2, the first con-

volutional operator in F(·) corresponds to Nf filters (each

of size 3 × 3 in our experiments) and the second convo-

lutional operator corresponds to another set of Nf filter-

s (each of size 3 × 3 × Nf in our experiments). In our

implementation, we set Nf = 32 by default. Obviously,

F(·) can also be equivalently formulated in matrix form as

F(x) = BReLU(Ax), where A and B correspond to the

above two convolutional operators, respectively. With its

learnable and nonlinear characteristics, F(·) is expected to

be able to achieve a richer representation for natural images.

Replacing Ψ in Eq. (1) with F(·), we obtain the follow-

ing sparsity-inducing regularization problem with a nonlin-

ear transform:

min
x

1

2
‖Φx− y‖22 + λ‖F(x)‖1. (5)

By solving Eq. (5) using ISTA, Eq. (2) is unchanged

while Eq. (3) becomes

x(k) = argmin
x

1

2
‖x− r(k)‖22 + λ‖F(x)‖1. (6)

In the following, we argue that the above two steps E-

q. (2) and Eq. (6) in the k-th ISTA iteration both admit effi-

cient solutions, and we cast them into two separate modules

in the k-th phase of ISTA-Net, namely the r(k) module and

the x(k) module, as illustrated in Figure 2.

• r(k) Module: It corresponds to Eq. (2) and is used to

generate the immediate reconstruction result r(k). Note that

Φ⊤(Φx(k−1) − y) is essentially the gradient of the data-

fidelity term 1
2‖Φx−y‖22, computed at x(k−1). To preserve

the ISTA structure while increasing network flexibility, we

allow the step size ρ to vary across iterations (while it is

fixed in traditional ISTA), so the output of this module with

input x(k−1) is finally defined as:

r(k) = x(k−1) − ρ(k)Φ⊤(Φx(k−1) − y). (7)

• x(k) Module: It aims to compute x(k) according to E-

q. (6) with input r(k). Note that Eq. (6) is actually the

proximal mapping proxλF (r
(k)) associated with the non-

linear transform F(·). In this paper, we propose to solve

proxλF (r
(k)) efficiently in two steps, which is also one of

our main contributions.

First, note that r(k) is the immediate reconstruction re-

sult of x(k) at the k-th iteration. In the context of image

inverse problems, one general and reasonable assumption is

that each element of (x(k) − r(k)) follows an independent

normal distribution with common zero mean and variance

σ2 [46]. Here, we also make this assumption, and then we

further prove the following theorem:

Theorem 1 Let X1, ..., Xn be independent normal random

variables with common zero mean and variance σ2. If
~X = [X1, ..., Xn]

⊤ and given any matrices A ∈ R
m×n

and B ∈ R
s×m, define a new random variable ~Y =

BReLU(A ~X) = Bmax(0,A ~X). Then, E[‖~Y − E[~Y ]‖22]

and E[‖ ~X − E[ ~X]‖22] are linearly related, i.e. E[‖~Y −

E[~Y ]‖22] = αE[‖ ~X − E[ ~X]‖22], where α is only a function

of A and B. (Please refer to the supplementary material

for the proof and more details.)

Theorem 1 can be easily extended to a normal distribu-

tion. Suppose that r(k) and F(r(k)) are the mean values of

x and F(x) respectively, then we can make the following
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Figure 3. Illustration of the k-th phase of the proposed ISTA-Net+. D(k),G(k),H(k), H̃(k) are learnable linear convolutional operators.

approximation based on Theorem 1:

‖F(x)−F(r(k))‖22 ≈ α‖x− r(k)‖22, (8)

where α is a scalar that is only related to the parameters of

F(·). By incorporating this linear relationship into Eq. (6),

we obtain the following optimization:

x
(k) = argmin

x

1

2
‖F(x)−F(r(k))‖22 + θ‖F(x)‖1, (9)

where λ and α are merged into one parameter θ, i.e. θ = λα.

