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Abstract

Some biometrics methods, especially ocular, may use

fine spatial information akin to level-3 features. Examples

include fine vascular patterns visible in the white of the eyes

in green and blue channels, iridial patterns in near infrared,

or minute periocular features in visible light. In some mo-

bile applications, an NIR or RGB camera is used to capture

these ocular images in a ”selfie” like manner. However,

most of such ocular images captured under unconstrained

environments are of lower quality due to spatial resolu-

tion, noise, and motion blur, affecting the performance of

the ensuing biometric authentication. Here we propose a

multi-frame super resolution (MFSR) pipeline to mitigate

the problem, where a higher resolution image is generated

from multiple lower resolution, noisy and blurry images.

We show that the proposed MFSR method at 2× up-

scaling can improve the equal error rate (EER) by 9.85%

compared to single frame bicubic upscaling in RGB ocular

matching while being up to 8.5× faster than comparable

state-of-the-art MFSR method.

1. Introduction

Biometrics plays an important role in protecting data and

physical access these days, especially for mobile devices

which are misplaced or lost more often than other devices.

Nowadays smart phones are the primary computing device

for an exceedingly larger portion of the population, and in

that context mobile biometrics are considered a safe and

convenient password replacement to prevent unauthorized

access to the device and its sensitive data. One of the popu-

lar biometrics traits which gained attention of research and

industry alike is ocular biometrics in visible spectrum. This

is because ocular images can be easily captured just using

the selfie camera without the need for additional hardware.

In mobile ocular biometrics, visible parts of ocular region

such as the iris, vascular patterns seen over the sclera and

periocular regions are used to authenticate users. Studies

show that the methods using local features may outperform

those based on global features for ocular and periocular bio-

metrics in visible light [27]. These local feature methods

mainly depend on fine spatial features such as vascular pat-

terns over the white of the eye, and skin texture of the peri-

ocular region.

Figure 1. The block diagram of the proposed multi-frame super

resolution method.

However, matching these local features via mobile de-

vice may cameras introduce some challenging problems.

Since the images are captured using ”selfie” cameras in un-

constrained environment, they can have varying types of il-

lumination, noise, blur, and user to camera distance, which

will affect the performance of biometric matching methods.

Even though there is a rather considerable body of research
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in the area of multi-frame image enhancement and super

resolution (SR), these techniques have not been successfully

applied to visible light mobile ocular biometrics.

SR techniques have been used in other biometrics traits

such as face [3, 31, 12], iris [29, 26] and fingerprint [19, 2].

Most of these methods are single image super resolu-

tion(SISR) techniques where the image enhancement pro-

cess is done using the information available in a single cap-

ture. But in case of multiframe super resolution (MFSR),

image enhancement process is done using information from

more than one image, usually for a burst of successive cap-

tures, providing better results compared to SISR [13, 15].

Such bursts of captures can be easily obtained with mod-

ern camera modules, including those used on the front of

mobile devices.

In this paper, we propose a MFSR pipeline for improv-

ing the performance of mobile ocular biometrics. The pro-

posed MSFR method has two stages, (1) An upscaling and

denoising stage using discrete cosine transform interpola-

tion filter(DCTIF) based sub-pixel registration and block

motion estimation followed by bilateral interpolation, and

(2) a deep learning based deblurring model for removing

defocus blur. We explain this process in more detail in sec-

tion 2. We also compare our proposed MFSR method to

state-of-the-art MFSR methods when applied to ocular bio-

metric matching.

The rest of the paper is organized as follows. The pro-

posed method is explained in section 2. The experimental

setup is provided in section 3. Results are shown in sec-

tion 4 and conclusion is drawn in section 5.

2. Proposed Method

Let yk denote the kth frame captured from the mobile

RGB camera. Each frame is degraded with noise (ηk), blur

(ψk) and projection (θk) a combination of rotation, transla-

tion and scale.

