
Hard Example Mining with Auxiliary Embeddings

Evgeny Smirnov

Speech Technology Center

smirnov-e@speechpro.com

Aleksandr Melnikov

ITMO University

melnikov a@corp.ifmo.ru

Andrei Oleinik

ITMO University

aoleinik@corp.ifmo.ru

Elizaveta Ivanova

Speech Technology Center

ivanova-e@speechpro.com

Ilya Kalinovskiy

Speech Technology Center

kalinovskiy@speechpro.com

Eugene Luckyanets

ITMO University

152974@niuitmo.ru

Abstract

Hard example mining is an important part of the deep

embedding learning. Most methods perform it at the mini-

batch level. However, in the large-scale settings there is

only a small chance that proper examples will appear in the

same mini-batch and will be coupled into the hard example

pairs or triplets. Doppelganger mining was previously pro-

posed to increase this chance by means of class-wise simi-

larity. This method ensures that examples of similar classes

are sampled into the same mini-batch together. One of the

drawbacks of this method is that it operates only at the class

level, while there also might be a way to select appropri-

ate examples within class in a more elaborated way than

randomly. In this paper, we propose to use auxiliary em-

beddings for hard example mining. These embeddings are

constructed in such way that similar examples have close

embeddings in the cosine similarity sense. With the help

of these embeddings it is possible to select new examples

for the mini-batch based on their similarity with the already

selected examples. We propose several ways to create auxil-

iary embeddings and use them to increase the number of po-

tentially hard positive and negative examples in each mini-

batch. Our experiments on the challenging Disguised Faces

in the Wild (DFW) dataset show that hard example min-

ing with auxiliary embeddings improves the discriminative

power of learned representations.

1. Introduction

Deep embedding learning is a powerful set of techniques

to learn representations for various problems like face ver-

ification and recognition [59, 51, 55], speaker recognition

[40], anti-spoofing for speaker recognition systems [24],

image retrieval [69, 37, 60], person [70] and vehicle [3] re-

identification, fine-grained recognition [13]. To be useful,

deep embeddings are trained to obtain some required prop-

Figure 1. Examples of subject, disguised and impersonator images

from DFW dataset. Some people do not have impersonator images

(e.g. person 3 on the figure).

erties. Embeddings corresponding to the objects from the

same class should be close to each other (according to some

metric), while different classes should be separated. Em-

beddings with this property are called discriminative. To

train embeddings in such manner one should consider using

appropriate loss functions, deep neural network architecture

and example mining method.

There are several ways to train deep embeddings. One of

them is to use example-to-example distances in the embed-

ding space. Instead of using single examples, this approach

considers pairs [8], N-pairs [56], triplets [51, 50], quadru-

plets [19, 7] or some other structures [41], constructed from

the groups of examples. Random sampling is not appro-

priate in this case because the major part of these struc-

tures will consist of easy examples and result in poor gradi-

ents. Thus, examples should be sampled in a more intelli-

gent fashion. Some kind of hard example mining is usually

used for this purpose. There are two main types of hard

example mining found in literature: mini-batch level hard

example mining [51, 69] and hard class mining [56, 55].

Mini-batch level hard example mining operates inside the

constructed mini-batch and selects appropriate examples to

1 37



create good pairs, triplets or other structures. Hard class

mining operates on the class level and is used to construct

mini-batches by sampling examples using “hard class pairs”

from the dataset.

In this paper, we propose hard example mining with aux-

iliary embeddings — a novel method, which is used to con-

struct mini-batches, containing a large numbers of hard ex-

amples.

2. Related work

Appropriate loss functions and hard example mining are

essential for learning useful deep embeddings. In this sec-

tion we review some of them.

2.1. Loss functions

There are two main types of loss functions suitable for

embedding learning: prototype-based and exemplar-based

loss functions. The first one uses prototype objects of some

kind to represent classes in the dataset. Training with this

type of loss functions usually performed through the classi-

fication task (though there are other ways of prototype us-

age). Each training example is compared with class pro-

totypes and assigned to some class. Classification error is

backpropagated through the network to adjust the weights.

This kind of loss function could be seen as “global” be-

cause it uses global embedding space. The models with

this type of supervision are usually very fast to train, do not

require complicated example mining schemes and provide

good embeddings, especially when there are a lot of exam-

ples for each class [17]. However, a significant amount of

pairwise example distance information, which is presented

in the dataset, is not used. Also, loss functions of this kind

are usually computationally expensive when the number of

classes is large and not very useful for the datasets with

small number of examples per class. The most popular loss

function of this kind is Softmax loss. However, better re-

sults in deep embedding learning tasks are achieved with

its variants. For example, L-Softmax [29], which includes

margin into softmax, encourages intra-class compactness.

