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Abstract

This paper describes a method of gait recognition ro-

bust against intra-subject posture changes. A person some-

times walks with changing his/her posture when looking

down at a smartphone or carrying a heavy object, which

makes intra-subject variation large and consequently makes

gait recognition difficult. We therefore introduce a de-

formable registration model to mitigate the intra-subject

posture changes. More specifically, we represent a defor-

mation field by a set of deformation vectors on lattice-type

control points allocated on an image, i.e., by free-form de-

formation (FFD) framework. Given a pair of a probe and

a gallery, we compute the deformation field so as to mini-

mize the difference between a probe morphed by the defor-

mation field and the gallery, as well as to ensure the spa-

tial smoothness of the deformation field. We then learn the

intra-subject eigen deformation modes from a training set

of the same subjects’ pairs (e.g., bending the upper body

forward and swinging arms more), which are relatively

different from inter-subject deformation modes (e.g., body

shape spread and stride change). Moreover, because the

deformable registration is responsible for a preprocessing

part before matching, it can be combined with any types of

matching algorithms for gait recognition. Experiments with

1,334 subjects show that the proposed method improves the

gait recognition accuracy in both cases without and with a

state-of-the-art deep learning-based matcher, respectively.

1. Introduction

Gait recognition [48] is one of behavioral biometrics and

has advantages over other physiological biometrics such as

face, iris, or finger vein because gait is observable (i) even

when a target person is at a distance from a camera since

it can be recognized from a relatively low-resolution im-

age sequence [45, 51, 77], and (ii) without subject cooper-

ation [6, 44] since people unconsciously exhibit their own

natural walking styles in a daily life. Thanks to these ad-

vantages, gait recognition is suitable for many potential ap-
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Figure 1: A matching example of the same subject’s pair

before (top) and after (bottom) the deformable registration.

Given a gallery with a normal posture and a probe inclined

forward, direct matching may result in false rejection due to

a large dissimilarity. The deformable registration can miti-

gate such a posture change and make the dissimilarity small,

which results in true acceptance.

plications such as surveillance, forensics, and criminal in-

vestigation [9, 22, 40].

In the gait recognition field, appearance-based gait rep-

resentations [5, 6, 19, 27, 41, 46, 52, 65, 66] which directly

use input or silhouette images in a holistic way to extract

gait features without a human model fitting, are widely em-

ployed. In particular, silhouette-based representations such

as gait energy images (GEIs) [19] are dominant because

of their simple yet effective properties. The appearance-

based approaches, however, often suffer from large intra-

subject appearance changes due to covariates such as cloth-

ing [5, 6, 21, 35, 50], carrying status [14, 59, 60], view [26,

28, 30, 32, 39, 41, 54, 55, 69], and walking speed [2, 16, 29,

31, 38, 42, 43, 57].

Despite of the above mentioned extensive studies on ro-

bust gait recognition, intra-subject posture changes have not

yet fully investigated. People may sometimes walk with

doing something else at the same time, e.g., with looking
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down to watch a smartphone, with looking up to see natu-

ral scenery such as cherry blossom, with bending the upper

body forward to carry a heavy backpack. In addition, peo-

ple may change their postures during walking depending on

physical or mental status, e.g., people may stoop when feel-

ing tired and may swing their arms more with the emotion

“happy” [62]. As such, human gait contains more or less

posture changes, which make the gait recognition difficult

as shown in Fig. 1.

A potential strategy to cope with the posture changes is

to employ spatial metric learning, which has already been

introduced to gait recognition robust against various covari-

ates [17–19, 37, 59, 61, 65, 71, 73]. Roughly speaking, the

spatial metric learning aims at assigning low weights to pix-

els whose intra-subject variation is large (e.g., pixels around

his/her back for the posture changes) and vice versa for bet-

ter recognition accuracy.

The spatial metric leaning is, however, not necessarily

the optimal way to cope with the posture changes. Assum-

ing that subjects have a variety of body shapes (e.g., a fat or

thin torso), spatial positions where the intra-subject posture

changes affect, may be substantially different (e.g., more

outer and inner sides of the torso for fatter and thinner sub-

jects, respectively). Consequently, low weights are assigned

to a wide area around the torso’s contour, and hence body

shape information which is useful for discrimination, may

be washed out.