Assuming the multiple degraded frames are generated

from one high resolution (HR) image, we can formulate the

degraded frames captured from the mobile RGB camera as

follows,

yk = ψkθkX + ηk, where k = 1, 2, 3, ..., n (1)

From equation 1, approximation for HR image can be

written as,

X = ψ θ Y + η, where ψ = (ψ1, ..., ψn)−1,

θ = (θ1, ..., θn)−1, η = (η1, ..., ηn)−1,Y = (y1, ..., yn)
(2)

In this paper, we divided the HR image (X) approxima-

tion into two parts. First, approximation for projection (θ)

and noise (η) using a multiframe upscaling technique where

all the frames upscaled and registered with DCTIF based in-

terpolation and subpixel motion registration. Second, a bi-

lateral filtering method to combine these registered frames

to generate upscaled and denoised image. Finally, approxi-

mation for blur and smoothness (ψ) is done on a single up-

scaled image using a deep learning method.

We introduce the proposed mutiframe upscaling using

subpixel registration and bilateral interpolation for generat-

ing the HR images in section 2.1. This is followed by the

proposed deep learning-based image deblurring and sharp-

ening technique in section 2.2. Figure 1 shows the block

diagram of the proposed method.

2.1. Multi-Frame Upscaling

2.1.1 Subpixel Registration

Subpixel registration is the first step in image enhancement,

assuming that both enrollment and verification datasets

have frame bursts available for each capture. For upsam-

pling during the subpixel registration, an interpolation filter

is needed. Here, we used a DCTIF filter. DCTIF is an in-

terpolation filter based on DCT. It is a fractional pixel in-

terpolator. Since DCT exhibits properties like the optimal

Karhunen-Loeve Transform (KLT) [10], it is quite efficient.

The equation of DCT -II (2D dimension) is as follows [23]:
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where x(n) contains the original pixel values, and X(k)

contains the DCT domain values (k=0,1,2. . . ., N-1.). The

inverse DCT-II equation is as follows:

x(n) =

√

√

√

2

N

N−1
∑

k=0

ckX(k)cos

(

(n + 0.5)πk)

N

)

(4)

ck =

{ 1√
2
, k = 1

1, otherwise
(5)

If we substitute forward DCT-II from equation-3 into in-

verse DCT-II in equation-4, we get the interpolation for-

mula as follows:
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(6)

where i+p/L is the new interpolated position, i is the pre-

vious position, L is the upsampling factor, and x (m) is the

pixel values of the neighborhood.
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From the subsequent low-resolution images, using sub-

pixel motion estimation, a frame is predicted. To predict

the frame, block motion estimation algorithm is used. In

general, subpixel motion accuracy is achieved by searching

the best matching block in an interpolated reference search

area. The method integrates the block matching algorithm

and optical flow method to estimate the motion. The DC-

TIF interpolation filter is used for the interpolation. For

each matching block in a new predicted frame, the match

is found when it has the lowest matching error in the refer-

ence. Error is computed as the sum of absolute errors be-

tween corresponding pels. Displacement between the cur-

rent and previous matching block is the motion vector [25]

which also denotes the direction. In an iterative process,

current matching block is replaced by the best one.

Figure 2. Predicting and registering frames K(t − 1) and K(t + 1)

from K(t) frame.

Figure 2 shows the general flow diagram of predicting a

frame from consecutive frames. Once the predicted images

are generated, they are registered to the image for which the

are predicted took place. For registering images, an affine

transform [21] is considered. Figure 3 shows the pixel in-

tensities of a 3X3 image segment after the registration.

2.1.2 Applying Bilateral Filter in Upscaled Grid

After the registration, the LR images are registered into HR

image grid. For the upsampling factor 2, having k(t − 2),

k(t − 1), k(t + 1), k(t + 2), k(t + 3), frames for prediction of

k(t) and then registration, the HR grid is 2n×2n = 4n2. The

registered frames have n2 +n2 +n2 +n2 +n2 = 5n2 grid. So,

some of the pixels will be in same location and some of the

locations will have missing pixels.

In Figure 4, the circles are the pixel values from 5 dif-

ferent frames which are registered (red, yellow, black, blue,

green colors denote pixel values of 5 different frames). The

crosses are the missing pixel locations. The positions where

overlapped pixels are prevailing, pixel values are averaged.