L2-Softmax [46] introduces feature normalized version of

the Softmax for the same purpose. NormFace [63] and

COCO Loss [31, 32] normalize both features and classi-

fier weights, providing a way to optimize for cosine simi-

larity directly. SphereFace [28], Soft-Margin Softmax [27],

CosFace [64] and ArcFace [10] introduce different kinds of

soft, angular and cosine margins to Softmax Loss, improv-

ing discriminative properties of the resulting embeddings.

Another approaches include Selective Softmax [77], Noisy

Softmax [6], L-GM Loss [61], Correlation Loss [11] and

Orthogonal Low-rank Embedding [25].

Other variants of prototype-based losses use class cen-

troids or some kind of clustering to obtain prototypes and to

encourage examples to be close to corresponding prototypes

in the embedding space. Losses of this kind include Center

Loss [67] and Contrastive-Center Loss [45], which use class

centroids as prototypes. Another one is Magnet Loss [48],

which introduces prototypes in the form of several cluster

centroids for each class. “No Fuss Metric Learning” [37]

uses “proxies” in the same fashion. Other techniques in-

clude [20, 68, 57, 5, 15, 13, 3, 36]. Some of them use triplets

on the exemplar-prototype or prototype-prototype level and

can be seen as hybrid of prototype-based and exemplar-

based loss functions.

The exemplar-based loss functions use example-to-

example distances to train deep embeddings. Usually this

is achieved by using some kind of example structures like

pairs [8] or triplets [51], introducing pairwise distances be-

tween examples. The network with such loss functions is

trained to produce discriminative embeddings. The loss

functions of this kind include Contrastive Loss [8], operat-

ing with pairs of examples, Triplet Loss [51, 42, 50, 62],

operating with triplets of examples, and several variants

of quadruplet losses [19, 60]. Other approaches include

margin-based losses [69, 55, 70] and angular variants of

triplets [65]. Some losses operate with more complex ex-

ample structures like N-pair Loss [56], (N+M)-tuplet clus-

ter loss [30] and Lifted Structured Embedding [41].

Exemplar-based loss functions are especially useful for

training on datasets with large number of classes and small

number of examples per class. Even if a class has only one

example, it still can be paired with all other examples in the

dataset, creating a large number of training pairs and even

more triplets. Moreover, exemplar-based losses use the in-

formation hidden in the pairwise distances between exam-

ples (which is lost in the case of prototype-based losses).

However, the large number of possible pairs or triplets can

slow down training with exemplar-based loss because not

all of them are useful for training, especially at the later

stages, when the network is already well trained. Thus,

to fully use the potential of exemplar-based training some

kind of hard example mining should be applied. Also it

is possible to use joint supervision with prototype-based

loss [58, 55], benefiting from both prototype and exemplar-

based training.

2.2. Hard example mining

One way to find hard examples for exemplar-based train-

ing is to use online hard example mining [19, 70] and se-

lect hardest pairs, triplets or quadruplets on the mini-batch

level. However, in practice it is better to use online semi-

hard example mining [51, 42, 41], when example pairs are

chosen at random from the “hard enough” pairs in the mini-

batch i.e. the pairs with the distance exceeding some mar-

gin. Also, not only hard pairs contain useful information

[78], so there are several ways to find another useful pairs.

One way to do this is to use distance-weighted sampling

38



on the mini-batch level, so the hard examples are sampled

along with “regular” ones [69]. Utilization of different lev-

els of “hardness” has also proved to be beneficial [74]. All

these methods improve exemplar-based training, however,

they all heavily rely on the presence of the hard examples

in the mini-batch. If the dataset is small and the mini-batch

is large, it is likely to happen. However, if the dataset is

large in terms of the number of classes and the number of

images, and the potential mini-batch size is small e.g. due

to GPU memory limitations, this assumption is no longer

valid. Thus, there is a need to use some global, dataset-

level hard example mining approach to create mini-batches,

which contain enough hard example pairs.

The problem of hard example mining on the dataset level

is well studied, but usually solutions are developed for in-

dividual examples, and not for the pairs [14, 34]. There

are several recent solutions to this problem for the example

pairs case. One way, presented in [56], is to use “hard class

mining” to find pairs of classes, which are “hard” with re-

spect to each other, and generate mini-batches, containing

examples for both of them. Although this method improves

training efficiency, it is computationally intensive and does

not scale well to large datasets. The other method is Dop-

pelganger Mining [55]. The main idea of this method is

to maintain a list with the most similar identities for each

identity in the training set. This list is used to generate better

mini-batches by sampling pairs of similar-looking identities

(“doppelgangers”) together. This method works only on the

class level, while the selection of examples, which will be

included into the mini-batch, remains random. However,

one identity can have both useful and unuseful examples in

the dataset, and it would be better to include the former ones

into the mini-batch more often. Other methods also work

only on class level [77] or require significant computational

resources in the case of very large dataset [22].

