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Abstract

Unconstrained face verification is a challenging prob-

lem owing to variations in pose, illumination, resolution of

image, age, etc. This problem becomes even more complex

when the subjects are actively trying to deceive face verifi-

cation systems by wearing a disguise. The problem under

consideration here is to identify a subject under disguises

and reject impostors trying to look like the subject of inter-

est.

In this paper we present a DCNN-based approach for

recognizing people under disguises and picking out impos-

tors. We train two different networks on a large dataset

comprising of still images and video frames with L2-softmax

loss. We fuse features obtained from the two networks and

show that the resulting features are effective for discrimi-

nating between disguised faces and impostors in the wild.

We present results on the recently introduced Disguised

Faces in the Wild challenge dataset.

1. Introduction

Face recognition performance on constrained datasets,

like Labeled Faces in the Wild (LFW) [14], has improved

significantly in the past few years due to the proliferation

of deep convolutional neural networks. However, the per-

formance on completely unconstrained datasets like IJB-A

[21], Youtube Face (YTF) [45], and UMDFaces [3] contin-

ues to remain low at low false alarm rates. These datasets

contain significant variations in view-point, pose, illumi-

nation, occlusion, resolution, age etc. This shows that

the problem of face recognition is far from ‘solved’. The

recently announced Disguised Faces in the Wild (DFW)

dataset and challenge [7, 24] aims to study another covariate

of the face verification pipeline - ‘disguises’.

Disguises and impersonations are part of a sub-field of

face recognition where the subjects are non-cooperative and

are actively trying to deceive the system. A disguise is de-

fined as a means of altering one’s appearance or concealing

one’s identity. This means that the subject is actively try-

ing to adopt a new identity in order to hide his or her own.

Similarly, an impersonation is the act of pretending to be

another person. A subject might be trying to disguise his or

her identity by adopting another identity or another person

might be trying to impersonate the subject of interest.

This is an extremely challenging face verification prob-

lem. The aim of a face verification system in such cases

is to be able to identify disguises and reject impersonators.

Building such a system will be extremely helpful in law en-

forcement applications. The DFW challenge [7, 24] was

introduced keeping such a target in mind.

In this paper, we present a deep learning-based face ver-

ification pipeline which is a step towards solving the chal-

lenging problem of disguised face recognition in the wild.

We build an ensemble of two deep CNNs and achieve very

good preliminary results for this task. Our approach could

be a building block for future solutions to this problem. We

use a large amount of data for training our models and re-

port results on the DFW challenge test set [7, 24]. We build

upon recent progress in face verification systems to solve

this relatively less studied problem.

There are several factors to consider while designing a

face verification system. One of these is the loss func-

tion used to train the deep networks. Most current meth-

ods use softmax loss for training their deep network. Soft-

max presents several advantages for training CNNs. It can

be easily implemented using existing functions in various

deep learning libraries [1, 6, 16] and does not have any re-

strictions on batch-size. It converges quickly. However, it

is biased to the sample distribution in the training set. Un-

like triplet loss, it does not specifically attend to hard sam-

ples. It fits well on high quality data and ignores the difficult

samples in the mini-batch. To overcome this limitation, L2-

constrained Softmax Loss was introduced in [31]. It pushes

samples from the same class closer and samples from dif-

ferent classes apart. In this work, we use the L2-constrained

softmax loss for training our networks.

With the increasing popularity of deep networks, large

datasets are required for training these networks. Keeping

this in mind, recently, several large-scale face recognition
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Figure 1. Various disguises worn by Gary Oldman throughout his

career as an actor. Recognizing people under disguises is clearly

a challenging problem, even for humans. Designing autonomous

systems for such a problem will be an important step towards com-

plete face understanding.

datasets have been released publicly. MS-Celeb-1M [9] is

a very large face dataset containing 10 million images of

celebrities. However, there is a large amount of label noise

in the dataset. Similarly, the CASIA-WebFace dataset con-

tains about 500,000 images of celebrities. Again, it con-

tains some label noise. Another large-scale dataset tar-

geted towards training deep CNNs is the UMDFaces dataset

[3]. The authors of this dataset claim that there is very

little noise. The authors of [2] released a dataset of over

22,000 videos as an extension of the UMDFaces dataset.

We combine a cleaned version of the MSCeleb dataset and

the UMDFaces image and video frame dataset to create our

training set, in this work. This training set contains about

5.6 million images of about 58,000 subjects.

The rest of the paper is organized as follows. In section

2 we briefly describe some related work. We present our

method and results in section 3. Finally, conclusions and

avenues for further research are presented in section 4.