Therefore, we get a closed-form version of F(x(k)):

F(x(k)) = soft(F(r(k)), θ). (10)

Second, motivated by the invertible characteristics of the

wavelet transform that leads to a closed-form solution for

Eq. (3), we introduce the left inverse of F(·), denoted by

F̃(·) such that F̃ ◦ F = I, where I is the identity operator.

Specifically, F̃(·) is designed to exhibit a structure symmet-

ric to that of F(·), so it is also modeled as two linear convo-

lutional operators separated by a ReLU operator, as shown

in Figure 2. Because F(·) and F̃(·) are both learnable, we

will enforce the symmetry constraint F̃ ◦ F = I by incor-

porating it into the loss function during network training.

Therefore, x(k) can be efficiently computed in closed-form

as:

x(k) = F̃(soft(F(r(k)), θ)). (11)

It is worth emphasizing that θ, as a shrinkage thresh-

old, is a learnable parameter in this module. Similarly, to

increase network capacity, we do not constrain that F(·),

F̃(·), and θ be the same at each phase. That is, each phase of

ISTA-Net has its own {F (k)(·), F̃ (k)(·), θ(k)}, as illustrat-

ed in Figure 2. Therefore, with all the learnable parameters,

the output x(k) in this module should be updated as:

x(k) = F̃ (k)(soft(F (k)(r(k)), θ(k))). (12)

Figure 2 clearly illustrates how Eq. (6) with the closed-

form solution in Eq. (12) is mapped into a deep network in

the k-th phase of ISTA-Net.

Parameters in ISTA-Net: Each module in each phase of

ISTA-Net strictly corresponds to the updates steps in an

ISTA iteration. The learnable parameter set in ISTA-Net,

denoted by Θ, includes the step size ρ(k) in the r(k) mod-

ule, the parameters of the forward and backward transforms

F (k)(·) and F̃ (k)(·), and the shrinkage threshold θ(k) in the

x(k) module. As such, Θ = {ρ(k), θ(k),F (k), F̃ (k)}
Np

k=1,

where Np is the total number of ISTA-Net phases. All these

parameters will be learned as neural network parameters.

Initialization: Like traditional ISTA, ISTA-Net also re-

quires an initialization denoted by x(0) in Figure 2. Instead

of random values, we propose to directly use a linear map-

ping to compute the initialization. Specifically, given the

training data pairs that include the image blocks and their

corresponding CS measurements, i.e. {(yi,xi)}
Nb

i=1 with

xi ∈ R
N ,yi ∈ R

M , the linear mapping matrix, denoted by

Qinit, can be computed by solving a least squares problem:

Qinit = argminQ ‖QY−X‖2F = XY⊤(YY⊤)−1. Here,

X = [x1, ...,xNb
], and Y = [y1, ...,yNb

]. Hence, given

any input CS measurement y, its corresponding ISTA-Net

initialization x(0) is computed as: x(0) = Qinity.

3.3. Loss Function Design

Given the training data pairs {(yi,xi)}
Nb

i=1, ISTA-Net

first takes the CS measurement yi as input and generates

the reconstruction result, denoted by x
(Np)
i , as output. We

seek to reduce the discrepancy between xi and x
(Np)
i while

satisfying the symmetry constraint F̃ (k) ◦ F (k) = I ∀k =
1, . . . , Np. Therefore, we design the end-to-end loss func-

tion for ISTA-Net as follows:

Ltotal(Θ) = Ldiscrepancy + γLconstraint, (13)

with:

{
Ldiscrepancy = 1

NbN

∑Nb

i=1 ‖x
(Np)
i − xi‖

2
2

Lconstraint =
1

NbN

∑Nb

i=1

∑Np

k=1 ‖F̃
(k)(F (k)(xi))− xi‖

2
2,

where Np, Nb, N , and γ are the total number of ISTA-Net

phases, the total number of training blocks, the size of each

block xi, and the regularization parameter, respectively. In

our experiments, γ is set to 0.01.

