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Abstract

This paper describes our approach for the Disguised

Faces in the Wild (DFW) 2018 challenge. The task here is to

verify the identity of a person among disguised and impos-

tors images. Given the importance of the task of face verifi-

cation it is essential to compare methods across a common

platform. Our approach is based on VGG-face architecture

paired with Contrastive loss based on cosine distance met-

ric. For augmenting the data set, we source more data from

the internet. The experiments show the effectiveness of the

approach on the DFW data. We show that adding extra data

to the DFW dataset with noisy labels also helps in increas-

ing the gen 11 eralization performance of the network. The

proposed network achieves 27.13% absolute increase in ac-

curacy over the DFW baseline.

1. Introduction

Over the years, the research in the area of face recog-

nition has received tremendous amount of attention. Many

innovative and novel methods have been put forward for the

tasks visual face recognition and verification [24]. Due to

its importance, in the past, researchers have concentrated

over different problems in face recognition ‘in the wild’.

Here ‘in the wild’ refers to scenarios with varying illumina-

tion and pose [18], prediction over varying age of the same

person [5], prediction across different facial expressions [6]

and prediction across different modality such as sketches

and visual medias etc. [12, 14].

There has been some work on face verification of dis-

guised faces in different imaging modalities like thermal

and visual medias [11, 7] in which they exploit both the

modalities to get the best of both worlds, but the problem

of ”disguise” in a single modality has not been explored

in detail. The problem of disguise deals with determining

whether the given pair of images are of the same person in

disguise or of different persons (one of them being the im-

poster). The Figure 1, clearly show examples of disguised

people and imposters.

Figure 1. The Figure shows examples of disguised and imposters

in the DFW database [13]. The first column is a genuine image

of a celebrity, the second column is the same person in a disguise

and the third columns shows the images of imposters who look

like the celebrities in column one. Green bounding box signifies a

same identity and red signifies an impostor.

It was found that successful face recognition systems

such as the VGG-Face [15] are not efficient, when it

comes to the problem of disguise vs impostor recogni-

tion [13]. VGG-Face achieves 33.76% Genuine Accep-

tance Rate (GAR) at 1% False Acceptance Rate (FAR) and

17.73% GAR at 0.1% FAR, which is a clear indication that

the usual facial recognition models may not be that helpful

to capture the rich representations required for distinguish-

ing the disguised from the imposter images.

Dhamecha et. al. [7], proposed a two-stage verification

process. During the first stage, a patch classifier is com-

puted to decide if a patch is important wrt the task. The

hypothesis is that not all facial parts of a disguised person

are equally important (particularly occluded parts of a face).
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The second stage consisted of a patch based face recogni-

tion method, in which texture features are extracted from

the biometrics-wise important patches. Further, this infor-

mation is used to verify the personalities with the help of a

support vector machine and χ2 distance metric.

Singh et. al. [20], used spacial convolutional networks

[16] to infer the values of fourteen facial key points. Given a

disguised image and a gallery of non-disguised images, ge-

ometric features are computed based on the angles between

the facial key points. The gallery image, which has the

least L1 distance based on the geometric feature is assigned

as the corresponding non-disguised image of the given dis-

guised image.

Some of the recent face recognition works have also used

different loss functions such as the Contrastive loss [9] and

the triplet-loss [18, 15] to bring the features representation

of the two facial images closer and learn a modality invari-

ant representation.

Disguised faces recognition is an important issue from

the perspective of biometrics, as doing this would help

surveillance systems recognize imposters trying to steal the

identities of other people. The fact that disguised faces in-

creases the within-class variation of the faces and imposter

faces decreases the between-class variation of the faces,

makes this task non-trivial. In fact, the imposter images

in Figure 1 seem to be similar looking to the original iden-

tity. Although, when closely observed, we can distinguish

between the identities and claim if the person is an imposter

or not. From an automated computer vision based method

perspective, it is important to extract rich representations of

the facial images in-order to distinguish among the identi-

ties and verify them correctly.

In recent times, Convolutional Neural Networks (CNN)

have been extensively used in computer vision to achieve

the state-of-the-art performances [10, 19] in many classifi-

cation, object detection tasks and many other vision tasks.

CNNs have also provided robust face descriptors [18, 21],

which have in turn enabled to achieve state-of-art accuracy

in face verification and recognition tasks [23, 17].

