
 

 

 

Abstract 

 

Automated detection of sensor level spoof attacks using 3D 

face masks is critical to protect integrity of face recognition 

systems deployed for security and surveillance. This paper 

investigates a multispectral imaging approach to more 

accurately detect such presentation attacks. Real human 

faces and spoof face images from 3D face masks are 

simultaneously acquired under visible and near infrared 

(multispectral) illumination using two separate sensors. 

Ranges of convolutional neural network based 

configurations are investigated to improve the detection 

accuracy from such presentation attacks. Our experimental 

results indicate that near-infrared based imaging of 3D 

face masks offers superior performance as compared to 

those for the respective real/spoof face images acquired 

under visible illumination. Combination of simultaneously 

acquired presentation attack images under multispectral 

illumination can be used to further improve the accuracy of 

detecting attacks from more realistic 3D face masks. 

 

1. Introduction 

Safeguarding the integrity of the biometrics system is 

critical to avail benefits offered by the biometrics systems 

for e-governance, e-business and a range of surveillance 

applications. Presentation of fake biometrics sample, that 

can generate closely matching replicas of the real 

biometrics, requires little efforts and biometrics systems are 

more vulnerable to such sensor level attacks from 

fraudulent biometrics samples. Biometrics systems using 

different modalities have been challenged with a range of 

attacks resulting from fraudulent fingerprints reconstructed 

from latent prints of subjects, iris stamps manufactured 

from the covertly acquired iris or eye images or 3D silicon 

masks manufactured from multiple 2D images of real 

subjects. Such challenges have resulted in the development 

of anti-spoofing techniques to detect such sensor-level 

attacks before their authentication. This paper focuses on 

such problem and its scope has been limited to the 

development of more accurate method to detect disguised 

or fake face images from 3D face masked subjects.  

  

Automated detection of spoof-biometrics sample images 

is widely regarded as two-class classification problem. 

Significant intra-class variations among the real human 

faces and sophistication in the generation and/or 

presentation of highly similar fraudulent biometrics sample 

poses severe challenges in the accurate detection of fake 

faces. 

2. Related Work 

Recent research efforts on the development of more 

accurate and effective anti-spoofing techniques are fueled 

by the tremendous growth in demand for safeguarding the 

integrity of deployed biometrics system. Reference [27] 

provides a detailed survey on a range of methods developed 

for detecting presentation attacks on the face recognition 

based surveillance and recognition systems. Displaying the 

face image of subject or his photo (2D spoof attacks), replay 

of video depicting face of the subject (2.5D spoof attacks) 

or presentation of a 3D face replica representing real subject 

(3D spoof attacks) are popular methods to thwart integrity 

of face recognition systems using such sensor level 

presentation attacks. Among these  three categories of 

attacks, presentation attacks using the realistic 3D face 

masks is widely considered to be more challenging for the 
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Figure 1. Illustration of a typical realistic 3D face mask, with 

opened eye and mouth instance from real subject, under 

multispectral imaging used in our work. Image acquired under 

near-infrared illumination appears in the left while respective 

image under visible illumination appears on the right. 
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detection and is also the focus of our work in this paper. 

   Automated detection of 3D face masks to preserve 

integrity of 2D face recognition systems has attracted 

increasing attention in the literature. Manjani et al. [3] have 

recently introduced a new silicon face mask based database 

in public domain and also developed a deep dictionary 

learning based approach to derive sparse representation of 

features for the spoof face detection. This is a promising 

attempt to accurately detect silicon face masks using visible 

illumination images and will further facilitate much needed  

research efforts in this area. In addition to the texture based 

[2], [8]-[10], [29] cues, there have also been attempts to 

incorporate motion based cues to differentiate real faces 

from the spoof faces. Usage of eye blinks and mouth 

movements by Tirunagari et al. [26] or usage of Eulerian 

motion magnification by Bharadwaj et al. [13] are 

examples of some representative works using such 

approaches. Multiple cures are expected to enhance the 

accuracy of detecting presentation attacks and such 

approaches have also attracted attention of researchers. 

Usage of texture and motion based cues by Siddiqui et al. 

[24] is one such representative example of detecting spoof 

faces using multiple cues.  