3. Auxiliary embeddings

In this paper, we propose to use auxiliary embeddings,

assigned to each training example in the dataset. They are

used to fill a mini-batch with appropriate examples based on

previously added to the mini-batch. Auxiliary embeddings

are vectors, which possess following properties:

• Each training example has pre-computed auxiliary em-

bedding in the dataset;

• Auxiliary embeddings of two “hard positive” examples

are far from each other according to the cosine similar-

ity metric;

• Auxiliary embeddings of two “hard negative” exam-

ples are close to each other according to the cosine

similarity metric;

• Auxiliary embeddings have relatively low dimension-

ality (for fast cosine similarity calculation).

These embeddings are used at the mini-batch generation

stage (see Figure 2 for the illustration).

The first stage of the mini-batch generation process as-

sumes selection of those classes (identities) which will ap-

pear in the mini-batch (Figure 2 (a)). Doppelganger Mining

[55] or some other class selection method could be used for

this purpose. In the case of Doppelganger Mining several

classes are selected randomly, and other classes are selected

using doppelganger list. Each class is intended to have some

number of examples in the mini-batch (the number is cho-

sen by hyperparameter). Each new example of class x is

randomly selected according to one of three strategies. It

could be:

• Selected randomly from all examples of class x (Fig-

ure 2 (b));

• Selected as the “hard positive” for an example X of

class x, which has been earlier added to the mini-batch.

(Figure 2 (c)). For this purpose the auxiliary embed-

ding of X is compared using cosine similarity with a

random subset of auxiliary embeddings of examples in

class x. The example, which has the smallest cosine

similarity value, is added to the mini-batch;

• Selected as the “hard negative” for an example Y of

class y, which has been earlier added to the mini-batch

and is different from the current class x. (Figure 2 (d)).

For this purpose the auxiliary embedding of Y is com-

pared using cosine similarity with a random subset of

auxiliary embeddings of examples in class x. The ex-

ample, which has the largest cosine similarity value,

is added to the mini-batch. When a certain hard class

mining method is used, the best way to find hard neg-

atives is to look at the examples of hard paired classes

(doppelgangers in case of Doppelganger Mining). If

no such method is applied, then the class y could be se-

lected randomly from the classes, which already have

examples in the current mini-batch.

Probabilities of each choice are determined by hyperpa-

rameters. After the mini-batch is filled (Figure 2 (e)), it

contains a set of good hard examples.

This approach to mini-batch generation benefits both

from class-wise (by Doppelganger Mining or some other

method of this kind) and example-wise (by auxiliary em-

beddings) hard positive and negative mining. Further im-

provement can be achieved with some mini-batch level hard

example mining method like in [55].

There are many possible ways to get auxiliary embed-

dings.

39



Figure 2. Hard example mining with auxiliary embeddings. a) Identity-level structure of the mini-batch. b) Random example selection. c)

Hard positive example selection. d) Hard negative example selection. e) Example-level structure of the mini-batch.

40



Figure 3. Examples of the images with similar appearance embed-

dings.

3.1. Appearance embeddings

The first approach is to use some appearance informa-

tion about training examples. The basic assumption here

is that hardness of the examples is related to appearance of

images. Images from different classes with similar appear-

ance and images from the same class with different appear-

ance are likely to form hard examples. Adding them to the

same mini-batch should help the neural network to ignore

some misleading appearance features. In the context of face

recognition, it can be achieved by means of a pre-trained

attribute classification neural network. For example, this

network may evaluate pose, age and ethnicity or some ag-

gregated embedding, containing this information. Figure 3

displays examples, which are close in the appearance em-

beddings space. The advantage of this type of auxiliary em-

beddings is that they can be computed independently from

the trained deep embedding network and reused for differ-

ent models.

3.2. Embeddings from previous training stages

The other way to get auxiliary embeddings is to use mul-

tistage training schedule [35]. In this case, auxiliary em-

beddings are not used at the first learning stage. After the

first learning stage is finished, the resulting neural network

is used to compute the embeddings for the entire training

set. This process is repeated after each training stage. Thus,

the network improves after each training stage along with

the auxiliary embeddings. This approach is more “natural”

because the embeddings are optimized precisely to perform

well on the target task. However, appearance embeddings

can be useful in case of one-stage training (or on the first

stage). Moreover, appearance embeddings and the embed-

dings from previous training stages can be combined.

