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Abstract

This paper presents coding methods used to encode a

set of covariance matrices. Starting from a Gaussian mix-

ture model adapted to the log-Euclidean or affine invari-

ant Riemannian metric, we propose a Fisher Vector (FV)

descriptor adapted to each of these metrics: the log Eu-

clidean FV (LE FV) and the Riemannian Fisher Vector

(RFV). An experiment is conducted on four conventional

texture databases to compare these two metrics and to il-

lustrate the potential of these FV based descriptors com-

pared to state-of-the-art BoW and VLAD based descriptors.

A focus is also done to illustrate the advantage of using the

Fisher information matrix during the derivation of the FV.

1. Introduction

Feature coding based approaches are used in wide vari-

ety of signal, image and video processing applications in-

cluding text retrieval [36], image classification [9, 37, 27],

action and face recognition [11] to cite a few of them.

Among the most employed coding based methods, there are

the bag of words model (BoW), the vector of locally ag-

gregated descriptors (VLAD) and the Fisher vectors (FV).

These approaches have first been introduced for applica-

tions involving non-parametric features. Later, they have

been extended to features defined on a Riemannian mani-

fold. This is the case of covariance matrices that have al-

ready demonstrated their importance as descriptors related

to array processing [26], radar detection [16, 5, 41, 4], im-

age segmentation [15, 8], face detection [30], vehicle detec-

tion [24], or classification [14, 3, 32, 11], etc. Nevertheless,

since covariance matrices are non-negative definite matri-

ces, conventional tools developed in the Euclidean space

cannot be applied directly. The characteristics of the Rie-

mannian geometry of the space Pm ofm×m symmetric and

positive definite (SPD) matrices should be considered in or-

der to obtain appropriate algorithms. The aim of this paper

is to introduce a unified framework for BoW, VLAD and

FV approaches, for features being covariance matrices. In

the recent literature, some authors have proposed to extend

the BoW and VLAD descriptors to the log-Euclidean and

affine invariant Riemannian metrics. This yields to the so-

called log-Euclidean bag of words (LE BoW) [42, 13], bag

of Riemannian words (BoRW) [12], log-Euclidean vector

of locally aggregated descriptors (LE VLAD) [11], extrin-

sic vector of locally aggregated descriptors (E-VLAD) [10]

and intrinsic Riemannian vector of locally aggregated de-

scriptors (RVLAD) [11]. For the FV descriptor, based on

the Riemannian Gaussian distribution [33], Ilea et al. have

introduced in [18] the Riemannian Fisher score for texture

image classification. However, they do not take into account

the Fisher information which is one of the main objective of

the paper.

In this paper, we provide two main contributions. The

first one is to present how FV can be used to encode a set of

covariance matrices. Since these elements do not lie on an

Euclidean space but on a Riemannian manifold, a Rieman-

nian metric should be considered. Here, two Riemannian

metrics are considered : the log-Euclidean and the affine in-

variant Riemannian metrics yielding respectively to the log-

Euclidean FV (LE FV) and to the Riemannian FV (RFV).

The second main contribution is to highlight the impact of

the Fisher information matrix (FIM) in the derivation of the

FV.

The paper is structured as follows. Section 2 presents

the codebook generation on the manifold of SPD covari-

ance matrices. Section 3 introduces a theoretical study of

the feature encoding methods (BoW, VLAD and FV) based

on the log-Euclidean and affine invariant Riemannian met-

rics. Section 4 shows an application of these descriptors to

texture image classification. And finally, some conclusions

are drawn in Section 5.

2. Codebook generation in Pm

This section focuses on the codebook generation. At this

point, the set of extracted low-level features, i.e. the set of

covariance matrices, is used in order to identify the ones
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embedding the set’s significant characteristics. In this pa-

per, two metrics are considered to compute the codebook

which are respectively the log-Euclidean (LE) and the affine

invariant Riemannian metric. In the following, each method

with prefix LE (resp. R) means that it is based on the log-

Euclidean (resp. the affine invariant) Riemannian metric.

The next two subsections describe these two strategies.

2.1. Log­Euclidean codebook

Let M = {Mn}n=1:N , with Mn ∈ Pm, be a sample of

N training SPD matrices of sizem×m. The log-Euclidean

codebook is obtained by considering the log-Euclidean met-

ric as similarity measure between two covariance matrices.

For such a purpose, each training covariance matrix Mn is

first mapped on the LE space by applying the matrix log-

arithm M
LE
n = logMn [2, 13, 31]. Next, a vectorization

operator is applied to obtain the LE vector representation.

To sum up, for a given SPD matrix M, its LE vector repre-

sentation, m ∈ R
m(m+1)

2 , is defined as m = Vec(log(M))
where Vec is the vectorization operator defined as:

Vec(X) =
[

X11,
√
2X12, . . . ,

√
2X1m, X22,

√
2X23, . . . , Xmm

]

,

(1)

with Xij the elements of X.