2. Related Work

A standard face verification pipeline is shown in figure

2 and consists of the following steps: (i) Face detection;

(ii) facial landmark detection and alignment; (iii) feature

representation of a face; (iv) metric learning. We briefly

review some recent related work in all these areas next.

2.1. Face Detection

Face detection is the process of localizing all faces

present in an image. Typical face detection methods output

bounding box coordinates for each face in an image. With

the popularity of deep CNNs, several CNN-face detectors

have been proposed in recent years [5, 17, 25, 29, 32, 33,

47, 50]. Many of these approaches begin with a region-

proposal step which gives several hundreds to thousands of

generic object proposals per image [17, 25, 32, 33]. Such

object proposal generators include Selective Search [42]

and Edge-Boxes [52]. Proposal-based face detectors are

reminiscent of the proposal-based object detection methods

[8, 34]. Other face detection methods [47, 50] are based

on the Single Shot Detection (SSD) framework [26]. Since

small faces in an image are particularly difficult to detect,

some recent works have given specific attention to finding

them [13, 29].

Significant improvements in unconstrained face detec-

tion performance have also been supported by the avail-

ability of large training datasets e.g. FDDB [15], WIDER

[46]. The FDDB dataset consists of 2,845 images contain-

ing 5,171 faces. The WIDER face dataset is much larger

and comprises of a total of 32,203 images. Both of these

datasets contain faces with large variations in pose, illumi-

nation, scale, resolution, occlusion etc.

2.2. Landmark Localization

Fiducial keypoint localization is the next step in the

pipeline. Such landmarks can include eye centers, nose top,

mouth corners, ear lobe tips, chin, etc. These landmarks

are used for aligning the detected faces i.e. to transform a

given face into a canonical view of the face without losing

the identity information. The authors in [2] showed that se-

lecting good keypoints and a good face alignment method

are important for achieving good verification performance.

Several recently proposed facial landmark localization and

face alignment approaches also use DCNNs. The all-in-

one CNN [33] and Hyperface model [32] are multi-modal

CNNs, which include keypoint localization as one of their

modalities. Other CNN-based landmark localization mod-

els include [22, 23, 39].

The methods proposed in [23] uses a single DCNN for

generating a unique keypoint descriptor which is used to

localize keypoints on the face bounding box. In [22], the

authors adopt a multi-modal framework and present an iter-

ative method for landmark localization and pose predication

using heat-map based DCNN regressors. These heat maps

give the probability of the presence of keypoints at differ-

ent locations. A cascade of deep CNNs was proposed by

Sun et al. in [39] for effective landmark localization. The

keypoints generated using any of the above mentioned ap-

proaches can be used as anchor points to transform the faces

into canonical views.

Fiducial landmark localization and face alignment ap-

proaches can either use only 2D information from images

[4, 49] or can incorporate 3D information for improved

alignment [18, 19, 51]. The coarse-to-fine auto-encoder net-

works (CFAN) proposed in [49] cascade a few successive
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Stacked Auto-encoder Networks (SANs). Successive SANs

progressively refine the landmarks predictions by taking in-

puts from previous steps at higher and higher resolutions.

Bulat et al. [4] proposed an approach which first performs

facial part detection and provides confidence scores for the

location of facial keypoints. In the second stage, these score

maps are aggregated along with early CNN features for re-

fining the predicted locations.

Unlike the methods described above which output only

the 2D locations of fiducial landmarks, [18, 19] estimate

both 2D and 3D landmarks and their 2D visibilities. The

authors integrate a 3D point distribution model to design a

cascaded coupled-regressor approach to estimate both the

camera projection matrix and the 3D landmarks. Zhu et al.

fit a dense 3D face model to an image using CNNs. They

also propose a method to generate large-scale training sam-

ples in profile views.

2.3. Feature Representation

As shown in figure 2, the next step is to extract features

from the aligned face images. Again, deep CNNs are cur-

rently the most popular and best performing methods for ex-

tracting features. These feature representations are usually

learned using large training sets [2, 3, 9, 45, 48]. The re-

quirement for such features is that the features for different

images of the same subject should be close (in some metric)

and the features for images of different subjects should be

far.

The DeepFace system proposed by Taigman et al. [41]

used 3D model based alignment along with deep CNNs for

efficient feature learning. It used a 9-layer CNN with 120

million parameters. The system was trained on a privately

held dataset of 4 million facial images of 4,000 identities.

Sun et al. introduced the DeepID3 framework which con-

sists of an ensemble of deep CNNs. These CNNs were

trained on about 200,000 images of 10,177 subjects and

the framework was the first to achieve super-human per-

formance on the LFW test set. Unlike other deep learning

methods, the FaceNet model [36] directly optimizes the em-

bedding itself. The authors used face triplets generated us-

ing an online triplet mining approach for training the model.