A more direct and intuitive way to cope with the posture

changes is deformable registration, because a deformation

field can effectively represent the posture changes regard-

less of the body shape variations, unlike the spatial metric

learning. For examples, once a deformation field to incline

the upper body forward is prepared as shown in Fig. 1, it is

commonly applicable to both a fat and thin subjects.

Such deformation models are considered in a few studies

on gait recognition. For examples, several studies on cross-

speed gait recognition consider stretching the lower body

parts (i.e., legs) horizontally at double support phases [58],

transformation of joint angle sequences [42], and Procrustes

shape analysis [31]. The above mentioned approaches can-

not handle non-rigid deformation [31, 58] or suffer from

error-prone human model fitting with high computational

cost [42]. An exception is a geometric transformation

model for cross-view gait recognition [15] which repre-

sents non-rigid deformation between two views by a free

form deformation framework [53]. The method, however,

defines only a single and common deformation field for a

specific pair of views in a subject-independent way, and

hence cannot represent subject-dependent (i.e., matching

pair-dependent) deformation fields.

Looking at other biometrics fields, we notice that

subject-dependent facial image deformation (alignment) is

often incorporated for cross-view face recognition [24, 25,

70], face recognition robust against facial expressions [8,

20], or facial expression analysis [49], using a standard de-

formation technique such as active shape model [12]. A key

to the successful deformation is landmark detection from

outstanding facial parts such as eyes, nose, and mouth. Such

outstanding landmarks are, however, unavailable for low-

resolution gait images.

We therefore introduce a deformable registration model

to cope with the posture changes in gait recognition. The

contributions of this work are as follows.

1. A deformation registration model for gait recognition

robust against the posture changes.

We introduce a free-form deformation (FFD) framework

which enables us to represent more flexible deformation

than previous simple defromations [31,58]. Because we ex-

tract eigen deformation modes from a training set of intra-

subject deformations, a subject-dependent (i.e., matching

pair-dependent) deformation can be expressed by their com-

bination, unlike previous work on cross-view gait recogni-

tion [15] just employs a single and fixed deformation mode.

Moreover, because the FFD is represented by lattice-type

control points, the landmark detection is unnecessary un-

like the facial image registration [8, 20, 24, 25, 70].

2. Flexible combination with matching algorithms is

possible.

Because the proposed deformable registration model is

only responsible for a pre-processing part before matching,

it can be combined with any types of metric learning and

matching algorithms. We show the effectiveness of the de-

formable registration model when combined with a state-

of-the-art deep learning-based matching algorithm for gait

recognition [69].

2. Related work

2.1. Gait representation

Approaches to gait recognition mainly fall into two

families: model-based approaches and appearance-based

(model-free) approaches. The model-based approaches [3,

7, 13, 34, 63, 64, 72, 79] fit articulated human body models

to images and extract kinematic features such as joint angle

sequences. While the model-based approaches may have

a potential to more directly represent the posture changes

(e.g., incline the upper body forward by rotating a torso

joint), they have some drawbacks: error-prone fitting and

high computational costs.

The majority of appearance-based approaches aggre-

gate a gait image sequence over one gait period (cycle) to

generate an image-based gait template such as GEI [19],

frequency-domain feature [41], chrono-gait image [65], gait

entropy image [5], gait flow image [33], frame difference

energy image [11], and Gabor GEIs [61]. The proposed

deformable registration model is applicable to any types of
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Figure 2: Definition of FFD.

image-based gait templates as above.

2.2. Matching algorithms for gait recognition

When matching gait features, spatial metric learning al-

gorithms are often incorporated, such as linear discrimi-

nant analysis [19, 37, 65], general tensor discriminant anal-

ysis [59, 61], discriminant analysis with tensor representa-

tion [71, 73], or the random subspace method [17, 18].