Once the SPD matrices are mapped on the LE metric

space, all the conventional algorithms developed on the Eu-

clidean space can be considered. In particular, the LE vec-

tor representation of M, i.e. {mn}n=1:N , can be assumed

to be independent and identically distributed samples from

a mixture of K multivariate Gaussian distribution, whose

probability density function is

p(mn|θ) =
K
∑

k=1

̟kp(mn|m̄k,Σk), (2)

where θ = {(̟k, m̄k,Σk)1≤k≤K} is the parameter vector.

For each cluster k,̟k represent the mixture weight, m̄k the

mean vector and Σk the covariance matrices. It yields:

p(m|θk) = 1

(2π)
m
2 |Σk|

1
2
exp

{

− 1
2 (m− m̄k)

TΣ−1
k (m− m̄k)

}

.

(3)

where (·)T is the transpose operator, m̄k ∈ R
m(m+1)

2 ,

Σk ∈ Pm and ̟k ∈ R. In addition, the covariance ma-

trix is assumed to be diagonal, i.e. σ2
k = diag(Σk) is the

variance vector. For such a model, the classical k-means or

expectation-maximization (EM) algorithm can be applied to

estimate the mixture parameters. The estimated parameters

of each mixture component (m̄k, σ2
k and ̟k) represent the

codewords and the set composed by the K codewords gives

the log-Euclidean codebook.

2.2. Riemannian codebook

In this section, we present the construction of the Rie-

mannian codebook which is based on the affine invariant

Riemannian metric. For that, we first introduce the Rie-

mannian Gaussian model.

Riemannian Gaussian model In order to model the

space Pm of SPD covariance matrices, a generative model

has been introduced in [33, 34]: the Riemannian Gaussian

distribution (RGD). For this model, the probability density

function with respect to the Riemannian volume element is

defined as follow [33, 34]:

p(Mn|M̄, σ) =
1

Z(σ)
exp

{

− d2(Mn, M̄)

2σ2

}

, (4)

where M̄ and σ are the distribution parameters, repre-

senting respectively the central value and the dispersion.

d(·) is the Riemannian distance given by d(M1,M2) =
[
∑

i(lnλi)
2
]

1
2 , with λi, i = 1 . . .m being the eigenvalues

of M−1
1 M2. Z(σ) is a normalization factor independent of

M̄ [6]:

Z(σ) = 8
m(m−1)

4 πm2/2

m! Γm(m/2)

∫

Rm e−
‖r‖2

2σ2
∏

i<j sinh
(

|ri−rj |
2

)

∏m
i=1 dri

(5)

with Γm the multivariate Gamma function [25]. In practice,

for m = 2, the normalization factor admits a closed-form

expression [32], while for m > 2 the normalization factor

can be computed numerically as the expectation of the prod-

uct of sinh functions with respect to the multivariate normal

distribution N (0, σ2Im) [33]. Afterwards, a cubic spline

interpolation can be used to smooth this function [43].

Mixture model for RGDs As for the log Euclidean code-

book, a generative model is considered for the construction

of the Riemannian codebook. For the former, a mixture of

multivariate Gaussian distribution was considered since the

SPD matrices were projected on the LE space. For the con-

struction of the Riemannian codebook, we follow a similar

approach by considering that M = {Mn}n=1:N , are inde-

pendent and identically distributed samples of a mixture of

K RGDs. In this case, the likelihood of M is given by:

p(M|θ) =
N
∏

n=1

p(Mn|θ) =
N
∏

n=1

K
∑

k=1

̟kp(Mn|M̄k, σk),

(6)

where p(Mn|M̄k, σk) is the RGD defined in (4) and θ =
{(̟k, M̄k, σk)1≤k≤K} is the parameter vector containing

the mixture weight ̟k, the central value M̄k and the dis-

persion parameter σk.

Once estimated, the parameters of each mixture compo-

nent represent the codewords, and the set of all K code-

words gives the Riemannian codebook. Regarding the es-

timation, the conventional intrinsic k-means clustering al-

gorithm can be considered [39, 12]. Nevertheless, it as-
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sumes the homoscedasticity assumption, for which the clus-

ters have the same dispersion. To relax this assumption, we

consider in the following the maximum likelihood estima-

tion with the expectation maximization algorithm defined

in [32].

Based on the extracted (log-Euclidean or Riemannian)

codebook, the next section presents various strategies to en-

code a set of SPD matrices. These approaches are based

whether on the LE metric or on the affine invariant Rie-

mannian metric. In the next section, three kinds of cod-

ing approaches are reviewed, namely the bag of words

(BoW) model, the vector of locally agregated descriptors

(VLAD) [21, 1] and the Fisher vectors (FV) [27, 29, 28].

Here, the main contribution is the proposition of coding

approaches based on the FV model: the log-Euclidean

Fisher vectors (LE FV) and the Riemannian Fisher vectors

(RFV) [18].