At the predict missing holes, bilateral filter [9] is used. Un-

like other filter, bilateral filter not only takes care of the po-

sition of the pixel but also of the photometric distance of the

Figure 3. Pixel intensities of a 3 × 3 image segment after the sub

pixel registration from two subsequent frames with affine trans-

form. The pixel intensities from the predicted frames lie within

half unit of the location axis of the resolution grid of registered

k(t) frame due to half pixel accuracy.

Figure 4. Overlapped and missing pixels after registration.

neighborhood pixels. Following are the equations for com-

puting weights and predicted output using bilateral filter

wi j = e
− |pi−p j|2

2(σd )2 .e
− |xin [i]−xin [ j]|2

2(σr )2 (7)

xout[ j] =

∫ n

i

wi j
∫ n

i
wi j

xin[i] (8)

where i is the pixel location of the input, j is the pixel lo-

cation of the output, and xin and xout are the input and output

pixel values respectively. wi j is the weight, σd and σr are the

heat kernel parameters.

2.2. Deep Learning based deblurring

For deblurring process we incorporated DenseNet archi-

tecture [14], where all the features from previous layers is

568



propagated to the next layer to extract new features. Assum-

ing k channels and a model depth or number of layers as d,

at each layer the features from all the previous layers are

concatenated (k∗ (d−1) channels). A 1×1 kernel is applied

to squeeze all the features back to k channels. To extract

new features, a 3 × 3 convolution operation with k channels

is applied. Unlike DenseNet, in our method we used scaled

exponential linear units(SELU) activation [18] instead of

batch normalization(BN) with rectified linear unit(ReLU).

This is because SELU has self normalization properties

which eliminates the BN operation and SELU is also com-

putationally lighter than BN. The DenseNet model is also

used to extract residual image which is subtracted from the

input image as shown in Figure 5.

Figure 5. DenseNet-based architecture for deblurring.

As there are no pooling layers and only 3 × 3 kernels,

the effective receptive window of the deep learning model

is (2d+1)× (2d+1). So, each new pixel at the output of the

model is generated by extracting features from (2d + 1) ×
(2d+1) pixels in input image. In the proposed deep learning

model, with a model depth of d = 5 and number of channels

k = 24, the effective receptive window is 11 × 11 pixels.

Loss function: Mean square error(l2) and mean absolute

error (l1) are the most commonly used loss functions in the

super resolution literature [6, 16] and they achieved better

PSNR values. From equation- 9 it can be seen that the er-

ror is calculated only between each pixels of the predicted

image x̂i and its target xi. This tends to cause deforma-

tions in structure. In literature, it is also shown that MSE

and consequently PSNR do not correlate with human image

quality perception [32]. Especially in ocular biometrics, it

is necessary to maintain the low level (level-3) texture in-

formation as most ocular biometric information is derived

from them [11, 27].

Loss =
1

N
.

N
∑

i

‖(xi − x̂i)‖n (9)

In order to maintain these level-3 features, we incorpo-

rated structural similarity index(SSIM) [30] as loss func-

tion. As shown in equation 10, SSIM loss is calculated at

each pixel i by considering structural information from the

surrounding pixels window K × K.

S S IM(i) =
(2µxµx̂ +C1)(2σxx̂ +C2)

(µ2
x + µ

2
x̂
+C1)(σ2

x + σ
2
y +C2)

(10)

Loss = 1 − S S IM (11)

Where µ and σ2 are mean and variance of pixels in a

K × K window around predicted pixel x̂i and its target xi.

σxx̂ is the covariance.

Standard window size used in literature is 11×11. How-

ever, as features in ocular images are way smaller than the

standard window size, we chose a 5×5 window to calculate

the SSIM.

The proposed model is trained using stochastic gradi-

ent descent(SGD) optimizer[5] with starting learning rate

of 0.01 and a 0.9 momentum. After every 20 epochs, the

learning rate is reduced by 1/10th of initial rate. This pro-

cess is continued for 50 epochs.