4. Enhanced Version: ISTA-Net+

Motivated by the fact that the residuals of natural images

and videos are more compressible [38, 37], an enhanced

version, dubbed ISTA-Net+, is derived from ISTA-Net to

further improve CS performance. Starting from Eq. (6), we

assume that x(k) = r(k) + w(k) + e(k), where e(k) stand-

s for some noise and w(k) represents some missing high-

frequency component in r(k), which can be extracted by a

linear operator R(·) from x(k), i.e. w(k) = R(x(k)). Fur-

thermore, R(·) is defined as R = G ◦ D, where D corre-

sponds to Nf filters (each of size 3× 3 in our experiments)
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Figure 4. PSNR comparison between ISTA-Net and ISTA-Net+

with various numbers of phases and epochs during training.

and G corresponds to 1 filter (with size 3×3×Nf ). By mod-

eling F = H ◦ D, where H consists of two linear convo-

lutional operators and one ReLU, as illustrated in Figure 3,

we can replace F in Eq. (9) with H ◦ D to obtain:

min
x

1

2
||H(D(x))−H(D(r(k)))||22 + θ||H(D(x))||1. (14)

By exploiting the approximation used in Eq. (9) and fol-

lowing the same strategy as in ISTA-Net, we define the left

inverse of H as H̃, which has a structure symmetric to that

of H and satisfies the symmetry constraint H̃ ◦ H = I.

Thus, the closed form of the ISTA-Net+ update for x(k) is:

x(k) = r(k) + G(H̃(soft(H(D(r(k))), θ))). (15)

Similar to ISTA-Net, each phase of ISTA-Net+ al-

so has its own learnable parameters, and the k-th phase

of ISTA-Net+ is illustrated in Figure 3. Hence, the

learnable parameter set Θ+ of ISTA-Net+ is Θ+ =

{ρ(k), θ(k),D(k),G(k),H(k), H̃(k)}
Np

k=1. The loss function

of ISTA-Net+ is analogously designed by incorporating the

constraints H̃(k) ◦ H(k) = I into Eq. (13).

5. Experimental Results

For fair comparison, we use the same set of 91 im-

ages as in [21] for training. Following common practices

in previous CS work, we generate the training data pairs

{(yi,xi)}
Nb

i=1 by first extracting the luminance componen-

t of 88,912 randomly cropped image blocks (each of size

33×33), i.e. Nb=88,912 and N=1,089. Then, for a given C-

S ratio, the corresponding measurement matrix Φ ∈ R
M×N

is constructed by generating a random Gaussian matrix and

then orthogonalizing its rows, i.e. ΦΦ⊤ = I, where I is

the identity matrix. Applying yi = Φxi yields the set

of CS measurements, where xi is the vectorized version

of an image block. We use TensorFlow [1] to implemen-

t and train the ISTA-Nets separately for a range of CS

ratios {1%, 4%, 10%, 25%, 30%, 40%, 50%}. To train the

networks, we use Adam optimization [19] with a learning

rate of 0.0001 (200 epochs), and a batch size of 64. All the

experiments are performed on a workstation with Intel Core

i7-6820 CPU and GTX1060 GPU. Training ISTA-Nets with

phase number Np=9 roughly takes 10 hours. For testing, we

utilize two widely used benchmark datasets: Set11 [21] and

BSD68 [27], which have 11 and 68 gray images, respective-

ly. The reconstruction results are reported as the average

Peak Signal-to-Noise Ratio (PSNR) over the test images.