3. Feature encoding methods

Given the extracted codebook, the purpose of this part is

to project the feature set of SPD matrices onto the code-

book elements. In other words, the initial feature set is

expressed using the codewords contained in the codebook.

Fig. 1 draws an overview of the relation between the differ-

ent approaches based on the BoW, VLAD and FV models.

The log-Euclidean (resp. the affine invariant) Riemannian-

based metric approaches appear in red (resp. in blue). The

E-VLAD descriptor is displayed in purple since it considers

the Riemannian codebook combined with LE representation

of the features.

3.1. Bag of words descriptor

One of the most common encoding methods is repre-

sented by the BoW model. With this model, a set of features

is encoded in an histogram descriptor obtained by counting

the number of features which are closest to each codeword

of the codebook. In the beginning, this descriptor has been

employed for text retrieval and categorization [36, 22], by

modeling a text with an histogram containing the number

of occurrences of each word. Later on, the BoW model

has been extended to visual categorization [7], where im-

ages are described by a set of descriptors, such as SIFT fea-

tures. In such case, the ”words” of the codebook are ob-

tained by considering a clustering algorithm with the stan-

dard Euclidean metric. Recently, the BoW model has been

extended to features lying in a non-Euclidean space, such

as SPD matrices. In this context, two approaches have been

proposed based respectively on the log-Euclidean and affine

invariant Riemannian metrics:

• the log-Euclidean bag of words (LE BoW) [42, 13].

• the bag of Riemannian words (BoRW) [12].

(a)

(b)

Figure 1. Workflow explaining (a) the codebook creation step and

(b) the coding step. The log-Euclidean based approaches appear

in red while the Riemannian based ones are displayed in blue. The

E-VLAD descriptor is displayed in purple since it considers simul-

taneously a Riemannian codebook and LE vector representation of

the covariance matrices.

These two descriptors have been employed successfully

for different applications, including texture and human

epithelial type 2 cells classification [12], action recogni-

tion [42, 13].

3.1.1 Log-Euclidean bag of words (LE BoW)

The LE BoW model has been considered in [42, 13]. First,

the space of covariance matrices is embedded into a vector

space by considering the LE vector representation m given

in (1). With this embedding, the LE BoW model can be in-

terpreted as the BoW model in the LE space. This means

that codewords are elements of the log-Euclidean codebook

detailed in Section 2.1. Next, each observed SPD matrix

Mn is assigned to cluster k of closest codeword m̄k to com-

pute the histogram descriptor. The vicinity is evaluated here

as the Euclidean distance between the LE vector represen-

tation mn and the codeword m̄k.

The LE BoW descriptor can also be interpreted by con-

sidering the Gaussian mixture model recalled in (2). In

such case, each feature mn is assigned to the cluster k, for

k = 1, . . . ,K according to:

argmax
k

̟k p(mn|m̄k, σk), (7)

508



where p(mn|m̄k, σk) is the multivariate Gaussian distri-

bution given in (3). In addition, two constraints are as-

sumed ∀k = 1, . . . ,K: the homoscedasticity assumption,

i.e. σk = σ and the same weight is given to all mixture

components, i.e. ̟k = 1
K .

3.1.2 Bag of Riemannian words (BoRW)

This descriptor has been introduced in [12]. Contrary to the

LE BoW model, the BoRW model exploits the affine invari-

ant Riemannian metric. For that, it considers the Rieman-

nian codebook detailed in Section 2.2. Then, the histogram

descriptor is computed by assigning each SPD matrix to the

cluster k of the closest codebook element M̄k, the proxim-

ity being measured with the geodesic distance recalled in

Section 2.2.

As for the LE BoW descriptor, the definition of the

BoRW descriptor can be obtained by the Gaussian mixture

model, except that the RGD model (4) is considered instead

of the multivariate Gaussian distribution. Each feature Mn

is assigned to the cluster k, for k = 1, . . . ,K according to:

argmax
k

̟k p(Mn|M̄k, σk). (8)

In addition, the two previously cited assumptions are done,

the same dispersion and weight are given to all mixture

components.

BoW descriptors are based only on the number of occur-

rences of each codeword from the dataset. In order to in-

crease the classification performances, second order statis-

tics can be considered. This is the case of VLAD and FV

that are presented next.

3.2. Vectors of locally aggregated descriptors

VLAD descriptors have been introduced in [21] and rep-

resent a method of encoding the difference between the

codewords and the features. For features lying in Eu-

clidean space, codebook is composed by cluster centroids

{(x̄k)1≤k≤K} obtained by clustering algorithm on the

training set. Next, to encode a feature set {(xn)1≤n≤N},

vectors vk containing the sum of differences between code-

word and feature sample assigned to it are computed for

each cluster:

vk =
∑

xn∈ck

xn − x̄k. (9)

The final VLAD descriptor is obtained as the concatenation

of all vectors vk:

VLAD = [vT
1 , . . . ,v

T
K ]. (10)

In order to generalize this formalism to features lying in

a Riemannian manifold, two theoretical aspects should be

addressed carefully, which are the definition of a metric to

describe how features are assigned to the codewords, and

the definition of subtraction operator for these kind of fea-

tures. By addressing these aspects, three approaches have

been proposed in the literature:

• the log-Euclidean vector of locally aggregated descrip-

tors (LE VLAD) [11].