4. Experiments

In this section, we evaluate proposed hard example min-

ing with auxiliary embeddings on the challenging task of

disguised face recognition [23]. Caffe [21] and PyTorch

[43] frameworks were used in the experiments.

4.1. Disguised face recognition

In the past three decades, researchers have significantly

improved the performance of face recognition methods in

various scenarios. Historically, the first (and probably the

simplest) practically significant scenario is face recognition

in controlled environment. In this case, the person to be rec-

ognized collaborates with the system by maintaining neutral

face expression and looking directly into the camera. More-

over, the location and orientation of the camera as well as

ambient illumination can be adjusted manually to maximize

the performance of the recognition system.

The majority of the state-of-the-art approaches deal with

another scenario, namely face recognition “in the wild”.

This scenario assumes that the recognized person does not

collaborate with the system and may be unaware of its pres-

ence. This leads to the problems of Pose, Illumination and

Expression (referred as PIE [52]). Other difficulties may in-

clude poor quality of the face images (low resolution, blur-

ring, non-linear distortions) as well as aging of the recog-

nized person.

The Disguised Faces in the Wild (DFW) [23] chal-

lenge raises the issue of the disguised faces recognition

[44, 12, 54, 71, 47, 73, 75, 26, 66]. Disguise includes signif-

icant changes of the face appearance, such as heavy make-

up, masks, sunglasses, beard (fake or natural), etc. In the

worst case, these changes are made intentionally to hide

one’s identity or imitate the appearance of another person.

The DFW scenario is much harder than regular face recog-

nition “in the wild”. Thus, the existing approaches should

be adapted and modified to provide acceptable quality in

such conditions.

The DFW dataset contains face images for 1000 persons.

For each person, there are images of the following types:

• “Subject” is a normal face image of the person;

• “Disguised” is a disguised face image of the same per-

son;

• “Impersonator” is a face image of another person that

bears a significant resemblance to the “subject” image.

Figure 1 shows examples of images from DFW dataset. The

training set includes 400 people and 3, 385 face images; the

test set includes 600 people and 7, 771 images. In total,

there are 14, 131 genuine and 9, 218, 712 imposter pairs.

The evaluation metric is genuine accept rate (GAR) at false

accept rates (FAR) of 1% and 0.1%.

41



Description Output

input image 255× 255× 3
5× 5× 32 Conv, stride 2 126× 126× 32

3× 3× 64 Conv 124× 124× 64
2× 2 MaxPool, stride 2 62× 62× 64
3× 3× 64 ResBlock 62× 62× 64

3× 3× (96 + 64 + 32) Conv, d=1,2,3 60× 60× 192
2× 2 MaxPool, stride 2 30× 30× 192

(3× 3× 192 SE-ResBlock, r=16)×2 30× 30× 192
3× 3× (336 + 112) Conv, d=1,2 28× 28× 448

2× 2 MaxPool, stride 2 14× 14× 448
(3× 3× 448 SE-ResBlock, r=16)×5 14× 14× 448

3× 3× 1024 Conv 12× 12× 1024
2× 2 MaxPool, stride 2 6× 6× 1024

(3× 3× 1024 SE-ResBlock, r=16)×5 6× 6× 1024
512 + 512, fc + maxout, group = 2 512

L2-normalization 512

Table 1. ARFANet architecture.

4.2. Implementation details

4.2.1 Neural network architecture

In order to carry out the experiments we used neural net-

work architecture, inspired by [55] with such modifications,

as Squeeze-and-Excitation blocks [18], different numbers

of convolutional filters, using more layers and smaller input

image size. We used ARFA [55] as the activation function.

Final face embedding at the training stage is the L2-

normalized vector of dimension 512. At the testing stage,

vectors for the original image and its horizontally flipped

version are used. These vectors are concatenated and L2-

normalized, resulting in the final vector of dimension 1024.

This architecture is called ARFANet and summarized in Ta-

ble 1.

4.2.2 Preprocessing

The most common face alignment algorithm is based on

similarity transformation. It is performed using the eyes

position: the image is warped so that the eyes are on de-

sired position on the 224×224 crop pattern. This approach

fails when face pose is far from frontal. Therefore, if the es-

timated face deviation from frontal pose is high, the square

bounding box from the face detector is used to create a crop.

In our work MTCNN face detector [76] is adopted for

the alignment of the datasets. If a detection from MTCNN

is consistent with the markup from dataset, then eyes’ coor-

dinates, supplied by the detector, are used for further align-

ment. If the detector fails to find the proper face, then the

bounding box from markup file is used and FAN landmark

detector [4] is applied to the corresponding image region.

To compensate the noisiness of FAN detector we fit PDM

model [9] with 20 DoF from Menpo library [2] to obtained

landmarks. This PDM is trained on LS3D-W dataset [4]

and allow wide variations of face position.