Moreover, inspired by the great success of deep learning

in computer vision, pattern recognition, and also biomet-

rics fields, deep learning-based matching algorithms have

been used for gait recognition for several years. Similarly

to other recognition tasks such as object recognition, most

of them adopt convolutional neural network (CNN) archi-

tectures [1, 10, 67–69, 74–76, 78].

As mentioned in the introduction section, because the

proposed method is responsible for the pre-processing part,

it can be combined with any types of above mentioned

matching algorithms for better recognition accuracy.

3. Gait recognition using eigen FFD

3.1. FFD

In this subsection, we introduce a representation of FFD

on an image-based gait template such as GEI [19]. Unlike

a facial image has outstanding landmarks (e.g., eyes, nose,

mouth), a gait template does not have such landmarks. We

therefore assign a set of lattice-type control points instead

of the landmarks on the image in order to represent the de-

formation with FFD framework [53] (see Fig. 2).

More specifically, given a probe image �� with the width

� and the height � , we set �� and �� lattice-type control

points for each of horizontal and vertical direction, with a

horizontal interval Δ� = (� −1)/(��−1), and a vertical

interval Δ� = (� − 1)/(�� − 1). Note that the number of

total control points is � = ���� . The spatial position of

the control point at the �-th column and �-th row (let it be the

(�, �)-th control point for simplicity) is denoted as p�,� =
[(�− 1)Δ�, (� − 1)Δ�]

� (� = 1, . . . ,��, � = 1, . . . ,��).
We then introduce a deformation vector u �,� ∈ ℝ

2

on the (�, �)-th control point, and define a set of the

Figure 3: Examples of deformations for the same subject

pairs (top) and different subjects pair (bottom). Each pair

consists of a probe (left) and a gallery with deformed con-

trol points (right).

deformation vectors on all the control points as u =
[u�

1,1, . . . ,u
�
1,��

, . . . ,u�
��,1

, . . . ,u�
��,��

]� ∈ ℝ
2� .

Note that the deformation field over all the spatial positions

including intermediate points among the control points, is

represented by bi-linear interpolation from the deformation

vectors at adjacent control points. The (�, �)-th control point

is subsequently warped from p�,� to p�,� + u �,� , and the

probe image �� is morphed to ℱ(��;u), where ℱ is a func-

tion to map the probe image �� to a morphed image by the

deformation vector u .

Next, given a pair of the probe image �� and a gallery

image �� , we estimate the optimal deformation vector from

the probe image �� to the gallery image �� by minimizing

the following objective function:

�(u) = �(ℱ(��;u), ��) + ��(u), (1)

where �(⋅, ⋅) is a function to return sum of absolute differ-

ence (SAD) between two images, i.e., �1 norm, �(u) is a

smoothness term to enforce the consistency between defor-

mation vectors on the adjacent control points, and � is a

hyper-parameter to control the strength of the smoothness

term. The smoothness term �(u) is defined as

�(u)=

��−1∑

�=1

��∑

�=1

∥u �+1,�−u �,�∥
2+

��∑

�=1

��−1∑

�=1

∥u �,�+1−u �,�∥
2. (2)

3.2. Eigen FFD

If we directly apply the optimal deformation for each

matching pair of a probe and a gallery, a dissimilarity mea-

sure always becomes small regardless of the same or dif-

ferent subjects’ pair, which does not help to improve the

gait recognition accuracy. We therefore need to consider

the difference of deformation modes between the same and

different subjects’ pairs.

For this purpose, we observed treads of the deforma-

tion fields between the same and different subjects’ pairs as

shown in Fig. 3. Deformations for the same subjects’ pairs

mainly come from posture difference (e.g., looking down),

slight motion difference (e.g., the degree of arm swing), and
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Figure 4: Framework of intra-subject deformation model.

rigid image registration errors when constructing a gait tem-

plate. On the other hand, those for different subjects’ pairs

come from body shape difference (e.g., middle-age spread,

head-to-body ratio), and more essential motion difference

(e.g., almost no arm swing vs. large arm swing, large stride

changes).

