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Abstract

We propose the Hierarchical Detection Network (HDN)

for the detection of facial palsy syndrome. This can be the

first deep-learning based approach for the facial palsy de-

tection. The proposed HDN consists of three component

networks, the first detects faces, the second detects the land-

marks on the detected faces, and the third detects the local

palsy regions. The first and the third component networks

are built on the Darknet framework, but with fewer layers

of convolutions for shorter processing speed. The second

component network employs the latest 3D face alignment

network for locating the landmarks. The first component

network employs a Na ×Na grid over the overall input im-

age, while the third component network employs a Nb×Nb

grid over each detected face, making the HDN capable of

efficiently locating the affected palsy regions. As previ-

ous approaches were evaluated on proprietary databases,

we have collected 32 videos from YouTube and made the

first public database for facial palsy study. To enhance

the robustness against expression variations, we include the

CK+ facial expression database in the training and testing

phases. We show that the HDN does not just detect the lo-

cal palsy regions, but also captures the frequency of the in-

tensity, enabling the video-to-description diagnosis of the

syndrome. Experiments show that the proposed approach

offers an accurate and efficient solution for facial palsy de-

tection/diagnosis.

1. Introduction

Facial palsy is a type of facial nerve paralysis that results

in the loss of muscle control on the affected facial region.

Typical symptoms include facial deformity and facial ex-

pression dysfunction, and the associated intensity can vary

from mild to severe. Facial palsy not only significantly af-

fects the facial appearance but also leads to impaired feed-

ing functions and adverse psychosocial consequences [4].

The diagnosis of facial palsy is usually not difficult as it

inspects the facial symmetry, and currently relies on the vi-

sual inspection by a clinician. The approaches for automatic

detection/diagnosis of facial palsy have been emerging in

recent years. However, most, if not all, of the approaches

use handcrafted features and classifiers, the deep-learning

based approaches are yet to be developed. Another issue

with the previous approaches is that their experiments were

performed on proprietary databases, making benchmarking

and performance comparison difficult. We will give a brief

review on the previous approaches in Sec. 2.

We propose the Hierarchical Detection Network (HDN),

which consists of three component networks, the first is for

locating the face, the second is for locating the facial land-

marks on the detected faces, and the third is for locating

the affected facial palsy regions. We call the first com-

ponent network the FaceNet, the second component net-

work the LandmarkNet, and the third component network

the PalsyNet. Both FaceNet and PalsyNet are built on the

Darknet framework [8], which is developed to build the

YOLO detector [8]. The LandmarkNet employs the lastest

3D face alignment network that combines the state-of-the-

art Hour-Glass (HG) network and residual block. Although

the FaceNet and PalsyNet are built on the Darknet frame-

work, the HDN is more advantageous than the YOLO in

the customized design for the detection of a specific object,

e.g., the local facial palsy area in this study. The advantages

include the following: 1) The HDN is a hierarchical detec-

tor, which detects face first and then locates the palsy region

on the detected face using facial landmark from the Land-

markNet as reference. This design searches for large ROIs

(faces) in the first level, and then searches for relatively

small ROIs (palsy regions) in the second level, making the

search highly precise and efficient. 2) Both component net-

works, FaceNet and PalsyNet, are built with reduced lay-

ers in the architecture, leading to a fast processing/detection

speed. Different from most of previous facial palsy diagno-

sis systems that identify the holistic patterns of facial asym-

metry by handcrafted features, the proposed HDN converts

the holistic identification problem into a component detec-

tion problem, and merge several state-of-the-art object de-

tection networks to develop a unified solution framework.
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The HDN does not just detect the affected local palsy re-

gions, but also identifies the frequency of the syndrome in-

tensity when the facial expression changes during talking or

other facial actions.

To train and evaluate the proposed approach, we have

collected 32 video clips of 22 facial palsy patients from

YouTube, and labeled all the data by three specialists. When

labeling the data, the affected local regions, called palsy re-

gions, are annotated by bounding boxes. We call this dataset

the Facial Palsy (FP) database, and will formally release the

FP database after medical specialists validate the facial ap-

pearances with facial palsy related syndromes. The alpha

version of the dataset can be available upon request.

The contributions of this work can be summarized as fol-

lows:

• We propose the first deep learning solution for the de-

tection and diagnosis of facial palsy by using a regular

camera. It can detect the affected areas, i.e., palsy re-

gions, on a patient’s face, and identify the frequency of

the intensity associated with the facial palsy syndrome,

and is robust to expression variation.