4.2.3 Dataset

Training is performed on the combined dataset, which con-

sists of public face datasets: MS-Celeb-1M [16], CASIA-

WebFace [72], VGG-Face [42], Megaface [38] and DFW

training set [23]. The resulting dataset includes 391, 187
identities and 8, 365, 919 face images. All DFW test set

identities have been removed from the dataset. The DFW

training set was added to the combined dataset according to

the following algorithm:

• compute a mean embedding for each identity from

DFW training set;

• compute a distance from DFW embeddings to all mean

identities’ embeddings from combined dataset;

• for the current DFW identity:

– if there is no distance smaller than δ thresh-

old, then this identity is added to the combined

dataset as a new one;

– if there is a distance smaller than ǫ threshold with

some identity from combined dataset, then these

two identities are merged with each other;

• all DFW identities that have distances between ǫ and

δ are manually verified and added to the combined

dataset.

Thresholds ǫ and δ are selected experimentally according to

accuracy on the corresponding internal test set.

4.2.4 Data augmentation and training

We used the same data augmentation technique as in [55]

for all models. The loss function is a weighted combination

of Margin-based loss [55] and Working Memory Prototype

Loss [1]. We used batch size of 80 examples, 4 example per

class. For models with Doppelganger mining (ARFANet-

DM), the random class number is set to 2. To perform the

hard example mining for models with auxiliary embeddings

we used following hyperparameters:

• Probability of random example selection: 0.2;

• Probability of hard positive example selection: 0.4;

• Probability of hard negative example selection: 0.4;

• Maximum number of hard example candidates for the

process of hard example selection: 10, 000.

42



We used multi-stage training schedule with SGDR [35].

The first stage includes 100, 000 iterations, with learning

rate decreasing from 0.01 to 0.00001, the second stage

includes 200, 000 iterations, with learning rate decreasing

from 0.001 to 0.000001, the third stage includes 300, 000
iterations, with learning rate decreasing from 0.001 to

0.000001. We used Nesterov Accelerated Gradient [39]

with momentum set to 0.9 and weight decay set to 0.0005.

We trained eight models:

• ARFANet: The model without Doppelganger mining

and auxiliary embeddings;

• ARFANet + FL: The model without Doppelganger

mining, but with auxiliary embeddings, taken from the

final (deep embedding) layer of the network;

• ARFANet-DM: The model with Doppelganger min-

ing, but without auxiliary embeddings;

• ARFANet-DM + MOON: The model with Doppel-

ganger mining and appearance embeddings;

• ARFANet-DM + GAP: The model with Doppelganger

mining and auxiliary embeddings, taken from the

global averagely pooled outputs of the trained net-

work’s last convolutional layer;

• ARFANet-DM + FL: The model with Doppelganger

mining and auxiliary embeddings, taken from the final

(deep embedding) layer of the network;

• ARFANet-DM + FL-S: The model with Doppelganger

mining and auxiliary embeddings, taken from the

trained “ARFANet-DM + FL” model, fixed and used

from the start of training;

• ARFANet-DM + FL-1M: The model “ARFANet-DM

+ FL”, trained for one more stage (400, 000 iterations,

1, 000, 000 in total);

Auxiliary embeddings for “ARFANet + FL”, “ARFANet-

DM + FL” and “ARFANet-DM + FL-1M” models were con-

structed (starting from the stage 2) in the following way:

for the image and it’s mirrored version outputs of the final

layer of the neural network are concatenated and the result-

ing 1024-size vector is L2-normalized.

Appearance embeddings extraction for “ARFANet-DM

+ MOON” model was performed by CNN with VGG-16

architecture [53]. Training and loss function configurations

are taken from MOON network [49]. Training was per-

formed on CelebA dataset [33]. Output of the penultimate

layer has size of 128. It is L2-normalized and used as ap-

pearance embedding with cosine similarity.

Method GAR@1% GAR@0.1%

Baseline [23] 33.76% 17.73%

ARFANet 70.42% 47.53%

ARFANet + FL 71.77% 49.11%

ARFANet-DM 79.58% 64.03%

ARFANet-DM + MOON 79.77% 64.14%

ARFANet-DM + GAP 79.84% 64.56%

ARFANet-DM + FL 80.51% 64.84%

ARFANet-DM + FL-S 61.22% 35.57%

ARFANet-DM + FL-1M 81.93% 67.59%

Table 2. The results on the Disguised Faces in the Wild dataset.

The evaluation metrics are genuine accept rate (GAR) at false ac-

cept rates (FAR) of 1% and 0.1%.