5.1. ISTA­Net vs. ISTA­Net+

To demonstrate the superiority of ISTA-Net+ over ISTA-

Net, we compare them in two aspects: performance and

convergence. Figure 4 (top) shows the average PSNR

curves for the testing set (Set11) with respect to different

phase numbers, when the CS ratio is 25%. We observe that

both PSNR curves increase as phase number Np increases;

however, the curves are almost flat when Np ≥ 9. Thus,

considering the tradeoff between network complexity and

reconstruction performance, we set the default phase num-

ber Np=9 for both ISTA-Net and ISTA-Net+ in the rest of

the experiments. Clearly, ISTA-Net+ achieves about 1 d-

B gain over ISTA-Net when Np=9. Furthermore, Figure 4

(bottom) plots the average PSNR curves for Set11 with re-

spect to different numbers of epochs during training, when

the CS ratio is 25% and Np=9. Both ISTA-Nets get high-

er PSNR when trained for a larger number of epochs, but

ISTA-Net+ achieves faster training convergence and better

reconstruction performance on the test set (Set11). Due to

limited space, please refer to supplementary material for

the filters that are learned by ISTA-Nets.

We attribute the superiority of ISTA-Net+ over ISTA-

Net to two factors. First, ISTA-Net+ explicitly sparsifies

the images in the residual domain, leading to a sparser rep-

resentation as compared to ISTA-Net. Second, the skip con-

nections introduced by ISTA-Net+ coincide with the central

idea of the popular ResNet [13] architecture, which facili-

tates the training of deeper networks.

5.2. Comparison with State­of­the­Art Methods

We compare our proposed ISTA-Net and ISTA-Net+

with five recent and state-of-the-art image CS methods,

namely TVAL3 [22], D-AMP [28], IRCNN [49], SDA [30],

and ReconNet [21]1. The first three are optimization-based

methods, while the last two are network-based methods.

The average PSNR reconstruction performance on Set11

with respect to seven CS ratios are summarized in Table 1.

For fair comparison and following the evaluation strategy

of [21], all the competing methods reconstruct each image

block from its CS measurement independently. From Ta-

ble 1, we observe that SDA and ReconNet work better at

1We use the source code made publicly available by the authors of T-

VAL3 [22], D-AMP [28], IRCNN [49], and ReconNet [21] and implement

SDA [30] ourselves, since its source code is not available.
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Figure 5. Comparison of seven CS reconstruction methods (including our ISTA-Net and ISTA-Net+), when applied to the Butterfly image

in Set11 (CS ratio is 25%).

Table 1. Average PSNR (dB) performance comparisons on Set11 with different CS ratios. The best performance is labeled in bold and the

second best is underlined. Note that the last two columns is a run-time analysis of all the competing methods, showing the average time to

reconstruct a 256× 256 image and the corresponding frames-per-second (FPS).

Algorithm
CS Ratio Time

CPU/GPU

FPS

CPU/GPU50% 40% 30% 25% 10% 4% 1%

TVAL3 [22] 33.55 31.46 29.23 27.92 22.99 18.75 16.43 3.135s/——– 0.32/—–

D-AMP [28] 35.92 33.56 30.39 28.46 22.64 18.40 5.21 51.21s/——– 0.02/—–

IRCNN [49] 36.23 34.06 31.18 30.07 24.02 17.56 7.70 ——–/68.42s —-/0.015

SDA [30] 28.95 27.79 26.63 25.34 22.65 20.12 17.29 ——/0.0032s —-/312.5

ReconNet [21] 31.50 30.58 28.74 25.60 24.28 20.63 17.27 ——–/0.016s ——/62.5

ISTA-Net 37.43 35.36 32.91 31.53 25.80 21.23 17.30 0.923s/0.039s 1.08/25.6

ISTA-Net+ 38.07 36.06 33.82 32.57 26.64 21.31 17.34 1.375s/0.047s 0.73/21.3

extremely low CS ratios of 1% and 4%, while traditional

optimization-based methods perform better at higher CS ra-

tios. However, ISTA-Net and ISTA-Net+ outperform all the

existing methods by a large margin across all the CS ratios.