Because we want to register the same subjects’ pairs bet-

ter to get smaller dissimilarity measures, while keeping the

dissimilarity measures of different subjects’ pairs large, we

constrain deformation modes into a low-dimensional sub-

space spanned by the intra-subject deformation fields of the

same subjects’ pairs (see Fig. 4). For this purpose, we

train an eigen FFD using intra-subject deformation fields

in the training set. More specifically, we apply principal

component analysis to the set of intra-subject deformation

fields and obtain mean deformation field ū ∈ ℝ
2� and

a set of the � largest eigen vectors (deformation modes)

� = [v1, . . . , v� ] ∈ ℝ
2�×� .

As such, given a raw deformation vector u between a

pair of a probe image �� and a gallery �� by minimizing

Eq. (1), we obtain a constrained version of the deformation

vector û through the eigen FFD as

û = � � � (u − ū) + ū . (3)

Once we obtain the constrained deformation vector û ,

the probe image �� is similarly morphed to ℱ(��; û) and

then the morphed probe image is matched to the gallery

image �� . Specifically, a dissimilarity measure � between

them is computed as

� = �(ℱ(��; û), ��). (4)

Remind that the function �(⋅, ⋅) returns SAD of two images

as described before.

3.3. Metric learning

Since the above mentioned matching strategy is based

on simple SAD, we need to introduce metric learning

for better discrimination capability. Considering a recent

progress by deep learning-based approaches not only in

general computer vision and pattern recognition field but

also in a specific field of biometrics such as gait recogni-

tion [55, 56, 69, 74–76, 78], we also adopt a deep learning-

based method as a metric learning module. Particularly, be-

cause the proposed method defines a deformation for a pair

of a probe and gallery images, a suitable network architec-

ture should be a family of Siamese networks, where an in-

put is given as a pair of images to be matched (i.e., binary

classification whether the pair is generated from the same

or different subject).

More specifically, we employ one of the state-of-the-art

network architectures proposed in cross-view gait recog-

nition [69]. Multiple network architectures are proposed

in [69], and key difference among them lies in layers to

start matching a pair of inputs. As demonstrated in [56],

it is more advantageous to start matching at the bottom

layer when a pair of inputs are well registered (e.g., cases

of small view angle differences for cross-view gait recogni-

tion). We therefore adopt a strategy to match local feature

at the bottom layer (LB), whose detailed network architec-

ture is shown in Fig. 5. We will briefly introduce LB below

and the reader may refer to the original paper [69] for more

details.

In this network, paired convolutional filters �1 and � ′

1

followed by rectified linear unit (ReLU) [47] as an activa-

tion function, are at first applied to a probe and a gallery

images, respectively, and they are then summed up at each

spatial position and channel. Note that this simulates a sort

of weighted subtraction, i.e., matching, between a probe

and a gallery images. Thereafter, similarly to other CNN

architectures, a triplet of normalization (cross-map normal-

ization), spatial pooling, and convolution filters are applied

sequentially twice. Via a full connection layer with dropout

technique and softmax, two nodes at the output layer returns

likelihoods of the same subject (node with 1) or different

subjects (node with 0), respectively. The whole network is

trained with the logistic regression loss. At a test phase, an

output value at the node for different subject is used as a

dissimilarity measure1.

Note that, when combined with the proposed eigen FFD,

the pair of inputs should be not an original probe image ��
and gallery image �� but a morphed probe image ℱ(��; û)
and a gallery image ��.

4. Experiments

4.1. Data set

We conducted our experiments using a gait database col-

lected by ourselves. Each subject was asked to walk a

1This is essentially equivalent to use an output value at the node for the

same subject as a similarity measure, as doing so in the original paper.
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Figure 5: Network architecture of LB [69]. In this example, the size of input gait template is 88 × 128 pixels. Given a pair

of probe and gallery images, paired convolutional filters �1 and � ′

1 with 7 × 7 pixels with 16 channels are applied and then

summed up. A triplet of cross-map normalization, spatial pooling with 2 × 2 pixels with stride 2, and a convolution filter
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pooing, and a convolution filter with 7 × 7 with 256 channels are applied. Finally, via a full connection layer with dropout

technique and softmax, an output layer returns likelihoods of the same subject (node with 1) or different subjects (node with

0).

straight path surrounded by green chroma-key background

twice, and was captured from a side view at approximately

8 meter distance at 5 meter height with a network camera

AXIS Communications, Q1614 (1,280 × 960 pixels at 25

fps). Each subject agreed with the use of captured data

for the research purpose. As such, two walking image se-

quences of 1,334 subjects were collected, where some sub-

jects might change his/her posture between two sequences.