Auxiliary embedding for “ARFANet-DM + GAP” model

was constructed (starting from the stage 2) in the follow-

ing way: for the image and it’s mirrored version out-

puts of the last convolutional layer were global averagely

pooled, concatenated and the resulting 2048-size vector is

L2-normalized.

Auxiliary embeddings for “ARFANet + FL”, “ARFANet-

DM + GAP”, “ARFANet-DM + FL” and “ARFANet-DM +

FL-1M” models were updated at the end of each training

stage.

Auxiliary embeddings for “ARFANet-DM + FL-S”

model were computed with “ARFANet-DM + FL” model,

trained for three stages (600, 000 iterations in total), and

used for the whole training process from start without up-

dating.

4.3. Results

The results are presented in Table 2 and Figure 4. All

proposed models achieved improvement over baseline. Due

to the large training dataset size, the models with Dop-

pelganger mining performed better than the models with-

out it. Models, using hard example mining with auxil-

iary embeddings, achieved better results than their coun-

terparts without auxiliary embeddings. The best result of

80.51% GAR@1%FAR and 64.84% GAR@0.1%FAR was

achieved when the auxiliary embeddings from the last layer

of the network were used. Training for one more stage im-

proved this result to 81.93% GAR@1%FAR and 67.59%

GAR@0.1%FAR. Although the “ARFANet-DM + MOON”

model did not provide the best results, it performed better

than the model “ARFANet-DM” without auxiliary embed-

dings. “ARFANet-DM + FL-S” model performed worse

than other ARFANet-based models. One possible reason

for this is that the training examples were too hard from the

beginning instead of increasing the hardness gradually, so

the network didn’t learn good features for the simple cases.

43



Figure 4. The ROC curve for the Disguised Faces in the Wild

(DFW) dataset.

5. Conclusions

In this paper, we have presented a novel method of hard

example mining with auxiliary embeddings to improve the

training of deep embedding models by the generation of

more informative mini-batches.

The core idea of this method is to compute auxiliary em-

beddings for each training example in the dataset and use

them at the mini-batch generation stage to select better ex-

amples to be included in the mini-batch. These auxiliary

embeddings are constructed to have large cosine similarity

value in the case of hard negative example pairs and small

cosine similarity value in the case of hard positive exam-

ple pairs. This method performs best in combination with

Doppelganger Mining or some other hard class mining al-

gorithm.

We have proposed several ways to produce these auxil-

iary embeddings and performed experiments on the chal-

lenging Disguised Faces in the Wild dataset. The experi-

mental results have confirmed the fact that using hard exam-

ple mining with auxiliary embeddings improves deep em-

bedding models.

Acknowledgement

This work was financially supported by the Ministry of

Education and Science of the Russian Federation, Contract

14.578.21.0189 (ID RFMEFI57816X0189).

References

[1] Working memory prototype loss for deep representation

learning. Manuscript in preparation.

[2] J. Alabort-i Medina, E. Antonakos, J. Booth, P. Snape, and

S. Zafeiriou. Menpo: A comprehensive platform for para-

metric image alignment and visual deformable models. In

ACM Multimedia, pages 679–682. ACM, 2014.

[3] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L. Duan. Group

sensitive triplet embedding for vehicle re-identification.

IEEE Transactions on Multimedia, 2018.

[4] A. Bulat and G. Tzimiropoulos. How far are we from solv-

ing the 2d & 3d face alignment problem? (and a dataset of

230,000 3d facial landmarks). In ICCV, 2017.

[5] J. Cai, Z. Meng, A. S. Khan, Z. Li, and Y. Tong. Island

loss for learning discriminative features in facial expression

recognition. arXiv preprint arXiv:1710.03144, 2017.

[6] B. Chen, W. Deng, and J. Du. Noisy softmax: Improving

the generalization ability of dcnn via postponing the early

softmax saturation. In CVPR, 2017.

[7] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet

loss: a deep quadruplet network for person re-identification.

In CVPR, volume 2, 2017.

[8] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, volume 1, pages 539–546. IEEE, 2005.

[9] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-

tive shape models-their training and application. Computer

Vision and Image Understanding, 61(1):38–59, 1995.

[10] J. Deng, J. Guo, and S. Zafeiriou. Arcface: Additive an-

gular margin loss for deep face recognition. arXiv preprint

arXiv:1801.07698, 2018.

[11] W. Deng, B. Chen, Y. Fang, and J. Hu. Deep correlation

feature learning for face verification in the wild. IEEE Signal

Processing Letters, 24(12):1877–1881, 2017.

[12] T. I. Dhamecha, R. Singh, M. Vatsa, and A. Kumar. Rec-

ognizing disguised faces: Human and machine evaluation.

PloS one, 9(7):e99212, 2014.