• We have made the first public database for facial

palsy study. It is composed of videos collected from

YouTube with local palsy regions labeled by special-

ists. Our proposed solution is validated through exper-

iments on this database.

In the following sections, we first give a review on previ-

ous work in Sec. 2. Our approach is elaborated in Sec. 3,

followed by the experiments on the FP database in Sec. 4.

2. Related Work

Several approaches for automatic detection and diagno-

sis of facial palsy have been proposed in recent years. Ac-

cording to our survey, all of the approaches exploit hand-

crafted features and classifiers, with experimental results re-

ported on proprietary databases. We select three latest stud-

ies and summarize their methods and experiments in this

section.

The approach based on the limited-orientation modified

circular Gabor filters (LO-MCGFs) was proposed by Ngo

et al. [7] for an objective and quantitative analysis of fa-

cial palsy. The LO-MCGFs use uniform passbands to re-

move noises and enhance the desired spatial frequencies,

and use bounded filter support to specify the region of inter-

est. These virtues make the approach effective for extract-

ing the facial asymmetry features. The facial expression

dataset composed of 75 patients and 10 participants without

facial palsy, made by the Osaka Police Hospital, was used

in their experiments. Each expression is composed of 60

still images per subject and the intensity in each image is

scored into 3 levels, strong, median and weak. As it is a

Figure 1. The proposed Hierarchical Detection Framework is com-

posed of three component networks: Netf for face detection, Netm
for landmark localization, and Netp for palsy region detection. The

face detection and landmark localization is shown in the middle,

and the palsy region is located by Netp at the output.

proprietary dataset, it is not known whether the images are

from continuous expression variation, and how the intensity

level is assigned.

Kim et al. [3] propose a smartphone-based automatic

diagnosis system that consists of three modules, namely a

facial landmark detector, a feature extractor and a classifier.

The incremental face alignment, proposed by Asthana et al.

[1], is used for detecting the facial landmarks. Given the

facial landmarks, they compute the asymmetric index using

the displacement of shape point sets that correspond to the

eye-brows and mouth regions while the subjects change ex-

pression. To extract the asymmetric index, the forehead and

eye regions are considered in heuristic approaches that mea-

sure the distances and ratios of different distances. The Lin-

ear Discriminant Analysis (LDA) and Support Vector Ma-

chine (SVM) are then employed for classification. The sys-

tem is evaluated on a private database with 23 facial palsy

patients and 13 volunteers without facial palsy.

A quantitative approach that considers both the static fa-

cial asymmetry and the speed of appearance change is pro-

posed by Wang et al. [11]. They first trained an ASM (Ac-

tive Shape Model) [11] for locating the landmarks on a pa-

tient’s face. The landmarks are used to segment the face

into 8 regions, and the facial asymmetry is computed based

on the distances between landmarks within each region and

across corresponding regions. The static facial asymme-

try is computed by the localization of local deformations,

the extraction of asymmetry distances and the quantification

of bilateral asymmetry. They use the SVM with RBF ker-

nel to classify the degrees of facial palsy in different facial

movements, and evaluate the performance on a proprietary

database with 62 patients.

In summary, these methods highlight the recent progress

made on the automatic detection/diagnosis of facial palsy

with the following aspects: 1) All approaches consider

handcrafted features and classifiers; 2) Facial asymmetry

is a core trait to identify/diagnose for facial palsy; 3) The

databases used in these studies are proprietary and thus un-

available to the research community.
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Figure 2. Comparison of approaches for face detection on the

AFW benchmark. Netf is part of our framework which is made

of YOLO-9000 and retrained on the Wider Face database. The

numbers in the parentheses are average precision (AP).

3. Hierarchical Detection Framework

We formulate the facial palsy identification as an ob-

ject detection problem, and consider the facial-palsy-caused

deformation regions, or simply the palsy regions, on a pa-

tient’s face as the target objects. Our proposed solution is

a hierarchical network composed of three component net-

works. The first component network, called FaceNet and

denoted as Netf , is for face detection; the second compo-

nent network, called LandmarkNet and denoted as Netm,

for facial landmark detection; and the third component net-

work, called PalsyNet and denoted as Netp, for local palsy

region detection. Fig. 2 shows the outputs from these com-

ponent networks. Netf is based on the YOLO-9000 and

trained on the WIDER FACE dataset [12], and it attains AP

99.25% on the AFW benchmark. Netm follows the state-of-

the-art Face Alignment Network (FAN) that combines the

Hour-Glass (HG) network, which is one of the latest CNN

architectures for human pose estimation and a cutting-edge

residual block, and is trained on a large synthetically ex-

panded 2D facial landmark dataset [2]. Given the facial

landmarks detected by Netm as priors, Netp is designed

with a detection window attached to the facial landmarks

with anchor boxes located around the eyes and mouth re-

gions for fast detection of local palsy regions. The proposed

framework implements a top-down detection flow with face

detection comes first, followed by landmark detection, and

then an efficient target search for palsy regions.