In order to learn rich representations of faces, we use

CNNs to extract the features from the images via convo-

lution. To differentiate between the disguised and the im-

poster images, we explicitly impose Contrastive loss con-

straint on the feature representation extracted via CNN. This

is done so as to bring the representation of the identity and

the disguised face closer and to make the representation of

the identity and imposter far apart by a margin. Apart from

just making the representations far apart, we also regress

similarity score of the two images (score = 1, if the images

are similar and score = 0, if they are not). The major contri-

butions of the paper are as follows:

• We propose a CNN model based on VGG-Face [15] for

the verification of disguised images in the same modal-

ity unlike other previous works [7], which use CNN for

cross-modal verification task of disguised faces.

• In order to decrease the intra-class variation and in-

crease the inter-class variation of the feature represen-

tation, we use Contrastive loss with cosine similarity

measure.

• To improve the validation accuracy, we also include

a regression mean-squared loss apart form the usual

classification cross-entropy loss which tells us the sim-

ilarity of the two images.

• To increase the performance, we extended the DFW

dataset with images from the internet. A total of 1380

images of 325 subjects were downloaded using key-

word based search. The new images and their cor-

responding noisy labels (based on the keyword based

search) are used to augment the genuine images in the

Train set.

2. Disguise Faces in Wild (DFW) Dataset

We used the Disguise Faces in Wild (DFW) dataset

[13, 8], which is so far the largest dataset of disguised and

imposter images. There have previously been few datasets

on makeup disguise in the wild [3] and datasets on cross-

modality (visual and thermal) disguise faces dataset [2].

However, to the best of knowledge, there is no dataset,

which addresses the issue of disguised faces and imposter

faces in the wild. The DFW dataset consists of 1000 iden-

tities (400 in training set and 600 in the testing set), with a

total of 11155 images. There consists of 3 types of images:

genuine images, disguised images and the imposter images.

The genuine images are the usual visual image (photograph)

of the person, the disguised images is the image of the same

identity in disguise and the imposter images are the im-

ages consisting of images of other persons who look like

the identity. An example of each is shown in Figure 1. We

used the coordinates given by the organizers to crop the face

out from the image.

2.1. Weakly Labelled noisy Data from the Internet

The limitation of the DFW dataset is that for every iden-

tity, there is only 1 genuine image for training and 1 genuine

image for validation. Our experiments suggested that the

data with respect to the genuine images (when compared to

imposter and disguised images) were less. To overcome the

limitation, we downloaded 2-4 more genuine image (total-

ing the training images to 3-5 for each of the identities in

the Train set) using the BING image search API [1] and got

a total of 1380 images for 325 celebrities in the DFW Train

set. We cropped out the faces from the newly added genuine

images using the OpenFace library [4]. The results of our
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Figure 2. The architecture of the proposed method: Siamese architecture with 16 layered VGG-Face pre-trained weights. A combination

of Contrastive Loss (LC ), Regression Loss (LR) and Binary Cross-Entropy Loss (LBCE).

model with and without the extra data from the internet are

mentioned in detail in Table 2.

It is interesting to note that the network’s performance

increased considerably, after the downloaded data was used

along with the DFW data. No cleaning of the data was per-

formed and the search engine’s results were used to assign

the identity to the downloaded images. We noted that in a

few cases, images retrieved against the search query gener-

ated impostor images too. However, they are used as is in

the training without any manual pruning. Some examples

of the above mentioned weakly labelled images (which do

not belong to the correct identity) are shown in Figure 3.

We refer to this data as weakly labelled as it is possible that

an incorrect identity retrieved during the web search can be

due to an attribute of the face in the retrieved image, which

makes the image as a good candidate for being the disguised

representation of the original identity.

Figure 3. Some of the examples from the extended DFW dataset

in which the query returned imposter images.

Also it becomes a difficult task for the annotator as well

to label the images of the imposter and disguised people.

These noisy labels can be generated when the annotator may

not be aware about the identity of the subject and other fac-

tors such as different ethnicity of the annotator and the sub-

ject in the database also add up to the problem of labelling

the images.

2.2. Protocol

There are three protocols given with the DFW dataset :

Impersonation, Obfuscation and Overall Performance. The

impersonation protocol consists of image pairs with gen-

uine image and imposter faces, while the obfuscation proto-

col consists of images of genuine faces with disguised faces.

The last protocol consists of all possible pairs (even pair of

2 disguised faces) as a part of the test set.