[13] Y. Em, F. Gag, Y. Lou, S. Wang, T. Huang, and L.-Y.

Duan. Incorporating intra-class variance to fine-grained vi-

sual recognition. In ICME, pages 1452–1457. IEEE, 2017.

[14] Y. Fan, F. Tian, T. Qin, J. Bian, and T.-Y. Liu. Learning what

data to learn. arXiv preprint arXiv:1702.08635, 2017.

[15] B. Gecer, V. Balntas, and T.-K. Kim. Learning deep convolu-

tional embeddings for face representation using joint sample-

and set-based supervision. In ICCV Workshops, 2017.

[16] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In

ECCV, pages 87–102. Springer, 2016.

[17] S. Horiguchi, D. Ikami, and K. Aizawa. Significance of

softmax-based features in comparison to distance metric

learning-based features. arXiv preprint arXiv:1712.10151,

2017.

[18] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. arXiv preprint arXiv:1709.01507, 2017.

[19] C. Huang, C. C. Loy, and X. Tang. Local similarity-aware

deep feature embedding. In NIPS, pages 1262–1270, 2016.

[20] R. Huang, X. Xie, Z. Feng, and J. Lai. Face recognition by

landmark pooling-based cnn with concentrate loss. In ICIP,

pages 1582–1586. IEEE, 2017.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

44



[22] V. B. Kumar, B. Harwood, G. Carneiro, I. Reid, and T. Drum-

mond. Smart mining for deep metric learning. In ICCV,

2017.

[23] V. Kushwaha, M. Singh, R. Singh, M. Vatsa, N. Ratha, and

R. Chellappa. Disguised Faces in the Wild. Technical report,

IIIT Delhi, March 2018.

[24] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Ku-

dashev, and V. Shchemelinin. Audio replay attack detection

with deep learning frameworks. In Interspeech, pages 82–86,

2017.

[25] J. Lezama, Q. Qiu, P. Musé, and G. Sapiro. OlÉ: Orthogonal

low-rank embedding, a plug and play geometric loss for deep

learning. arXiv preprint arXiv:1712.01727, 2017.

[26] J. Li, B. Li, Y. Xu, K. Lu, K. Yan, and L. Fei. Disguised face

detection and recognition under the complex background. In

CIBIM, pages 87–93. IEEE, 2014.

[27] X. Liang, X. Wang, Z. Lei, S. Liao, and S. Z. Li. Soft-margin

softmax for deep classification. In ICONIP, pages 413–421.

Springer, 2017.

[28] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face recogni-

tion. In CVPR, pages 6738–6746, July 2017.

[29] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax

loss for convolutional neural networks. In ICML, pages 507–

516, 2016.

[30] X. Liu, B. Kumar, J. You, and P. Jia. Adaptive deep metric

learning for identity-aware facial expression recognition. In

CVPR Workshops, pages 522–531, 2017.

[31] Y. Liu, H. Li, and X. Wang. Learning deep features via con-

generous cosine loss for person recognition. arXiv preprint

arXiv:1702.06890, 2017.

[32] Y. Liu, H. Li, and X. Wang. Rethinking feature discrimina-

tion and polymerization for large-scale recognition. In NIPS,

2017.

[33] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In ICCV, 2015.

[34] I. Loshchilov and F. Hutter. Online batch selection for faster

training of neural networks. In ICLR 2016. Workshop Track,

2016.

[35] I. Loshchilov and F. Hutter. Sgdr: stochastic gradient descent

with restarts. In ICLR, 2017.

[36] Z. Ming, J. Chazalon, M. Muzzamil Luqman, M. Visani, and

J.-C. Burie. Simple triplet loss based on intra/inter-class met-

ric learning for face verification. In ICCV Workshops, pages

1656–1664, 2017.

[37] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and

S. Singh. No fuss distance metric learning using proxies.

2017.

[38] A. Nech and I. Kemelmacher-Shlizerman. Level playing

field for million scale face recognition. In CVPR, pages

3406–3415. IEEE, 2017.

[39] Y. Nesterov. A method of solving a convex programming

problem with convergence rate o(1/k2). In Soviet Mathemat-

ics Doklady, volume 27, pages 372–376, 1983.

[40] S. Novoselov, O. Kudashev, V. Schemelinin, I. Krem-

nev, and G. Lavrentyeva. Deep cnn based feature extrac-

tor for text-prompted speaker recognition. arXiv preprint

arXiv:1803.05307, 2018.

[41] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

CVPR, pages 4004–4012, 2016.

[42] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face

recognition. In BMVC, 2015.

[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[44] K. Patterson and A. Baddeley. When face recognition fails.

Journal of Experimental Psychology: Human Learning and

Memory, 3(4):406, 1977.