• the extrinsic vector of locally aggregated descriptors

(E-VLAD) [10].

• the intrinsic Riemannian vector of locally aggregated

descriptors (RVLAD) [11].

3.2.1 Log-Euclidean vector of locally aggregated de-

scriptors (LE VLAD)

This descriptor has been introduced in [11] to encode a set

of SPD matrices with VLAD descriptors. In this approach,

VLAD descriptors are computed in the LE space. For this

purpose, (9) is rewritten as:

vk =
∑

mn∈ck

mn − m̄k, (11)

where the LE representation mn of Mn belongs to the clus-

ter ck if it is closer to m̄k than any other element of the log

Euclidean codebook. The proximity is measured here ac-

cording to the Euclidean distance between the LE vectors.

3.2.2 Extrinsic vector of locally aggregated descriptors

(E-VLAD)

The E-VLAD descriptor is based on the LE vector represen-

tation of SPD matrices. However, contrary to the LE VLAD

model, this descriptor uses the Riemannian codebook to de-

fine the Voronoı̈ regions.

vk =
∑

Mn∈ck

mn − m̄k, (12)

where Mn belongs to the cluster ck if it is closer to M̄k

according to the affine invariant Riemannian metric. Note

also that here m̄k is the LE vector representation of the Rie-

mannian codebook element M̄k.

In order to speed-up the processing time, Faraki et al.

have proposed in [10] to replace the Riemannian metric by

the Stein metric [38]. For this latter, computational cost to

estimate the centroid of a set of covariance matrices is less

demanding than with the affine invariant Riemannian met-

ric. A recursive computation of the Stein center from a set

of covariance matrices has been proposed in [35]. Since this

approach exploits two metrics, one for the codebook cre-

ation (with the Riemannian or Stein metric) and another for

the coding step (with the log-Euclidean metric), we referred

it as an extrinsic method.
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3.2.3 Riemannian vector of locally aggregated descrip-

tors (RVLAD)

This descriptor has been introduced in [11] to propose a so-

lution for the affine invariant Riemannian metric. More pre-

cisely, the geodesic distance [20] is considered to measure

similarity between SPD matrices and the Riemannian loga-

rithm mapping [17] is used to perform the subtraction on the

manifold. It yields that for the RVLAD model, the vectors

vk are obtained as:

vk = Vec

(

∑

Mn∈ck

Log
M̄k

(Mn)

)

, (13)

where Log
M̄k

(·) is the Riemannian logarithm mapping.

Note that the vectorization operator Vec(·) is used to rep-

resent vk as a vector.

As explained in [21], the VLAD descriptor can be inter-

preted as a simplified non probabilistic version of the FV.

In the next section, we give an explicit relationship between

these two descriptors which is one of the main contribution

of the paper.

3.3. Fisher vector descriptor

Fisher vectors (FV) are descriptors based on Fisher ker-

nels [19]. FV measures how samples are correctly fitted by

a given generative model p(X|θ). Let X = {xn}n=1:N ,

be a sample of N observations. The FV descriptor associ-

ated to X is the gradient of the sample log-likelihood with

respect to the parameters θ of the generative model distri-

bution, scaled by the inverse square root of the FIM.

First, the gradient of the log-likelihood with respect to

the model parameter vector θ, also known as the Fisher

score (FS) UX [19], should be computed:

UX = ∇θ log p(X |θ) = ∇θ

N
∑

n=1

log p(Xn|θ). (14)

As mentioned in [27], the gradient describes the direction in

which parameters should be modified to best fit the data. In

other words, the gradient of the log-likelihood with respect

to a parameter describes the contribution of that parameter

to the generation of a particular feature [19]. A large value

of this derivative is equivalent to a large deviation from the

model, suggesting that the model does not correctly fit the

data.

Second, the gradient of the log-likelihood can be normal-

ized by using the FIM Iθ [19]:

Iθ = EX [UXU
T
X ], (15)

where EX [·] denotes the expectation over p(X |θ). It yields

that the FV representation of X is given by the normalized

gradient vector [27]:

G
X

θ = I
−1/2
θ ∇θ log p(X |θ). (16)

As reported in previous work, exploiting the FIM Iθ in the

derivation of FV yields to excellent results with linear clas-

sifiers [28, 29, 37]. However, the computation of FIM might

be quite difficult. It does not admit a close-form expres-

sion for many generative models. In such case, it can be

approximated empirically by carrying out a Monte Carlo

integration, but this latter can be costly especially for high

dimensional data. To solve this issue, some analytical ap-

proximations can be considered [27, 37].