3. DisguiseNet 1

Let x1

i
denote the genuine image of an identity i and x2

i

be either the disguised image of identity i or the imposter

of identity i. We have a Siamese VGG-Face architecture

i.e. two sets of 16-layered VGG-Face pre-trained network

with tied weights to extract the same features from the input

pairs. Note that we need same features as the modality of

the images is the same (visual modality). However, the fea-

ture representations will be different for genuine image and

the disguised/imposter image. We pass the genuine image

from the first stream of CNN network and either disguised

image or imposter image through the second CNN stream.

Let Fm
i

be the feature descriptor of ith identity

and m={genuine / imposter / disguise}, then Fm
i

=
Conv (xm

i
,Θ), where Θ is the convolutional net parame-

ters. Further, for a Siamese network, the convolutional net

parameters: Θ is the same for all the m. Since we use

16 layer deep CNN, the first four convolutional layers are

frozen during the fine tuning. The rationale behind this be-

ing the observation of no significant gradient flow through

the initial layers during the fine tuning process. We have

1Code is present at https://github.com/pvskand/DisguiseNet
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used the Contrastive loss at the second last fully connected

layer, which is defined as follows:

LC =
1

2B

B
∑

i=1

(

yid
2 + (1− yi)max (margin− d, 0)

2

)

(1)

where B is the batch size, d is a similarity score. In our

experiments, cosine similarity distance metric is used for

computing d. Further, yi is the label of the pair, with yi = 1
signifying a (genuine, disguise) pair and yi = 0 signify-

ing a (genuine, imposter) pair. Here, the parameter margin

is a scalar value representing the minimum desired distance

between a negative (imposter) and positive (disguised) sam-

ple.

The second loss, which we include in our network is the

verification binary cross-entropy loss. We added this classi-

fication task as a regularizer to the Contrastive loss similar

to the classification network used as regularizer in [22].

Learning directly the hard label (0/1) can be a problem in

data with such wide intra-class and less inter-class variance.

So we use the regression based mean-squared error loss be-

tween the predicted score and the actual pair label (0/1). We

found that doing this was indirectly acting as a regularizer

as well as forcing the representations of same labels to be

similar.

LR = ‖yi − pi‖
2

(2)

where yi is the ground truth label and pi is the predicted

value after sigmoid activation. We use sigmoid to make sure

that the regressed value is between 0 and 1.

Our final loss function is as follows:

L = LC + LR + LBCE (3)

where LBCE , is the binary cross-entropy loss for verifica-

tion. The contrastive loss is applied on FC2 and hence af-

fecting the weights of all the previous layers of the network

and the BCE loss and MSE loss is applied at the end of the

network and affects all the layers of the network (except the

first four layer as they are freezed). Also since the positive

(genuine, disguise) and negative (genuine, imposter) exam-

ples generated from the training dataset is not equal (nega-

tive samples are little less than the positive samples as some

of the identities don’t have imposter images but have only

disguised images), so we also use class balancing in the loss

i.e weight the negative samples’ loss more and weight the

positive samples’ less. The weights are inversely propor-

tional to number of corresponding samples present in the

training data. The architecture is shown in Figure 2.

4. Experimental Results & Ablations

In order to increase the dataset size for training and also

to make our model robust to slight noise and augmentation,

margin Validation Accuracy (%)

0.1 74.59

0.5 79.86

0.6 76.07

Table 1. Parameter analysis of margin. Note that the validation

accuracy is on the Validation set created by us from the DFW Train

set.

Data Setting Validation Accuracy (%)

w/o weakly labelled data 60.43

Weakly labelled data + DFW 79.86

Table 2. Effect of data augmentation on validation accuracy. Note

that the validation accuracy is on the Validation set created by us

from the DFW Train set.

we applied data augmentation techniques such as adding

Gaussian noise, flipping, random rotation and random trans-

lation to the images. This lead to significant increase in

the validation accuracy on the test set. We used stochastic

gradient descent optimization in all our experiments with a

learning rate of 10−3. Apart from the DFW Test dataset, we

also selected random pairs of genuine and disguise/imposter

images as our Validation set. We show the results of all the

ablations on this Validation set. We later the compare the

results of experiments with the organizer’s test set.