Training dataset: We generated training data from De-

scribable Textures Dataset(DTD) [4] which contains image

patches of various textures. Figure 6 shows some sam-

ples from DTD dataset we handpicked for training the de-

blurring model. The training dataset of 100K samples is

created by randomly cropping 64 × 64 regions from the

DTD dataset. During training, with batch size of 32, ran-

domly Gaussian blur with standard deviation varying from

σ = 0.5 to 2.0 and small amount of Gaussian noise is ap-

plied to each sample.

3. Experimental Setup

3.1. Ocular Biometrics Datasets

To test the ocular biometrics performance, we used origi-

nal raw data form the VISOB dataset [28] collection to gen-

erate multi-frame eye crops. VISOB dataset was collected

using three different mobile devices (iPhone 5, Oppo N1,

569



Figure 6. Deblurring model training dataset samples from describ-

able texture dataset.

Lighting Session - I Session - II images/subject

Dim Light 1407 1423 28.3

Daylight 1461 1323 27.84

Office 1237 1881 31.18

Total 4105 4627 29.11
Table 1. Characteristic of the multi-frame ocular biometrics

dataset generated for performance evaluation.

and Samsung Note 4) in three different lighting conditions

(normal office, daylight and dim office). All the images

were captured in burst mode in two visits separated by 2

to 4 weeks apart and in each visit images were collected in

two sessions each 10 to 15 minutes apart. The volunteers

held devices in selfie mode and the software on the device

captured multiple images in burst mode.

Figure 7. Samples from dataset exhibiting noise, lighting and pose

variations. All the generated samples have 6 consecutive frames.

For experiments in this paper we randomly choose 50

subjects out of 550 from OPPO device. To generate sam-

ples, we selected 6 consecutive frames which are at least

96% spatially correlated. Then, using dlib [17] face detec-

tor and face landmark localization, we found the eye re-

gion in the first of 6 frames and then same region is cropped

from all the other frames. All the cropped images are re-

sized to 100X135 pixels. Table 1 shows number of samples

per lighting condition per session. For evaluation, Session-I

and session-II are considered as enrollment and verification

sets respectively. Figure 7 shows some samples from the

dataset displaying variations in noise, blur, lighting and eye

movements.

3.2. Biometric Matcher

Our goal is to design an MSFR method which in-

creases the performance of a level-3 based ocular biomet-

rics matching. To that end, we chose Speed Up Robust Fea-

tures(SURF) point detector and descriptor [1]. SURF is par-

tially based on Scale Invariant Feature Transform(SIFT) de-

scriptor [22], but is faster. SURF feature points are detected

using an approximated Gaussian blob detector and their ori-

entation is calculated using Haar-wavelet responses. Gaus-

sian smoothening is approximated using a square shaped fil-

ter for faster processing. These detected feature points are

localized in scale and space. For each feature point, a 128

dimensional extended feature descriptor is extracted from a

square window centered on the feature point and using its

orientation. In our case, all the feature points are detected

only in the first 2 octaves with 4 scales at each octave given

the resolution of our source data.

For feature matcher, we incorporated the technique used

in [11]. We first generated matched point pairs between en-

rollment image and verification image using nearest neigh-

bor symmetric match (NNS) criteria [24]. Then, to remove

the outliers from the matched point pairs, RANSAC algo-

rithm [8] was used. Finally, inlier count was considered as

the match score. Equal error rate(EER) is considered as the

scalar performance metric.

3.3. Comparison With State-of-the-art Methods

To compare the biometrics matching performance and

computation time of the proposed method, we chose six no-

table super resolution techniques. Out of the six, three are

single frame methods and the other three multi-frame meth-

ods. As the baseline for both single frame and multi-frame

SR methods, bicubic interpolation was chosen. In case of

multi-frame bicubic upscaling, we averaged all the frames.