This clearly demonstrates that they combine the merits of

both categories of CS methods. As expected, ISTA-Net+

performs better than ISTA-Net. The last two columns in

Table 1 is a run-time analysis of all the competing methods.

These results indicate that the proposed ISTA-Nets produce

consistently better reconstruction results, while remaining

computationally attractive. In Figure 5, we show the recon-

structions of all seven methods of the Butterfly image when

the CS ratio is 25%. The proposed ISTA-Net+ is able to

reconstruct more details and sharper edges.

To further validate the generalizability of our ISTA-Nets,

we also compare them to network-based methods SDA and

ReconNet on the larger BSD68 dataset. As shown in Table

2, ISTA-Net+ achieves the best performance, while ISTA-

Net registers second best among all five CS ratios. ISTA-

Nets outperform SDA and ReconNet, especially at higher

CS ratios. In addition, it is worth emphasizing that a pre-

trained ISTA-Net or ISTA-Net+ using one CS measuremen-

t matrix Φ can be directly used for any new measurement

matrix with the same CS ratio as Φ, avoiding training new

network from scratch. The only difference is that we need to

recalculate the initialization matrix Qinit for the new mea-

Table 2. Average PSNR (dB) performance comparison of various

network-based algorithms on the BSD68 dataset.

Algorithm
CS Ratio

50% 40% 30% 10% 4%

SDA [30] 28.35 27.41 26.38 23.12 21.32

ReconNet [21] 29.86 29.08 27.53 24.15 21.66

ISTA-Net 33.60 31.85 29.93 25.02 22.12

ISTA-Net+ 34.01 32.21 30.34 25.33 22.17

surement matrix, which usually takes less than 1 second.

Please refer to supplementary material for more results.

5.3. Comparison with ADMM­Net for CS­MRI

To demonstrate the generality of ISTA-Net+, we direct-

ly extend ISTA-Net+ to the specific problem of CS MRI

reconstruction, which aims at reconstructing MR images

from a small number of under-sampled data in k-space. In

this application and following common practices, we set the

sampling matrix Φ in Eq. (1) to Φ = PF, where P is an

under-sampling matrix and F is the discrete Fourier trans-

form. In this case, we compare against ADMM-Net [44]2,

which is a network-based method inspired by ADMM and

specifically designed for the CS-MRI domain. It is worth-

while to note that ADMM-Net cannot be trivially extended

to other CS domains, since it imposes a specific structure

to the sampling matrix Φ. Utilizing the same training and

2https://github.com/yangyan92/Deep-ADMM-Net

1834



20 40 60 80 100 120 140 160 180 200

30.6

30.8

31

31.2

31.4

31.6

31.8

32

32.2

32.4

Epoch Number in Training

P
S
N

R
 (

d
B

)

Figure 6. PSNR (dB) comparison between two versions of ISTA-

Net+: with and without ReLU (when Nf=8 and Nf=16).

Table 3. Average PSNR (dB) comparison between ADMM-Net

[44] and our proposed ISTA-Nets for CS-MRI.

Algorithm
CS Ratio Time

20% 30% 40% 50% GPU

ADMM-Net 37.17 39.84 41.56 43.00 0.9535s

ISTA-Net 38.30 40.52 42.12 43.60 0.1246s

ISTA-Net+ 38.73 40.89 42.52 44.09 0.1437s

Table 4. Average PSNR (dB) performance with different shared

types of ISTA-Net+.

Shared Type Number of Parameters PSNR

Shared ρ(k), θ(k), T (k) (37440+1+1)=37,442 31.53

Shared ρ(k), T (k) (37440+1)+1*9=37,450 32.28

Shared θ(k), T (k) (37440+1)+1*9=37,450 32.08

Shared T (k) 37440+(1+1)*9=37,458 32.36

Unshared (default) (37440+1+1)*9=336,978 32.57

testing brain medical images as ADMM-Net, the CS-MRI

results of ISTA-Nets with Np=11 phases are summarized

in Table 3 for CS ratios of 20%, 30%, 40% and 50%. It

is clear that ISTA-Nets outperform ADMM-Net not only in

terms of reconstruction but also in terms of runtime.