The whole dataset was divided into three subsets: a train-

ing set, a gallery set, and a probe set. The training set con-

tains 2,068 sequences of 1,034 subjects, while the gallery

and probe sets form a test set composed of the rest 300 sub-

jects that is disjoint from the 1,034 subjects in the training

set. The first gait image sequences of the test set were as-

signed to the probe set, while the second ones were assigned

to the gallery set.

As described in the introduction section, we can use

any types of image-based gait templates for the proposed

method. We therefore adopted GEI in our work because it

is the most widely used in the gait recognition community.

For this purpose, we extracted silhouette sequences from

original image sequences by chroma-key and then subse-

quently obtained normalized silhouette sequences with 88

× 128 pixels by subject height normalization and registra-

tion by silhouette region centers. We then detected a gait

period by maximizing auto-correlation along the temporal

axis, and then average the normalized silhouette sequence

over one gait period to obtain an averaged silhouette [36]

a.k.a. GEI [19].

Figure 6: Eigen deformation field represented by deformed

control points. From left to right, the first to the fifth eigen

deformation modes are shown. For visibility, the norm of

the deformation is magnified.

4.2. Parameter settings

The proposed method contains some hyper-parameters.

As for the number of control points, we set �� = 12 and

�� = 17, which sums up to � = 204 control points

over an entire image. Moreover, we experimentally set the

hyper-parameter for smoothness control in FFD as � = 100.

In addition, the dimension of the eigen FFD was decided to

5 so as that the cumulative contribution rate was over 75%.

4.3. Learnt eigen FFDs

In this subsection, we analyze the eigen FFDs learnt us-

ing the same subjects’ pairs in the training set. We can

observe affine-like deformations, i.e., horizontal translation

and scaling in the first and the third eigen FFDs, respec-

tively, although non-rigid deformation is partly seen in the

third eigen FFD (e.g., a foot region at the backside). On the

other hand, more non-rigid deformations appear in the other
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Figure 7: A successful matching example (top: the same

subject, bottom: a different subject). (a) Probe ��, (b)

Gallery �� , (c) Difference image between (a) and (b), (d)

Deformed probe � (��; û) by the intra-subject deformation

model, (e) Difference image between (d) and (b). A numer-

ical value below each difference image means dissimilarity

measure (×105).

eigen FFDs, e.g., differences in the arm swings in the third

and the fifth eigen FFDs, posture change by looking down

in the fourth eigen FFD, differences in the stride in the sec-

ond, fourth, and the fifth eigen FFDs. These eigen FFDs

encode representative intra-subject deformation modes.

4.4. Qualitative evaluation

In this subsection, we show a typical matching example

without and with the learnt eigen FFD in Fig. 7 to illustrate

the effectiveness of the proposed method qualitatively. A

probe (Fig. 7 (a)) is matched with two galleries (Fig. 7 (b)):

one from the same subject and the other from a different

subject. We can see that upper-body posture of the probe is

slightly different from the gallery of the same subject, and

hence a dissimilarity measure for the same subject (1.42 ×
105) is larger than that for the different subject (1.31×105),

which results in false match to the different subject (Fig. 7

(c)).

On the other hands, by applying the proposed eigen FFD

to the probe (Fig. 7 (d)), the above mentioned posture differ-

ence is successfully mitigated and hence the morphed probe

becomes close to the gallery of the same subject, while the

inter-subject difference (e.g., almost no arm swing for the

probe, but some arm swings for the gallery of the different

subject) is still kept to some extent. As such, the dissimi-

larity measure of the same subject is significantly reduced

from 1.42 × 105 to 0.60 × 105, while that for the different

subject is just slightly reduced from 1.31×105 to 1.11×105

Table 1: EER [%] w/o and w/ z-normalization (denoted as

EER and zEER, respectively), rank-1, rank-5, and rank-10

identification rates (denoted as Rank-1, Rank-5, and Rank-

10, respectively) [%]. Bold indicates the best performances.