[45] C. Qi and F. Su. Contrastive-center loss for deep neural net-

works. In ICIP, pages 2851–2855, 2017.

[46] R. Ranjan, C. D. Castillo, and R. Chellappa. l2-constrained

softmax loss for discriminative face verification. arXiv

preprint arXiv:1703.09507, 2017.

[47] G. Righi, J. J. Peissig, and M. J. Tarr. Recognizing disguised

faces. Visual Cognition, 20(2):143–169, 2012.

[48] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric learn-

ing with adaptive density discrimination. In ICLR, 2016.

[49] E. M. Rudd, M. Günther, and T. E. Boult. Moon: A mixed

objective optimization network for the recognition of facial

attributes. In European Conference on Computer Vision,

pages 19–35. Springer, 2016.

[50] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and R. Chel-

lappa. Triplet probabilistic embedding for face verification

and clustering. In BTAS, pages 1–8. IEEE, 2016.

[51] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In CVPR,

pages 815–823, 2015.

[52] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination,

and expression (PIE) database. In FG, pages 53–58. IEEE,

2002.

[53] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[54] A. Singh, D. Patil, G. M. Reddy, and S. Omkar. Disguised

face identification (dfi) with facial keypoints using spatial fu-

sion convolutional network. In ICCV Workshops, 2017.

[55] E. Smirnov, A. Melnikov, S. Novoselov, E. Luckyanets, and

G. Lavrentyeva. Doppelganger mining for face representa-

tion learning. In ICCV Workshops, pages 1916–1923, Oct

2017.

[56] K. Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In NIPS, pages 1857–1865, 2016.

[57] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy. Deep

metric learning via facility location. In CVPR, 2017.

[58] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In NIPS,

pages 1988–1996, 2014.

[59] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In CVPR, pages 1701–1708, 2014.

[60] E. Ustinova and V. Lempitsky. Learning deep embeddings

with histogram loss. In NIPS, pages 4170–4178, 2016.

[61] W. Wan, Y. Zhong, T. Li, and J. Chen. Rethinking feature dis-

tribution for loss functions in image classification. In CVPR,

2018.

45



[62] C. Wang, X. Zhang, and X. Lan. How to train triplet net-

works with 100k identities? In ICCV Workshops, 2017.

[63] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface:

l 2 hypersphere embedding for face verification. In ACM

Multimedia, pages 1041–1049. ACM, 2017.

[64] H. Wang, Y. Wang, Z. Zhou, X. Ji, Z. Li, D. Gong, J. Zhou,

and W. Liu. Cosface: Large margin cosine loss for deep face

recognition. arXiv preprint arXiv:1801.09414, 2018.

[65] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep metric

learning with angular loss. In ICCV, 2017.

[66] T. Y. Wang and A. Kumar. Recognizing human faces under

disguise and makeup. In ISBA, pages 1–7. IEEE, 2016.

[67] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-

ture learning approach for deep face recognition. In ECCV,

pages 499–515. Springer, 2016.

[68] B. Wu, Z. Chen, J. Wang, and H. Wu. Exponential discrimi-

native metric embedding in deep learning. Neurocomputing,

2018.

[69] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl.

Sampling matters in deep embedding learning. In ICCV,

2017.

[70] Q. Xiao, H. Luo, and C. Zhang. Margin sample mining loss:

A deep learning based method for person re-identification.

arXiv preprint arXiv:1710.00478, 2017.

[71] Y. Xu, Y. Zhai, J. Gan, and J. Zeng. Disguised face recog-

nition based on local feature fusion and biomimetic pattern

recognition. In Z. Sun, S. Shan, H. Sang, J. Zhou, Y. Wang,

and W. Yuan, editors, CCBR, 2014.

[72] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

[73] M. Yoshino, K. Noguchi, M. Atsuchi, S. Kubota,

K. Imaizumi, C. D. L. Thomas, and J. G. Clement. Indi-

vidual identification of disguised faces by morphometrical

matching. Forensic science international, 127(1-2):97–103,

2002.

[74] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cas-

caded embedding. In ICCV, 2017.

[75] W.-h. Yun, D. Kim, H.-S. Yoon, and J. Lee. Disguised-

face discriminator for embedded systems. ETRI journal,

32(5):761–765, 2010.

[76] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection

and alignment using multitask cascaded convolutional net-

works. IEEE Signal Processing Letters, 23(10):1499–1503,

Oct 2016.

[77] X. Zhang, L. Yang, J. Yan, and D. Lin. Accelerated train-

ing for massive classification via dynamic class selection. In

AAAI, 2018.

[78] J.-X. Zhong, G. Li, and N. Li. Deep metric learning with

false positive probability. In ICONIP, 2017.

46