The next part explain how the FV model can be used to

encode a set of SPD matrices. Once again, two approaches

are considered by using respectively the log-Euclidean and

the affine invariant Riemannian metrics:

• the log-Euclidean Fisher vectors (LE FV).

• the Riemannian Fisher vectors (RFV) [18].

3.3.1 Log-Euclidean Fisher vectors

The LE FV model consists in an approach where the FV

descriptors are computed in the LE space. In such case,

the multivariate Gaussian mixture model recalled in (2) is

considered.

Let MLE = {mn}n=1:N be the LE representation of

the set M. To compute the LE FV representation of M,

the derivatives of the log-likelihood function with respect to

θ should first be computed. Let γk(mn) be the soft assign-

ment of mn to the kth Gaussian component

γk(mn) =
̟k p(mn|θk)

∑K
j=1̟j p(mn|θj)

. (17)

It yields that, the elements of the log-Euclidean Fisher

score (LE FS) are obtained as:

∂ log p(MLE |θ)
∂m̄d

k

=

N
∑

n=1

γk(mn)

(

m
d
n − m̄

d
k

(

σd
k

)2

)

, (18)

∂ log p(MLE |θ)
∂σd

k

=

N
∑

n=1

γk(mn)

(

[

m
d
n − m̄

d
k

]2

(

σd
k

)3 − 1

σd
k

)

,

(19)

∂ log p(MLE |θ)
∂αk

=

N
∑

n=1

(

γk(mn)−̟k

)

, (20)

where m̄
d
k (resp. σd

k) is the dth element of vector m̄k (resp.

σk). Note that, to ensure the constraints of positivity and

sum-to-one for the weights ̟k, the derivative of the log-

likelihood with respect to this parameter is computed by

taking into consideration the soft-max parametrization as

proposed in [23, 37]:

̟k =
exp(αk)

∑K
j=1 exp(αj)

. (21)
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Under the assumption of nearly hard assignment, that is the

soft assignment distribution γk(mn) is sharply peaked on

a single value of k for any observation mn, the FIM Iθ is

diagonal and admits a close-form expression [37]. It yields

that the LE FV of M is obtained as:

G
MLE

m̄
d
k

=
1√
̟k

N
∑

n=1

γk(mn)

(

m
d
n − m̄

d
k

σd
k

)

, (22)

G
MLE

σd
k

=
1√
2̟k

N
∑

n=1

γk(mn)

(

[

m
d
n − m̄

d
k

]2

(

σd
k

)2 − 1

)

,

(23)

G
MLE
αk

=
1√
̟k

N
∑

n=1

(

γk(mn)−̟k

)

, (24)

3.3.2 Riemannian Fisher vectors

Ilea et al. have proposed in [18] an approach to encode a set

of SPD matrices with FS based on the affine invariant Rie-

mannian metric: the Riemannian Fisher score (RFS). In this

method, the generative model is a mixture of RGDs [33] as

presented in Section 2.2. By following the same procedure

as before, the RFS is obtained by computing the deriva-

tives of the log-likelihood function with respect to the dis-

tribution parameters θ = {(̟k, M̄k, σk)1≤k≤K}. It yields

that [18]:

∂ log p(M|θ)
∂M̄k

=
N
∑

n=1

γk(Mn)
Log

M̄k
(Mn)

σ2
k

, (25)

∂ log p(M|θ)
∂σk

=

N
∑

n=1

γk(Mn)

{

d2(Mn, M̄k)

σ3
k

− Z ′(σk)

Z(σk)

}

,

(26)

∂ log p(M|θ)
∂αk

=

N
∑

n=1

[γk(Mn)−̟k] , (27)

where Log
M̄k

(·) is the Riemannian logarithm mapping and

Z ′(σk) is the derivative of Z(σk) with respect to σk. The

function Z ′(σ) can be computed numerically by a Monte

Carlo integration, in a similar way to the one for the nor-

malization factor Z(σ) (see Section 2.2).

In these expressions, γk(Mn) represents the probability

that the feature Mn is generated by the kth mixture compo-

nent, computed as:

γk(Mn) =
̟k p(Mn|M̄k, σk)

∑K
j=1̟j p(Mn|M̄j , σj)

. (28)

By comparing (18), (19), (20) with (25), (26), (27), one can

directly notice the similarity between the LE FS and the

RFS. The vector difference (resp. the Euclidean distance)

in the LE FS is replaced by the log map function (resp. the

geodesic distance) in the RFS.