5.4. Ablation Studies and Discussions

This section mainly focuses on the nonlinearity and flex-

ibility of the proposed ISTA-Nets. In what follows, we an-

alyze ISTA-Net+ with Np=9 phases.

• Linear vs. Nonlinear Transforms: The nonlinearity

of ISTA-Net+ is introduced by the ReLU operator in H(k)

and H̃(k), as shown in Figure 3. To evaluate the impact

of the nonlinearity, we train ISTA-Net+ models with ReLU

(nonlinear transforms) and without ReLU (linear transform-

s). Figure 6 plots the average PSNR curves for each ISTA-

Net+ variant on Set11 throughout training. Note that pa-

rameter Nf , the number of feature maps in H(k) and H̃(k),

is set to 8 or 16 in this experiment. It is clear that the nonlin-

earity introduced by the ReLU is critical for high fidelity C-

S reconstruction performance. In addition, when Nf > 30,

experiments indicate that ISTA-Net+ without ReLU is sig-

nificantly less stable in training than ISTA-Net+ with Re-

LU, which still performs well. We conclude that the nonlin-

earity plays an important role in facilitating satisfaction of

the symmetry constraint, improving network stability, and

learning a suitable transform possible for CS.

• Shared vs. Unshared: As described previously, each

phase of ISTA-Net+ (Nf=32) has three types of parame-

ters with their dimensionality listed in parentheses: step

size ρ(k) (1), threshold θ(k) (1), and transform T (k) =
{D(k),G(k),H(k), H̃(k)} (32 × 3 × 3 + 32 × 3 × 3 × 32 ×

2 + 32 × 3 × 3 × 32 × 2 + 1 × 3 × 3 × 32 = 37440). The

flexibility of ISTA-Net+ indicates that the same type of pa-

rameters in different phases do not need to be the same.

To demonstrate the impact of this flexibility, we train sev-

eral variants of ISTA-Net+, where we vary the parameter-

s that are shared among the phases. A summary of the

average PSNR results on Set11 at a 25% CS ratio is re-

ported in Table 4. Obviously, the default unshared ISTA-

Net+ (most flexible with largest number of parameters)

achieves the best performance, while the variant of ISTA-

Net+ that shares all parameters (ρ(k), θ(k), T (k)) in all its

phases (least flexible with smallest number of parameters)

obtains the worst performance. When only (ρ(k), T (k)) or

(θ(k), T (k)) are shared, these ISTA-Net+ variants register

0.75dB and 0.55dB gains over he variant with all shared

parameters. Interestingly, the ISTA-Net+ variant with only

shared transforms T (k) obtains very competitive PSNR re-

sults compared to the unshared variant. This indicates that

further compression in ISTA-Net+ parameters is possible,

with limited affect on reconstruction performance.

6. Conclusion and Future Work

Inspired by the Iterative Shrinkage-Thresholding Algo-

rithm (ISTA), we propose a novel structured deep network

for image compressive sensing (CS) reconstruction, dubbed

ISTA-Net, as well as, its enhanced version ISTA-Net+. The

proposed ISTA-Nets have well-defined interpretability, and

make full use of the merits of both optimization-based and

network-based CS methods. All the parameters in ISTA-

Nets are discriminately learned end-to-end. Extensive ex-

periments show that ISTA-Nets greatly improve upon the

results of state-of-the-art CS methods, while maintaining a

fast runtime. Since the developed strategy to solve the prox-

imal mapping problem associated to a nonlinear sparsifying

transform is quite general and efficient, one direction of in-

terest is to design deep networks based on other optimiza-

tion inspirations, such as FISTA [4]. The other direction

of our future work is to extend ISTA-Nets for other image

inverse problems, such as deconvolution and inpainting.
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