3.1. Face and Facial Landmark Detection

The FaceNet, Netf , is built on the YOLO-9000 and re-

trained on the Wider Face database [12]. The YOLO-9000,

proposed by Redmon and Farhadi, is one of the few state-

of-the-art real-time object detectors [8]. It reports 76.8

mAP (mean Average Precision) on the benchmark VOC

2007 (the Pascal Visual Object Classes Challenge) at pro-

cessing speed 67 FPS, and 78.6 mAP at 40 FPS, outper-

forming many state-of-the-art methods, including the Faster

RCNN with ResNet [9] and the SSD [5]. For face detec-

Figure 4. The proposed Palsynet consists of 4 blocks with 11

convolution layers and 4 max-pooling layers. The last Route-

Reorganization-Route and a convolution layer are for multi-block

feature extraction.

tion, we train the YOLO-9000 using the WIDER FACE

database [12], which offers 393,703 labeled faces in 32,203

images with a large variation in pose, illumination, expres-

sion, scale and occlusion. Following the data partition spec-

ified in [12], the WIDER FACE is split into a training and

validation set with 199k faces in 16,106 images and a test

set with 194k faces in 16,097 images. We change some

settings of the YOLO-9000, including the partition of the

input image into a grid of 11×11 cells, each cell associated

with 2 bounding boxes for prediction, and only one class

(face) is considered. Compared with other contemporary

approaches on the benchmark AFW database, the results

are shown in Fig.3. FaceNet (or YOLO-9000 face detector)

achieves AP (Average Precision) 99.25% on AFW bench-

mark, better than the DPM (97.2%) [10], the HeadHunter

(97.1%) [6], SSD-512 (98.6%) [5] and the Faster RCNN

(95.3%) [9]. Note that the Faster RCNN and SSD are pro-

posed for object detection, we tailored them for face detec-

tion the same way as we did for the FaceNet.

Given a detected face, we exploit the FAN (Face Align-

ment Network) proposed by Bulat and Tzimiropoulos [2]

for locating facial landmarks on a detected face. The FAN

is built on the state-of-the-art Hour-Glass (HG) network [2]

with the bottleneck block replaced by a residual block. The

architecture of the HG network is illustrated in Fig. 3.1. It

consists of multiple stacked hourglass modules which allow

for repeated bottom-up, top-down inference. A single hour-

glass module contains boxes of different scales and specific

connections between the blocks. The hourglass module be-

fore stacking is related to fully convolutional networks and

other designs that process spatial information at multiple

scales, and also related to conv-deconv and encoder-decoder

architectures. The symmetric topology of the hourglass

module and the conv-deconv and encoder-decoder networks

are similar, but the operations are different in that the un-

pooling or deconv layers are removed from the hourglass

module. The hourglass module relies on simple nearest

neighbor upsampling and skips the connections for top-

down processing. Another major difference of the HG net-

work is that it performs repeated bottom-up, top-down in-

ference by stacking multiple hourglass modules.
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Figure 3. The LandmarkNet, Netm, exploits the latest FAN (Face Alignment Network) proposed by Bulat and Tzimiropoulos [2].

3.2. Detection of Facial Palsy Regions

The reason that we train the YOLO-9000 for face detec-

tion is that face is a specific object which can appear any-

where in an image. This is different from the detection of

palsy regions, which only appear on a face, and particularly

on the eyes and mouth regions. We therefore consider the

grid associated with the landmarks for the palsy region de-

tection. Figures 3 shows the grid with 8×8 cells that covers

the facial area for palsy region detection. The proposed ap-

proach consists of the following steps.

1. The facial landmarks are used as the references to im-

plement the grid of 8 × 8 cells, as shown in Fig. 3.

The 8 × 8 cells are designed to be able to capture the

smallest palsy region.

2. Each cell is associated with 2 bounding boxes for pre-

dicting the palsy regions of two classes, which are

classes Eyes and Mouth. The former captures the palsy

regions at eyes region and the latter for the mouth re-

gion.