Method EER zEER Rank-1 Rank-5 Rank-10

Direct 10.3 7.0 79.0 88.0 91.0

Raw FFD 12.3 8.5 78.0 87.3 89.0

Eigen FFD 7.3 3.7 91.0 95.3 96.7

(Fig. 7 (c) and (e)). As a result, the probe is truly matched

to the gallery of the same subject.

4.5. Quantitative evaluation

In this subsection, we analyze the effect of the de-

formable registration without metric learning by the recog-

nition accuracy quantitatively. We consider a direct match-

ing without deformation (denoted as Direct) as a baseline,

and also consider matching between a probe with raw de-

formation u (denoted as Raw FFD) and a gallery as another

baseline. We evaluated the proposed method (denoted as

Eigen FFD) as well as the two baselines in both verifica-

tion (one-to-one matching) and identification (one-to-many

matching) modes.

For the verification mode, given a pair of inputs, we ac-

cept it as the same subject’s pair if the dissimilarity mea-

sure between them is below an acceptance threshold, oth-

erwise we reject it (i.e., regard it as a different subjects’

pair). Here, we consider two types of error rates as per-

formance measures: false acceptance rate (FAR) of the dif-

ferent subjects’ pairs, and false rejection rate (FRR) of the

same subjects’ pairs. Because the FAR and FRR change as

the acceptance threshold changes, we evaluate a trade-off

between the FAR and FAR by a receiver operating char-

acteristics (ROC) curve. In addition, we extract an equal

error rate (EER) of the FAR and FRR as a typical perfor-

mance measure. Moreover, we consider probe-dependent

z-normalization [4] for better performance, i.e., we com-

pute the dissimilarity scores between a specific probe and

all the galleries, and normalize them so as that their means

and standard deviations are 0 and 1, respectively. We report

performances both without and with z-normalization.

For the identification mode, we match a probe to all the

galleries and make a rank list based on dissimilarity mea-

sures (i.e., galleries with smaller dissimilarity measures get

smaller ranks). We evaluated rates of true match galleries

included up to rank-� by a cumulative matching character-

istic (CMC) curve.

ROC curves without and with z-normalization and CMC

curves are shown in Fig. 8. In addition, EERs without

and with z-normalization, and rank-1, rank-5, and rank-
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Figure 8: ROC curves w/o and w/ z-normalization and CMC curves.

Table 2: EER [%] w/o and w/ z-normalization (denoted as

EER and zEER, respectively), rank-1, rank-5, and rank-10

identification rates (denoted as Rank-1, Rank-5, and Rank-

10, respectively) [%] with LB. Bold indicates the best per-

formances.

Method EER zEER Rank-1 Rank-5 Rank-10

Direct 4.2 3.0 89.3 96.0 97.0

Raw FFD 7.3 6.3 66.3 87.0 92.7

Eigen FFD 3.7 2.6 92.0 98.0 98.0

10 identification rates are summarized in Table 1. We can

see the proposed method yields the lowest errors and the

highest identification rates among the benchmarks. More

specifically, compared with direct matching without defor-

mation, the proposed method reduces EERs without and

with z-normalization by 3.0% and 3.3%, respectively, and

improves rank-1, rank-5, and rank-10 identification rates by

12%, 7.3%, 5,7%, respectively. Consequently, we conclude

that the proposed eigen FFD steadily improves both verifi-

cation and identification performances.

4.6. Quantitative evaluation with metric learning

In this subsection, we compare the proposed method to

the two benchmarks with metric learning, i.e., LB. Specif-

ically, since the training size of this database is acceptable

for learning the eigen FFD but still insufficient for training a

deep neural network. Therefore, we employed the OU-ISIR

gait database, the large population data set [23] with more

than 4,000 subjects with four slight view angle variations

for the purpose of training the deep neural network.