They used a private dataset of about 200 million images of

about 8 million identities. Parkhi et al. [30] released a large

face dataset of 2.6 million images and 2,600 identities along

with a deep CNN trained on this dataset. They used the pop-

ular VGGNet [37] architecture and triplet embedding for

face verification.

To learn more discriminative features, several works

have used loss formulations other than the commonly used

softmax loss. Wen et al. [44] introduced a new supervi-

sion signal called the center loss. The center loss simulta-

neously learns a center for each class and penalizes the dis-

tance between deep features of a class and its correspond-

ing class center. This ensures that the deep features for

a class are close to each other and far from deep features

from other classes. A similar effect was achieved in [27],

which proposed the angular softmax loss. This enables the

CNNs to learn angularly discriminative features. Ranjan et

al. [31] added an L2-constraint on the feature descriptors to

restrict them to lie on a hypersphere of a fixed radius. Their

model achieved state-of-the-art performance on LFW [14]

and very good performance on YTF [45].

2.4. Metric Learning

Metric learning is the process of learning a classifier

or similarity measure from data and is an important step

for enhancing performance of face verification systems.

FaceNet [36] and VGGFace [30] embed the the DCNN

features into a discriminative subspace by using triplet

loss. Triplet loss was also used in [35] for learning a

more discriminative low-dimensional embedding of a high

dimension feature. Hu et al. [12] presented a discriminative

deep metric learning method for face verification. In [38],

the authors took full advantage of the training batches by

lifting the vector of pairwise distances within the batch to

the matrix of pairwise distances.

In addition to the steps described above, the datasets used

for training the models play a crucial role in the process.

Several large datasets targeted at face recognition and ver-

ification have been made publicly available in the past few

years [2, 3, 9, 14, 20, 28, 30, 45, 48]. Along with datasets for

training, significant attention has been paid to releasing new

and challenging evaluation protocols [3, 14, 20, 21, 28, 45].

This is driving significant progress in different domains of

face recognition and verification. Also, decisions about net-

work architectures and pre-processing steps can impact the

face verification performance significantly [2]. The current

DFW dataset and challenge [7, 24] will be another step to-

wards better face recognition systems.

3. Learning Deep face Representations

In this section, we describe our approach to face veri-

fication and present results on the DFW challenge dataset

[7, 24]. We build an ensemble of two deep CNNs for the

task. The two networks are trained on the same dataset. We

give a brief description of the dataset used for training in

section 3.1. Next, in section 3.2 we give a brief overview

of the loss function used for training our networks. Then,

we describe the architectures and training details of the two

deep CNNs used in our method in section 3.3 and finally,

in section 3.4, we report the results for the DFW challenge.

An overview of a typical face verification pipeline is shown

in figure 2.
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Figure 2. A typical face verification system pipeline. During training, a deep network is trained for classification using a large training

dataset (e.g. UMDFaces [2, 3], MS-Celeb-1M [9]). After training the network, a metric learning framework (e.g. triplet embedding) is used

to embed the features obtained from the deep CNN into a discriminative subspace. At test time, given two faces, the features from the deep

CNN are computed and embedded into the embedding subspace. Finally, a similarity score (e.g. cosine similarity) is calculated between

the two embedded features.

3.1. Dataset

We used the Universe Face dataset, which is a combi-

nation of curated MS-Celeb-1M [9], UMDFaces [3], and

frames from UMDFaces-Videos [2]. We removed subject

overlaps from the DFW dataset while creating the Universe

Face dataset. This dataset contains about 3.5 million images

from the curated MS-Celeb-1M dataset, about 300, 000 still

images from the UMDFaces dataset, and about 1.8 million

video frames from the UMDFaces-Videos dataset for a to-

tal of over 5.6 million face images and about 58, 000 iden-

tities. Combining data from various sources enables train-

ing of more robust networks. Also, using a combination of

video frames and still photographs has been shown to im-

prove generalization [2].

3.2. Loss Function

We now give a brief description of the L2-constrained

softmax (L2SM) loss function [31] used to train our net-

works. The aim behind L2SM is to improve the softmax

loss to give high similarity scores for positive pairs and

low similarity scores for negative pairs. L2SM adds an L2-

constraint on the feature descriptor, forcing them to lie on

a hypersphere of a fixed radius. This has two advantages.

First, it forces both good quality and bad quality images to

have the same norm, unlike the softmax loss which gave

good quality images a higher norm than poor quality im-

ages. This means that L2SM gives similar attention to both

good and bad quality faces, unlike softmax. Second, L2SM

forces the features from the same subject to be closer and

features from different subjects to be far from each other.

Therefore, it maximizes the margin netween positive and

negative pairs.