3. The core network, called Palsynet, is modified from

the Darknet-19, and it consists of 4 blocks with 11

convolution layers and 4 max-pooling layers (v.s. 7

blocks, 19 convolution layers and 5 max-pooling in

Darknet-19). It operates on the input firstly by 2

single-convolution blocks, then 2 double-convolution

blocks, then 1 triple-convolution blocks, then 1 con-

volution layer followed by a Route-Reorganization-

Route and another convolution layer for multi-block

feature extraction. A 2 × 2 max-pooling is imple-

mented at each of the first 4 blocks.

4. We train and evaluate the network by the alpha version

of the FP (Facial Palsy) database. Experimental details

are reported in Sec. 4.

The proposed Palsynet aims at the minimization of the

prediction loss, Lp, which is the sum of the following three

losses, the location loss Ln, the region confidence loss Lo

and the class probability loss Lc.

Ln = λloc
ob

S2

∑

i

Nb
∑

j

I
ob
ij [(x

pr
ij − xob

ij )
2 + (yprij − yobij )

2

+ (wpr
ij − wob

ij )
2 + (hpr

ij − hob
ij )

2]

+ λloc
no ob

S2

∑

i

Nb
∑

j

I
no ob
ij [(xpr

ij − xc
ij)

2 + (yprij − ycij)
2

+ (wpr
ij − wc

ij)
2 + (hpr

ij − hc
ij)

2] (1)

where xob
ij , yobij , wob

ij , hob
ij are respectively the center

coordinates and the width and height of the target ob-

ject, i.e., the palsy region, associated with Cell-(i, j).
x
pr
ij , y

pr
ij , w

pr
ij , h

pr
ij are respectively the coordinates and

the width and height of the anchor-based predicted box.

xc
ij , ycij , wc

ij , hc
ij are respectively the center coordinates

and the width and height of the cell without overlap with

any palsy region. λloc
ob and λloc

no ob are the weights imposed

on the palsy region (object) and non-palsy region (no ob-

ject).

Lo = λ
conf
ob

S2

∑

i

Nb
∑

j

I
ob
ij

[

Confprij − IOU(Bpr
ij , B

tr
ij )

]2

+ λ
conf
no ob

S2

∑

i

Nb
∑

j

I
no ob
ij (Confprij )

2 (2)

where Confprij is the confidence of the predicted box based

on Cell-(i, j), IOU(Bpr
ij , B

tr
ij ) is the Intersection-over-

Union of the predicted bounding box B
pr
ij and the ground-

truth bounding box Btr
ij of Cell-(i, j). λconf

ob and λ
conf
no ob are

the weights to compromise the cells overlapped with targets

and those without.

Lc =

S2

∑

i

B
∑

j

I
ob
ij {(p

pr
ij (Ck)− ptrij (Ck)}

2 (3)

where p
pr
ij (Ck) and ptrij (Ck) are respectively the probabili-

ties of the predicted box and of the ground-truth box being

with the object class Ck.
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Figure 5. The top row shows the patients when pausing on talking,

the bottom row shows the syndromes at talking.

Figure 6. Samples with ground-truth bbox in red and detected bbox

in green.

As we implement an 8 × 8 grid, the output of the Pal-

synet is an 8 × 8 tensor, due to the design with 2 bounding

boxes (bboxs) for each cell, and for each cell, there are 4

numbers for the coordinates and size of a bbox, the proba-

bility that the bbox confines or overlaps a palsy region and

the probabilities that the bbox being in Class Eyes or Class

Mouth.

4. Experimental Evaluation

We have collected 32 videos of 21 facial palsy patients

from YouTube, and a few patients have multiple videos.

The patient in each video speaks to the camera and the cam-

era records the facial expression variation across time. De-

pending on different patients at different time of recording,

some images show the syndrome of the palsy-caused defor-

mation with high intensity and some with median or low

intensity, justified by the severity revealed by the deforma-

tion pattern. The images with very low intensity may appear

similar to a normal face, and in some cases, even the clini-

cian can hardly tell whether the face is with the palsy syn-

drome if only looking at one single image without referenc-

ing previous frames. For some patients, the palsy-induced

facial asymmetry is easy to observe even when the patient

stops talking and keeps neutral in the expression. Figure 5

shows a few cases during talking and taking a pause.