For single frame, we chose SRCNN [6] and VDSR [16],

as they are most commonly cited and benchmarked meth-

ods in SISR. In MFSR, we choose Maximum a-posteriori

(MAP) based method [7] and iteratively re-weighted mini-

mization(IRWSR) super resolution methods [20].
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4. Experimental Results

All the experiments were conducted on a PC equipped

with Intel i7-6700K at 4.00GHz with 32GB of memory.

To training the deep learning models, Nvidia GTX 1080TI

graphic card used with PyTorch framework on python. For

fair comparison, we used original code and models provided

by the state-of-the-art methods. During testing stage, all the

experiments were conducted only on CPU using MATLAB

2016b and PyTorch.

Figure 8. Checkered patterns appearing on IRWSR super resolved

images.

All the images from our biometrics dataset were en-

hanced with the proposed MFSR and also the other selected

SR methods for comparison. For each lighting condition

(normal office, daylight and dim office) we evaluated the

EER(%) using the matcher introduced in section 3.2. Also,

we evaluated the execution time for each SR method. All

the results are reported in Table 2. Super resolution recon-

structions of the tested method are shown in Figure 10.

From the matching results in Table 2, it can be seen that

proposed method is the second best performing compared

to all the MFSR and SFSR techniques tested. Compared to

IRWSR with 17.45% EER in daylight condition, the pro-

posed method EER is decreased by 2.1% while only taking

1.32sec execution time compared to IRWSR at 11.5sec, a

8.5× speed up. MAP is the closest to the proposed method

in both speed and matching performance with only 0.66%

Figure 9. A comparison showing number of feature points detected

and number of feature points matched after RANSAC. Both IR-

WSR and SRCNN faltered during matching due to presence of

noise and checkered micro patterns on the super resolved images.

increase in EER for dim light condition. The SFSR method,

SRCNN, is competitively faster than proposed method in

execution time. However, both SRCNN and VDSR lags in

matching performance by at least 2%. It can also be noticed

that the over-all results of office lighting is lower than other

lightings is because, for many samples dlib [17] algorithm

eye region correctly as shown in Figure 7.

From visual inspection of the super resolved images in

Figure 10, it can be seen that all the single frame meth-

ods, bicubic, SRCNN and VDSR, have more noise com-

pared to the multi-frame methods. Both MAP and bicubic

with averaging have issues when registering images, which

is causing ghosting effect in the output images as shown

in Figure 10(b, d). Another thing to be noticed is that some

samples generated using IRWSR based MFSR method have

line patterns appearing on the images as shown in Figure 8.

It might be that these patterns are helping SURF to detect

more points. However, as shown in the Figure 9, the final
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Figure 10. Super resolved images using various super resolution methods.

Methods Dim light (EER) Daylight (EER) Office (EER) Time(sec.)

Single Image Super Resolution (SISR) Methods

Bicubic 32.08% 29.39% 38.83% 0.0025

VDSR [16] 22.13% 21.16% 31.38% 1.56

SRCNN [6] 22.46% 21.59% 31.22% 0.33

Multi-Frame Super Resolution (MFSR) Methods

Bicubic + Averaging 26.32% 23.45% 32.02% 0.0068

MAP [7] 21.61% 20.20% 28.99% 1.28

IRWSR [20] 17.84% 17.45% 26.03% 11.5

Proposed 20.79% 19.54% 28.06% 1.34
Table 2. Comparison of EER(%) and execution time(sec.) for evaluated super resolution methods. All the results are generated for 2×
upscaling.
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matched points for IRWSR and noisy SISR methods are not

robust compared to the proposed method.

5. Conclusion

In this paper, we explored the application of super reso-

lution to mobile ocular biometrics. We proposed a two stage

multi-frame super resolution pipeline. First, all the input

frames are subpixel-registered using block motion estima-

tion and affine transformation in DCTIF interpolated region.

Then bilateral filter is used to fill up the missing pixel in up-

scaled region after combining all the frames. Finally, a deep

learning based image sharpening and deblurring technique

is used to increase the contrast and detail of the fine tex-

tures of ocular images. We show that the proposed method

achieves EERs that are similar or better than the state-of-

the-art super resolution methods while being computation-

ally more efficient.
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