4.1. Ablations on Contrastive loss margin

On changing the value of margin, we could get the

best validation accuracy at 0.5. We did not go beyond

margin = 1 as the similarity metric, we are using is co-

Loss GAR @0.1% GAR@1% GAR@10%

FAR FAR FAR

Baseline [13] 17.73 33.76 −
LC(W ) 19.54 50.16 92.46

LC + LR(W ) 19.71 51.53 93.86

LC + LR 19.83 51.94 94.28

+LBCE(W )
LC 21.03 58.32 97.86

LC + LR 21.32 58.46 98.05

LC + LR 23.25 60.89 98.99

+LBCE

Table 3. GAR values at different FAR values on the DFW Test set.

The baseline method extracted features from VGG-Face model

and compared the features with cosine similarity metric. The

methods with (W) are the methods with the given loss function

without the weakly labelled data.
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Loss Validation Accuracy (%)

LC 76.45

LC + LR 78.95

LC + LR + LBCE 79.86

Table 4. Effect of using different combinations of loss functions

on the Validation set.

sine similarity, which always returns a value between [0, 1].

The quantitative results are shown in Table 1. Note that in

the table, we use accuracy metric. This was used for tuning

the model parameters on a Validation set created by us from

the DFW Training data.

4.2. Is Weakly Labelled Data necessary?

Yes, because it is extremely evident from the below ex-

periment that doing adding the extra dataset with weak la-

bels helps the model to extract robust features in-turn boosts

up the performance by a large margin. The results of this

ablation are shown in Table 2 on the Validation set created

from the DFW Train set and the results on DFW Test set are

shown in Table 3. We can see a significant increase in the

accuracy after adding the weakly labelled data in both the

tables. On the DFW Test Set there is an increase of 10% for

GAR@1%. All the mentioned experiments are done with

margin = 0.5.

4.3. Ablation with different loss functions

We did experiments with Contrastive Loss (margin =
0.5), Regression loss and binary cross-entropy loss with dif-

ferent combinations of each. It is clear that having regres-

sion loss and binary cross-entropy loss act as a regularizer.

The results of this are present in Table 4.3.

Figure 4. ROC Curve for the proposed model.

Figure 5. The Figure shows eg. of True Negative i.e. both the

images in each of the six pairs are of the same identity (the one

on the left is a genuine image and the one on the right is a dis-

guised image), but our model says that the two images are that of

an imposter images.

4.4. Evaluation on the Test set

The results of DisguiseNet on the Test set (provided by

the organizers) is shown in Table 3. The GAR @ 10% FAR

is close to 99% and GAR@1% FAR is around 61%. The re-

sults of the model with different combinations of loss func-

tion is shown and it has turned out that have the Regression

and Binary Cross-Entropy Loss along with the Contrastive

Loss has helped the model out-perform the other models.

The Figure 4, shows the ROC curve for the proposed model.

Some failure cases of our model for various pairs are

shown in Figure 5 and Figure 6. The Figure 5 shows the

cases of True Negative i.e. the pairs shown are actually of

the same identity but our model has classified them wrongly.

In Figure 6, examples of False Positives are shown where in

the images are actually of different people but our networks

has classified them as the same identity.

Our success cases are shown in Figure 7, in which we

show both False Negatives and True Positives. The pairs

highlighted in green are of the same identity, one being

the genuine image and the other being the disguised image

whereas the pairs in which one of the images is highlighted

Figure 6. The Figure shows eg. of False Positives i.e. both the

images in each of the six pairs are of the different identity (the

one with green border is the genuine image and the one with the

red border is the imposter image), but our model says that the two

images are that of the same identity.
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Figure 7. The Figure shows examples of False Negatives and

True Positives i.e the both the images either correspond to im-

poster pair (the pairs with green and red borders) or disguised pair

(the pairs with only green border) and our model has predicted the

relationship correctly.

in green and the other in red belong to different identities.

In all the image pairs shown, our model has correctly clas-

sified if they are disguised or imposter.

5. Conclusion

In this paper, we proposed a Contrastive loss based ap-

proach for verification of disguised faces in the wild (Dis-

guiseNet). The method exploits, the usage of three different

loss functions. It is evident from the experiments that the

ensemble of three loss functions is beneficial towards the

task. Apart from the DFW data, we also add our own data

with weak noisy labels in order to enhance the performance

of the model for disguise detection. The increase in the data

and the use ensemble of loss functions reflects positively

on the final results on the DFW Test set, giving an absolute

increase of 27.13% over the DFW baseline.
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