 Convolutional neural networks were introduced [16] 

about 25 years ago and have demonstrated tremendous 

success in a range of problems in biometrics [1], [19]-[20]. 

We also incorporate such deep learning based approach to 

investigate detection of spoof 3D faces using multispectral 

imaging. Therefore these networks are briefly introduced in 

section 3 while section 4 details on various network 

configurations investigated in our experiments. The 

experimental protocols, database acquisition, and results 

are presented in section 5. Finally, the key conclusions from 

this work are summarized in section 6. 

3. Convolutional Neural Network 

Material composition, texture, surface reflectance, 

illumination and shape of 3D surface from presented faces 

can generate a variety of features. These heterogeneous 

features can be self-learned using convolutional neural 

networks (CNN) [18] and were used in our investigation. 

CNN is a type of neural network, which mainly uses 

convolution pattern (multiple layers) to connect the 

neurons. This network can be viewed as a combination of 

linear and nonlinear image processing operations. Usually, 

a CNN network is composed of different kinds of layers, 

such as convolution layer, pooling layers, ReLU layers, 

normalization layer, fully connected layers, and loss layers. 

The network will learn the parameters automatically 

through forward propagation and backward propagation. A 

good architecture is a combination of different layers, 

which can help to extract different unique features when 

different inputs are provided. 

3.1. Convolutional Layer 

Convolution layer consists of filter banks, which is 

activated or learned through multiple forward propagation 

and backward propagation. The operation in this process 

can summarized from the following. 

                     ݂ሺxሻ = ∑ ሻݔሺܫ ⋅ �ሺݔሻ�⊂�                          (1) 

where f represents the output, I is the input image, x is the 

pixel in the region of filtering region while W represents the  

filter parameter. 

3.2. Pooling Layer 

Pooling layer is a non-linear operation typically represents 

the down-sampling operation to reduce the dimension of 

feature and the complexity of entire network. Among 

several choices of pooling layers in the literature, such as 

average pooling (AVE), max pooling (MAX), L2-norm 

pooling, etc. max pooling was used in this work because it 

cannot only increases the nonlinearity of the entire  

network, but also reduces the computational complexity. 

Max pooling operating can be expressed as 

                    ݂ሺxሻ = max⁡ሺݔଵ, … ,  ሻ                              (2)�ݔ

where ݔ� , represents the  image pixel in the region of 

operation.  

3.3 ReLU, Normalization, and Fully Connected 

Layer 

Since the overall network is a nonlinear operation, ReLU 

(Rectified Linear Units) layer is used to increase the 

nonlinear properties of the CNN network. The local 

response from the normalization layers represents lateral 

inhibition by normalizing local input region responses. Our 

work used LRN (local response normalization) operation in 

the normalization layers which can be defined as. 

                  ݂ሺxሻ = ቀͳ + ఈ�∑ �⊃�ଶݔ ቁఉ                          (3) 

where x denotes input of current layer (or activated value of 

current neuron) while ߙ and ߚ represents two parameters 

which can control the scale of normalization. The fully 

connected layer is the inner product layer where the neurons 

have full connection to neurons in the previous layer, as in 

a typical neural network.  

3.4 Loss Layer 

Finally, the loss layer is incorporated to penalize learned 

output with true output. In this layer, different loss function 

is used to penalize this deviation, e.g. Softmax loss function 

is used for predicting multi-classes, Sigmoid loss function 

to map different input probability values in [0, 1], or the 

Euclidean loss function to penalize the real value and 
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learned value. We used softmax loss function to interpret 

the outputs as the genuine and impostor class probabilities: 

                 ݂ሺxሻ = ��ೕ∑ ��ೖ�ೖ=1 , ݆ = ͳ, … , K                         (4) 

where K represents the number of classes and x is the  

feature vector response from previous layer. The cost 

function with respect to single sample appears in  

following: 

,ሺWܬ                    bሻ = ଵଶ ‖ℎሺ�,�ሻሺݔሻ −  ଶ                     (5)‖ݕ

where J represents the deviation of CNN output and ground 

truth, x is the input of CNN network, w is the weight of each 

regression parameters, and b denotes for bias parameter. 