In [18], Ilea et al. have not exploited the FIM. In this

paper, we propose to add this term in order to define the

Riemannian Fisher vectors (RFV). To derive the FIM, the

same assumption as the one given in Section 3.3.1 should be

done, i.e. the assumption of nearly hard assignment, that is

the soft assignment distribution γk(Mn) is sharply peaked

on a single value of k for any observation Mn. In that case,

the FIM is block diagonal and admits a close-form expres-

sion detailed in [44]. In this paper, Zanini et al. have used

this FIM to propose an online algorithm for estimating the

parameters of a Riemannian Gaussian mixture model. Here,

we propose to add this matrix in another context which is

the derivation of a descriptor : the Riemannian FV. For more

information on the derivation of the FIM for the Riemannian

Gaussian mixture model, the interested reader is referred

to [44]. Now that the FIM and the FS are properly defined

for the Riemannian Gaussian mixture model, we can intro-

duce the RFV by combining (25) to (27) and the definition

of the FIM elements defined in [44] in (16). It yields that:

G
M

(M̄k)
1

=
1√
̟k

N
∑

n=1

γk(Mn)

(

(

M̄k

)

1
− (Mn)1
σk

)

,

(29)

G
M

(M̄k)
2

=
1√
̟k

N
∑

n=1

γk(Mn)

√

m(m+1)
2 − 1

ψ
′

2 (ηk)
Log(M̄k)

2

(

(Mn)2

)

,

(30)

G
M

σk
=

1√
̟k

N
∑

n=1

γk(Mn)

(

d2(Mn, M̄k)− ψ
′

(ηk)
√

ψ
′′(ηk)

)

,

(31)

G
M

̟k
=

1√
̟k

N
∑

n=1

(

γk(Mn)−̟k

)

. (32)

where η = − 1
2σ2 , ψ(η) = log (Z(σ)) and ψ

′

(·) (resp.

ψ
′′

(·)) are the first (resp. the second) order derivative of

the ψ(·) function with respect to η. ψ
′

2(η) = ψ
′

(η) + 1
2η .

(M)1 = log detM is a scalar element lying in R and

(M)2 = e−
(M)1

m M is a covariance matrix of unit deter-

minant.

Unsurprisingly, this definition of the RFV can be inter-

preted as a direct extension of the FV computed in the Eu-

clidean case to the Riemannian case. In particular (22), (23)

and (24) are retrieved when the normalization factor Z(σ)
is set to σ

√
2π in (29), (31) and (32).

In the end, the RFVs are obtained by concatenating

some, or all of the derivatives in (29), (30), (31), (32). Note

also that since (30) is a matrix, the vectorization operator

Vec(·) is used to represent it as a vector.
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3.3.3 Relation with VLAD

As stated before, the VLAD descriptor can be retrieved

from the FV model. In this case, only the derivatives with

respect to the central element (m̄d
k or M̄k) are considered.

Two assumptions are also made, that are the homoscedas-

ticity assumption, i.e. σk = σ , ∀k = 1, . . . ,K and the hard

assignment scheme

γk(M) =

{

1, if M ∈ ck

0, otherwise,
(33)

where M ∈ ck are the elements assigned to cluster ck and

k = 1, . . . ,K.

By taking into account these hypotheses, it can be no-

ticed that (18) reduces to (11), confirming that LE FV are a

generalization of LE VLAD descriptors. The same remark

can be done for the approach exploiting the affine invariant

Riemannian metric where the RFV model can be viewed

as an extension of the RVLAD model. The proposed RFV

gives a mathematical explanation of the RVLAD descriptor

which has been introduced in [11] by an analogy between

the Euclidean space (for the VLAD descriptor) and the Rie-

mannian manifold (for the RVLAD descriptor).

3.4. Post­processing

Once the set of SPD is encoded by one of the previ-

ously exposed coding methods (BoW, VLAD or FV), a

post-processing step is classically employed. In the frame-

work of feature coding, the post-processing step consists

in two possible normalization steps: the power and ℓ2 nor-

malization. Depending on the considered coding method,

one or both normalization steps are applied. For instance,

for FV and VLAD based methods, both normalizations are

used [12, 18], while for BoW based methods only the ℓ2
normalization is considered [13].

4. Application to texture image classification

This section introduces an application to texture image

classification. The aim of this experiment is three-fold. The

first objective is to compare two Riemannian metrics : the

log-Euclidean and the affine invariant Riemmannian met-

rics. The second objective is to analyze the potential of the

proposed FV based methods compared to the recently pro-

posed BoW and VLAD based models. And finally, the third

objective is to evaluate the advantage of including the FIM

in the derivation of the FVs, i.e. comparing the performance

between FS and FV.