Figure 7. Performance comparison between training/testing sets

with and without CK+ expression dataset. When CK+ excluded,

the overall performance degrades, with precision 89% at recall

87%. When CK+ included, the accuracy is improved, with pre-

cision 93% at recall 88%

As the duration of the shortest facial palsy syndrome

usually lasts for a second or so, we convert each video into

an image sequence with 6FPS. For each image, we manu-

ally cropped the local palsy regions when the facial palsy in-

tensity was considered sufficiently high by a specialist. The

palsy regions were labeled by three independent specialists,

and we use the intersection of the independently cropped

regions as the ground truth. When cropping on each image,

we labeled the intensity observed in each palsy region as

low or high, and the ground truth was determined by ma-

jority voting. In addition to the syndrome intensity, we also

labeled the palsy regions into Classes Eyes or Mouth, de-

pending on whether the palsy region is close to the eyes

or mouth area. This part of labeling was performed semi-

automatically by using the facial landmarks. Since the fa-

cial landmarks are numbered in a specific order, the class la-

bels Eyes or Mouth for the palsy regions were given directly

from the numbered landmarks that are in and close to these

regions, and then confirmed by us. Figure 6 shows samples

with ground truth and the detection outcomes obtained by

the proposed HDN. This dataset is currently under exami-

nation by clinicians for labeling other facial syndromes, and

will be released to the research community thereafter. How-

ever, the alpha version of the dataset can be available upon

request.

As only 21 patients are available, we adopt the leave-

one-person-out (LOPO) protocol that takes 20 patients for

training and the remaining one for testing in one session,

and in the next session the one in testing is replaced by

one who was in the previous training. This process is re-

peated for all 21 patients, and the performance is measured

by the average. To make our solution robust against expres-

sion variation, we have included the CK+ database in our

training/testing sets, and compared with cases excluding the

CK+. In the experiment with CK+ included in the training,
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Figure 8. The normalized intensity frequency plot of three subjects selected from the test set of our database.

Figure 9. The detection results of applying the proposed solution on the patients in the test set of our database (the top row), and on those

randomly selected from the CK+ test set (the bottom row). The bottom row contains a few examples of the patients when pausing on

talking and no significant syndrome visible, in line with the output of our system.

we randomly split the CK+ into five subject-independent

subsets, and run 5-fold cross validation together with the 21

LOPO tests on the palsy dataset. In the experiment without

CK+ in the training, we run the same tests on the same test-

ing subsets. Figure 7 shows the performance with and with-

out CK+ in the training sets. When the CK+ is not included,

our Palsynet detects quite a few false positives on the CK+

test set, and the overall performance degrades substantially

with precision 89% at recall 87%. When the CK+ is in-

cluded, the accuracy is significantly improved, with preci-

sion 93% at recall 88%.

To identify the frequency of the intensity of the facial

palsy syndrome, we consider a moving window that counts

the frames with local palsy regions detected over a short

time period and up to the sampling time. It is difficult

(and probably not realistic) to define one cycle of the palsy-

caused deformation as the associated intensity changing

from the lowest to the next lowest, especially when the pa-

tient keeps talking and the lowest intensity changes in one

cycle to another. As mentioned above, some patients show
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normal faces without any observable palsy syndrome when

talking paused and showing a neutral expression; however,

some patients show clear palsy syndrome with their neutral

expressions. When the latter are asked to keep neutral and

normal expression, their faces show a clear sign of palsy,

due to the lack of facial muscle control. Considering the

frequency meant to measure the severity of the facial palsy

syndrome over time, we define it as the number of frames

with a sufficient intensity of the palsy-caused deformation

detected over a short interval Ts. We normalize the inten-

sity so that the maximum intensity over the sampling inter-

val is made to unity. Figure 8 shows three cases of using

our solution for identifying the intensity frequencies. To

demonstrate the robustness against expression variations,

Figure 9 shows the outcomes of applying the proposed so-

lution on the patients in the test set of our database and on

those randomly selected from the CK+ test set. A video clip

that was recorded from our test is available on YouTube,

https://www.youtube.com/watch?v=1wXeCfFUxd8.

5. Conclusion

We formulate the problem of identifying facial palsy as

the detection of local palsy regions, and propose a top-down

hierarchical framework composed of three component de-

tection networks. Netf detects the face, then Netm detects

facial landmarks, and then Netp detects local palsy regions.

To train and evaluate our solution, we collect 32 video clips

of 22 facial palsy patients from YouTube, labeled all the

data by three clinicians, and will make this database avail-

able to the research community. Different from the YOLO-

9000 that aims at the detection of generic objects, our so-

lution is tailored made for medical diagnosis and can be

extended to the detection of other specific objects. This

study can serve as a valuable sample study for the applica-

tion/modification of deep learning framework for automatic

detection/diagnosis of medical disorders.
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