Thus, the objective of CNN network is to perform 

optimization to reduce ܬሺW, bሻ during training phase. 

4. CNN Configurations 

Several CNN architectures were considered in our 

experiments to ascertain the performance for detecting 

presentation attacks from more realistic 3D face masks 

under multispectral imaging. These architectures are briefly 

summarized in the following.  

4.1 Network 1 

In this network, there are 3 convolution layers and 1 fully 

connected layer. There are two output from the fully 

connected layer. Therefore the classification result (mask or 

real) can be get directly from the softmax loss function. 

 

 

 Figure 2: Network configuration 1. 

4.2 Network 2 

In this setting, the configurations of network is the same as 

network 1. However, the difference is initialization method 

is used. The initialization of weights in this network is also 

Gaussian distribution with zero mean, but the variance of 

the output in each layer is equal to one. This initialization 

method is referred to as “msra” [25]. 

   In order to let the variance of the output equal to one, the 

initialization method is according to Gaussian distribution. 

                           NቀͲ, ଶ�ቁ , ℎ⁡݊�݅ݓ = ݇ଶ ⋅ �                   (6) 

where k is the filter size in current layer and d is the number 

of filters in last layer. Under this situation, the variance of 

the outputs in each convolution layer or fully connected 

layer is one.  

4.3 Network 3 

 

Figure 3: Network configuration 3. 

In this network, in order to increase the nonlinear properties 

of network, two fully connected layers are added in the last 

part. Besides, one ReLU layer is also inserted between these 

two fully connected layers to increase the nonlinearity of 

the whole network. 

4.4 Network 4 

In order to overcome over-fitting, one drop layer between 

the last two fully connected layers is also added for this 

configuration. In addition, in order to test the impact of 

number of convolution layers on the overall performance. 

Our experiments evaluated the performance when the 

number of convolution layer is set as two. 

 

Figure 4: Network configuration 4. 

4.5 Network 5 

In this network setting, the number of convolution layer is 

fixed to two. Therefore we can use this setting the evaluate  

the influence of convolution layer on the overall 

performance. 

 
Figure 5: Network configuration 5. 
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4.6 Siamese Network 

 

 

Figure 6: Siamese network used in our experiments. 

 

The general idea of Siamese network is to train two 

networks at the same time. The purpose is to reduce the 

distance between these two networks’ output if the input 

pair belongs to the same category, and increase the distance 

between these two networks’ output if pair belongs to 

different categories.  

      In this network configuration, two independent 

networks can be trained at the same time. Image 1 and 

image 2 are two different inputs for these two networks. In 

the training process, the parameters can be shared in each 

separate layer, such as convolution layers in network 1 to 

convolution layers in network 2, fully connected layer in 

network 1 to fully connected layer in network 2. Thus, the 

complexity of the network can be reduced. In our work, 

parameters in convolution layers are shared with each other 

network. The loss function used in Siamese network is 

Contrastive loss function, which can be expressed as. � = ଵଶ�∑ ሺݕሻ�ଶ + ሺͳ − ݊݅݃�ሻmax⁡ሺ݉ܽݕ − �, Ͳሻଶ��=ଵ     (7) 

where d is distance between two different outputs, � =‖ܽ� − ܾ�‖ଶ. an and bn are the outputs of two networks. If 

an and bn belongs to the same category, then y = 0, 

otherwise, y=1. In this situation, E can penalize the distance 

between these two categories. When real face is exposed to 

NIR and visible light separately, there is significant 

difference in respective images. However, when 3D face 

masks are exposed to NIR and visible light separately, the 

corresponding image difference is relatively smaller. 

Therefore two images (NIR and visible) from the real face 

are assumed to belong to different categories, and the 

images (NIR and visible) form 3D face mask are assumed 

to belonging to same categories. 

4.7 Combination of Visible and NIR Image 

Simultaneously acquired visible and NIR images can both 

be used to enhance the performance for the detection of 

presentation attacks and was investigated in this work. 

Firstly, we use network configuration 4, which can offer 

(section 5)  the best performance from trained network by 

individually using NIR and visible images. The feature 

vectors from the last layer, each from the NIR and visible 

input images, were combined/concatenated to jointly 

describe the NIR-Visible image pair input for the 

classification. A two-class SVM classifier was trained, 

using the data from training phase. This SVM was used for 

the performance evaluation using the test phase data. 