To answer these questions, an experiment is conducted

on four conventional texture databases, namely the VisTex,

Brodatz, Outex and USPtex database. The first stage is the

feature extraction step which consists in representing each

texture image by a set of covariance matrices. Since the ex-

periment purpose is not to find the best classification accu-

racies on these databases, but rather to compare the differ-

ent strategies (choice of the metric, influence of the coding

model) on the same features, we have adopted the simple

but effective region covariance descriptors (RcovD) used

in [40]. The extracted RCovD are the estimated covariance

matrices of vectors v(x, y) computed on sliding patches of

size 15× 15 pixels where:

v(x, y) =
[

I(x, y),
∣

∣

∣

∂I(x,y)
∂x

∣

∣

∣
,

∣

∣

∣

∂I(x,y)
∂y

∣

∣

∣
,

∣

∣

∣

∂2I(x,y)

∂x2

∣

∣

∣
,

∣

∣

∣

∂2I(x,y)

∂y2

∣

∣

∣

]T

.

(34)

In this experiment, the patches are overlapped by 50%. The

fast covariance matrix computation algorithm based on in-

tegral images presented in [40] is adopted to speed-up the

computation time of this feature extraction step. It yields

that each texture class is composed by a set M1, . . . ,MN

of N covariance matrices, that are elements in P5.

For each class, codewords are represented by the esti-

mated parameters of the mixture of K Gaussian distribu-

tions. For this experiment, the number of modes K is set

to 3. In the end, the codebook is obtained by concatenating

the previously extracted codewords (for each texture class).

Once the codebook is created, the covariance matrices

of each image are encoded by one of the previously de-

scribed method (namely BoW, VLAD, FS or FV) adapted

to the log-Euclidean or affine invariant Riemannian metric.

Then after some post-processing (power and/or ℓ2 normal-

ization), the obtained feature vectors are classified. Here,

the SVM classifier with Gaussian kernel is used. The pa-

rameter of the Gaussian kernel is optimized by using a cross

validation procedure on the training set.

The whole procedure is repeated 10 times for different

training and testing sets. Each time, half of the database is

used for training while the remaining half is used for test-

ing. Tables 1 to 4 show the classification performance in

term of overall accuracy (mean ± standard deviation) on

the VisTex, Brodatz, Outex and USPtex databases.

As the FS and FV descriptors are obtained by deriving

the log-likelihood function with respect to the weight, dis-

persion and centroid parameters, the contribution of each

term to the classification accuracy can be analyzed. There-

fore, seven versions of the FS and FV descriptors are con-

sidered by analyzing separately the contribution of each

term or by combining these different terms. For example,

the row “FS : ̟” indicates the classification results when

only the derivatives with respect to the weights are consid-

ered to derive the FS (see (20) and (27)).

One can observe that the best performance are consis-

tently obtained for the LE FV. As stated in many computer

vision applications [27, 23, 9], the most informative FV de-

scriptor is obtained when the derivation is with respect to

the mean m̄
d
k (or M̄ when the affine invariant Riemannian
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Table 1. Classification results on the VisTex database (40 classes).

Coding method Log-Euclidean metric
Affine invariant

Riemannian metric

BoW 86.4 ± 0.01 85.9 ± 0.01

VLAD 91.3 ± 0.1 82.8 ± 0.02

E-VLAD 91.6 ± 0.01

FS : ̟ 82.4 ± 0.01 88.4 ± 0.01

FS : σ 91.6 ± 0.01 87.8 ± 0.01

FS : M̄ 95.3 ± 0.01 88.9 ± 0.01

FS : σ,̟ 91.3 ± 0.01 87.9 ± 0.01

FS : M̄, ̟ 95.1 ± 0.01 90.0 ± 0.01

FS : M̄, σ 95.2 ± 0.01 91.2 ± 0.01

FS : M̄, σ,̟ 95.1 ± 0.01 91.2 ± 0.01

FV : ̟ 81.5 ± 0.01 88.4 ± 0.01

FV : σ 92.9 ± 0.01 80.5 ± 0.01

FV : M̄ 95.5 ± 0.01 91.3 ± 0.01

FV : σ,̟ 92.9 ± 0.01 89.0 ± 0.01

FV : M̄, ̟ 95.7 ± 0.01 92.6 ± 0.01

FV : M̄, σ 95.6 ± 0.01 92.7 ± 0.01

FV : M̄, σ,̟ 95.4 ± 0.01 93.2 ± 0.01

Table 2. Classification results on the Brodatz database (112

classes).

Coding method Log-Euclidean metric
Affine invariant

Riemannian metric

BoW 92.0 ± 0.01 92.1 ± 0.01

VLAD 92.5 ± 0.01 88.3 ± 0.01

E-VLAD 92.4 ± 0.01

FS : ̟ 79.4 ± 0.01 91.5 ± 0.01

FS : σ 88.4 ± 0.03 91.4 ± 0.01

FS : M̄ 92.5 ± 0.01 90.1 ± 0.01

FS : σ,̟ 89.4 ± 0.03 91.3 ± 0.01

FS : M̄, ̟ 92.7 ± 0.01 91.1 ± 0.01

FS : M̄, σ 90.3 ± 0.01 91.7 ± 0.01

FS : M̄, σ,̟ 90.8 ± 0.03 91.6 ± 0.01

FV : ̟ 79.6 ± 0.01 91.4 ± 0.01

FV : σ 92.0 ± 0.01 87.5 ± 0.01

FV : M̄ 93.5 ± 0.01 92.9 ± 0.01

FV : σ,̟ 92.5 ± 0.01 90.7 ± 0.01

FV : M̄, ̟ 93.7 ± 0.01 93.2 ± 0.01

FV : M̄, σ 93.1 ± 0.01 93.1 ± 0.01

FV : M̄, σ,̟ 92.9 ± 0.01 93.2 ± 0.01

metric is considered). A significant gain of about 1 to 4%
is observed compared to the FV descriptor obtained by de-