L2SM [31] achieved state-of-the-art performance on the

IJB-A challenge [21] and the LFW dataset [14]. It also

achieved competitive performance on the Youtube Face

(YTF) dataset. A more detailed description of the loss func-

tion can be found in [31].

3.3. Architectures

We describe the architectures of the two networks in our

ensemble. We also give the training details and present the

fusion algorithm for combining the outputs of the two net-

works.

Pre-processing: We use the all-in-one CNN [33] for face

detection and alignment. We crop and resize each aligned

face to each network’s corresponding input size before

sending them through the network. We applied a random

horizontal flip as a data augmentation strategy.

ResNet

We use ResNet-101 [11] for training our face recognition

system. The network contains 101 convolutional layers

followed by a fully-connected layer of dimension 512. We

use PReLU [10] activation function after every convolu-

tional layer. We use the Universe Face dataset for training
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the network. In total, the training data contains 57, 779

subjects and 5, 554, 906 images. The network was trained

using L2-Softmax Loss [31] with α parameter set to 50.

The initial learning rate was set to 0.1, which was reduced

after every 50k iterations by a factor of 0.2. The training

was carried out till 250, 000 iterations with a batch size of

128. We use the Triplet Probabilistic Embedding (TPE)

[35] to learn a 128-dimensional embedding using images

from UMDFaces [3] dataset.

Inception ResNet-v2

We adapt the Inception-ResNet-v2 model proposed in [40]

for face recognition by removing the 1000 dimensional

softmax layer and adding two fc layers on top - 512-D and

57, 779-D. This network has a total of 244 convolution

layers. We use the L2-constrained softmax loss [31] with

α parameter 40. The model was trained for 120, 000

iterations with an initial learning rate of 0.1, which was

reduced by a factor of 0.2 after every 50k iterations. We

used a batch size of 120. For training, each of the aligned

face is cropped and resized to the input size of the network

(299×299×3). The total training time for the model was

4 days with 8 Nvidia Quadro P6000 GPUs. For final

inference, we use TPE [35] to learn a 128-dimensional

embedding using images from UMDFaces [3].

For fusion, we take the average of the scores obtained

from the two networks as our final scores for each pair

of images. More sophisticated fusion strategies will be

explored in future.

3.4. Results

We first evaluate our approach on the relatively simple

Disguised and Makeup Faces Database [43]. This dataset

contains 2460 images for 410 identities. The images in this

dataset are mostly celebrities with different disguises and

makeups. Our method achieves significant performance im-

provements over the baseline results reported in [43]. The

method achieves a true accept rate (TAR) of 92% at a false

accept rate (FAR) of 0.0001, and a TAR of 96.4% at FAR

0.001. This shows that our method can recognize people

with make-up and disguises with high confidence.

We then evaluate our approach on the recently an-

nounced Disguised Faces in the Wild (DFW) challenge

[24]. The DFW challenge provides about 7, 800 test im-

ages for about 600 identities containing both disguises and

impersonations. Each identity in the test set contains a nor-

mal image, some validation images, a few images with the

subject in disguise, and a few images of impersonators i.e.

other people who look like the subject under consideration.

The aim of this challenge is to recognize disguised faces

as belonging to the subject under consideration and reject

the impersonators. The challenge follows a standard face

Figure 3. Results ROC

Feature FAR = 0.001 FAR = 0.01

ResNet-101 70.0 85.1

Inception ResNet-v2 73.2 86.6

Fused 72.9 86.7

Table 1. TAR (%) at different FAR values for the three different

features used in this work.

verification evaluation strategy. Each pair in the test set is

assigned a similarity score by the algorithm and has an asso-

ciated ground-truth label (‘positive’, ‘negative’, or ‘do not

care’). The evaluation criterion is a standard ROC curve

which plots the True Acceptance Rate (TAR) against False

Acceptance Rate (FAR).

In this paper, we present results for our two networks

separately and also for the combination strategy highlighted

in section 3.3. All the results presented in this paper are

self-generated using the evaluation codes provided by the

organizers of the DFW challenge.

Figure 3 shows the ROC curves for both our networks

and for the final fused scores. Table 1 gives the TAR values

at FAR = 0.01 and FAR = 0.001 for the three kinds of

features.

4. Conclusion

In this paper, we presented an approach for general face

verification and evaluated it on the Disguised Faces in the

Wild challenge. Recognizing disguised faces is an impor-

tant practical problem for law enforcement and identity pro-

tection. We presented an ensemble of two deep CNNs

trained on a large face dataset of about 5.6 million images.

We showed that the proposed approach achieves promising

preliminary results on this challenging problem and pro-

vides direction for future work for better face understand-

ing.
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