Similarly to the previous subsection, we evaluated the

performance of the verification and identification modes by

ROC curves without and with z-normalization and CMC

curves as shown in Fig. 9. In addition, we summarize EERs

without and with z-normalization, and rank-1, rank-5, and

rank-10 identification rates in Table 2.

Although not only the accuracy of the proposed method

but also that of direct matching are improved by met-

ric learning, the proposed method still achieves the best

performance among them. Concretely speaking, the pro-

posed method yields lower EERs without and with z-

normalization than direct matching by 1.5% and 0.4%, re-

spectively, and higher rank-1, rank-5, and rank-10 identifi-

cation rates by 2.7%, 2.0%, and 1.0%, respectively. There-

fore, we conclude that the proposed method is still effective

even after applying the metric learning.

4.7. Limitation

Although the effectiveness of the proposed eigen FFD

was demonstrated through the aforementioned experiments,

there were still some failure cases where the proposed

method performs poorly. We show a failure mode of match-

ing in Fig. 10 to discuss the limitations. In this example, a

gallery of the same subject’s pair moves his head forward

within one gait period, and hence blurry region is found

around the head in the resultant GEI (Fig. 10 (b), top),

which results in a certain amount of dissimilarity. This kind

of blurry region cannot be successfully mitigated by the de-

formable registration, and hence the dissimilarity measure

is not largely reduced even after applying the eigen FFD

(Fig. 10 (e), top).

On the other hand, a gallery of a different subject does

not have such a blurry region at the head (Fig. 10 (b), bot-

tom), but its stride and posture are different from a probe

(Fig. 10 (a)), which results in relatively large dissimilarity

measure before deformable registration (Fig. 10 (c), bot-

tom). The differences are, however, effectively mitigated

by the deformable registration and hence the dissimilarity

measure is greatly reduced. As a result, the dissimilarity

measure for the different subject becomes smaller than that

for the same subject, and hence the probe is falsely matched

to the different subject.
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Figure 9: ROC curves w/o and w/ z-normalization and CMC curves with LB.
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Figure 10: A failure mode (top: the same subject, bottom:

a different subject). (a) Probe ��, (b) Gallery �� , (c) Dif-

ference image between (a) and (b), (d) Deformed probe

� (��; û) by the intra-subject deformation model, (e) Differ-

ence image between (d) and (b). A numerical value below

each difference image means dissimilarity measure (×105).

The reasons for the failure mode are two folded. One is

that the posture change within one gait period may cause a

blurry region in aggregation-based gait representation such

as GEI, which cannot be successfully mitigated just by ap-

plying the deformable registration to the aggregated gait

feature. In order to cope with the temporal posture change

within one gait period, we need to consider frame-by-frame

deformable registration before aggregating over one gait pe-

riod.

The other is that the eigen FFD does not necessarily con-

tain pure intra-subject deformations even if it is extracted

only from a training set of the same subjects’ pairs. In

fact, while stride change and posture change occur for some

same subjects’ pairs, such differences may also appear for

different subjects’ pairs. In other words, some modes in

the eigen FFD may be common both in intra-subject and

inter-subject deformation. Therefore, we need to consider

not only the intra-subject deformations but also the inter-

subject deformations when extracting the eigen FFDs so as

to keep the dissimilarity measure for a different subjects’

pair large to some extent.

5. Conclusion

This paper described a method of gait recognition by de-

formable registration. We employed FFD with lattice-type

control points and extracted the eigen FFD from a set of

intra-subject deformation fields to constrain the deforma-

tion modes. Metric learning by LB, a recent deep learn-

ing framework, further improved the discrimination capa-

bility after the pre-processing deformable registration by the

eigen FFD. Experiments with 1,334 subjects showed the ef-

fectiveness of the proposed method compared with direct

matching without deformable registration.

One of future research avenue is consideration of not

only the intra-subject deformations but also the inter-subject

deformations to extract better deformation modes for dis-

crimination. Moreover, we will consider frame-by-frame

deformation to cope with posture changes within one gait

period. Finally, we would like to tackle more challenging

posture changes by climbing a slope or stairs, or by carry-

ing a relatively heavy object. In addition, we will conduct

experiments using more publicly available gait databases to

further validate the effectiveness of the proposed method.
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