riving with respect to the standard deviation. This gain is

observed for both the log-Euclidean and the affine invariant

Riemannian metric. Note also that the use of the FIM in

the derivation of the FV allows to improve the classification

accuracy. As observed for the four considered databases, a

gain of about 1 to 3% is obtained when comparing FV : M̄

with FS : M̄.

Finally, for these four experiments on texture image clas-

sification, the proposed FV descriptors outperform the state-

of-the-art BoW and VLAD based descriptors. Classifying

with the best FV descriptor yields to a gain of about 1 to 4%
compared to the best BoW and VLAD based descriptors.

Table 3. Classification results on the Outex database (68 classes).

Coding method Log-Euclidean metric
Affine invariant

Riemannian metric

BoW 83.5 ± 0.01 83.7 ± 0.01

VLAD 85.9 ± 0.01 82.0 ± 0.01

E-VLAD 85.1 ± 0.01

FS : ̟ 72.8 ± 0.01 84.7 ± 0.01

FS : σ 83.3 ± 0.01 84.7 ± 0.01

FS : M̄ 87.2 ± 0.01 83.8 ± 0.01

FS : σ,̟ 84.0 ± 0.01 84.6 ± 0.01

FS : M̄, ̟ 88.0 ± 0.01 84.2 ± 0.01

FS : M̄, σ 86.7 ± 0.01 84.9 ± 0.01

FS : M̄, σ,̟ 87.6 ± 0.01 85.2 ± 0.01

FV : ̟ 72.6 ± 0.01 84.5 ± 0.01

FV : σ 84.0 ± 0.02 79.2 ± 0.01

FV : M̄ 87.3 ± 0.01 85.4 ± 0.01

FV : σ,̟ 84.3 ± 0.01 83.9 ± 0.01

FV : M̄, ̟ 87.9 ± 0.01 86.0 ± 0.01

FV : M̄, σ 87.1 ± 0.01 86.0 ± 0.01

FV : M̄, σ,̟ 87.2 ± 0.01 86.3 ± 0.01

Table 4. Classification results on the USPtex database (191

classes).

Coding method Log-Euclidean metric
Affine invariant

Riemannian metric

BoW 79.9 ± 0.01 80.2 ± 0.01

VLAD 86.5 ± 0.01 78.9 ± 0.01

E-VLAD 86.7 ± 0.01

FS : ̟ 56.8 ± 0.01 80.7 ± 0.01

FS : σ 71.9 ± 0.01 81.7 ± 0.01

FS : M̄ 84.8 ± 0.03 84.7 ± 0.01

FS : σ,̟ 71.5 ± 0.02 81.7 ± 0.01

FS : M̄, ̟ 85.1 ± 0.02 85.2 ± 0.01

FS : M̄, σ 76.8 ± 0.03 84.0 ± 0.01

FS : M̄, σ,̟ 77.9 ± 0.03 84.0 ± 0.01

FV : ̟ 56.3 ± 0.01 80.7 ± 0.02

FV : σ 84.4 ± 0.01 77.6 ± 0.01

FV : M̄ 88.3 ± 0.01 87.0 ± 0.01

FV : σ,̟ 84.0 ± 0.01 80.8 ± 0.01

FV : M̄, ̟ 88.0 ± 0.01 87.0 ± 0.01

FV : M̄, σ 87.7 ± 0.01 87.3 ± 0.01

FV : M̄, σ,̟ 88.4 ± 0.01 87.2 ± 0.01

5. Conclusion

Starting from the Gaussian mixture model (for the log-

Euclidean metric) and the Riemannian Gaussian mixture

model (for the affine invariant Riemannian metric), we have

shown how Fisher vectors can be used to encode a set of co-

variance matrices. The proposed LE FV and RFV can be in-

terpreted as a generalization of the BoW and VLAD based

approach. The experimental results on the four considered

texture databases have shown that: (i) the use of the FIM in

the derivation of the FV allows to improve the classification

accuracy, (ii) the descriptors based on the log-Euclidean

metric lead to better classification results than those based

on the affine invariant Riemannian metric and (iii) the pro-

posed FV based descriptors outperforms the state-of-the-art

BoW and VLAD based descriptors.
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