4. Experiments and Results 

The focus of this work is on the comparative performance 

evaluation from the images acquired under NIR and visible 

illumination, and from the joint usage of such 

simultaneously acquired real and 3D face mask images. 

Therefore we acquired such database under indoor 

environment. In the following sections, a brief description 

is firstly provided for the employed database. This is 

followed by experimental results using the network 

configurations and architectures detailed in section 3. 

A. The Database 

The database employed in this work is composed of NIR 

and visible image pairs. Each image pair in this database 

therefore has two images, which are acquired at the same 

time, i.e., One image from NIR camera, and other from 

visible RGB camera. The schematic diagram representing 

our image acquisition setup appears in the following figure. 

 

Figure 7: Image acquisition setup for multispectral imaging. 
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We acquired images from a total 13 different 3D face 

masked subjects and 9 different real subjects. The images 

in figure 1 shows the 3D face masked image samples from 

our database. The first six 3D face masked subjects are used 

for the training and the rest seven 3D face masked subjects 

are used in the test phase for the performance evaluation.  

The size of acquired NIR image is 25602048 pixels, and 

the size of acquired visible image is 33762704 pixels. The 

region of interest from each of the acquired face image were 

automatically detected using a robust publicly accessible 

face detector from [21]. We employed two different 

protocols during the performance evaluation and these are 

summarized in the following Table. 

 

 

B. Experimental Results 

In order to evaluate the performance for detecting spoof 

faces, ISO/IEC 30107-3 [11] recommends the following 

metrics for the evaluation of Presentation Attack Detection 

(PAD): (a) Attack Presentation Classification Error Rate 

(APCER), which means the rate of attacks classified as real 

presentations and (2) Normal Presentation Classification 

Error Rate (NPCER), which indicate the rate of real faces 

classified as attack faces. Besides, Average Classification 

Error Rate (ACER), which can be computed from the 

average of previous two errors, is also presented in the in 

our experimental results. We trained all our models using 

Caffe [28] on a single NVIDIA GTX670 platform. We 

firstly present experimental results using the NIR and 

Visible image set separately. This is followed by the 

experimental results using the combination of jointly 

acquired NIR and visible illumination images. 

 

 
 

 

 
 

The experimental results or our attempts using the Siamese 

network that can combine NIR and visible images are 

illustrated in table 5.  In the training set, two images (NIR 

and visible) of real face are labelled in different categories. 

On the contrary, the images (NIR and visible) from 3D face 

masked subjects are labelled to the same categories.  

 

 

C. Comparative Results 

This part summarizes the comparative results for the 3D 

face masks detection using two different protocols used in 

our experiments.  

 

 
 

 

5. Conclusions and Future Work 

This paper has investigated comparison and combination of 

performance for automatically detecting 3D face masked 

subjects from simultaneously acquired near-infrared and 

visible illumination images. This work required us to 

develop such imaging setup and acquire database for the 

experiments. The experimental results presented in section 

4 indicate that near-infrared imaging can offer superior 

performance than those based on visible imaging. Our 

experimental results also suggest that the combination of 

simultaneously acquired near-infrared and visible images 

(multispectral imaging) can be used to further improve the 

performance for the detection of 3D face masked subjects.  

 

      Our experiments also indicate that the performance 

from Siamese network configuration is not encouraging, 

i.e. poor, as compared with those from the other CNN 

configurations. This can be possibly due to lack of adequate 

training data, and the nature of training strategy employed 
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in our experiments. Extensive data augmentation and usage 

of superior learning strategy, i.e. usage of instance 

normalization instead of batch normalization, is expected to 

further improve performance and is part of further work. It 

can also be observed from the results in table 5 and table 6 

that the performance improvement from the (feature-level) 

combination of near infrared and visible images is not very 

significant and therefore our results should be considered 

preliminary but encouraging. Usage of better normalization 

of feature vectors, data augmentation, or better fusion 

strategy is expected to further improve the performance and 

is part of our ongoing work.   
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